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Abstract
Solving math word problem (MWP) remains a
challenging task, as it requires to understand
both the semantic meanings of the text and
the mathematical logic among quantities, i.e.,
for both semantics modal and quantity modal
learning. Current MWP encoders work in a
uni-modal setting and map the given problem
description to a latent representation, then for
decoding. The generalizability of these MWP
encoders is thus limited because some prob-
lems are semantics-demanding and others are
quantity-demanding. To address this problem,
we propose a Compositional Math Word Prob-
lem Solver (C-MWP) which works in a bi-
modal setting encoding in an interactive way.
Extensive experiments validate the effective-
ness of C-MWP and show its superiority over
state-of-the-art models on public benchmarks.

1 Introduction

The task of math word problem (MWP) solving
aims to map natural language problem descriptions
into executable solution equations to get the correct
answer, which is a sub-area of neuro-symbolic rea-
soning. It requires perceptual abilities such as com-
prehending the question, identifying the quantities
and corresponding attributes, as well as complex
semantics understanding skills like performing log-
ical inference, making comparisons and leveraging
external mathematical knowledge.

While MWP encoders have been sophisticatedly
designed to understand the natural language prob-
lem description, the difference on understanding
diverse types of problems has not been aware of.
We find that MWP can generally be grouped into
three categories based on the keywords in (Liu
et al., 2019), i.e., “Story Problem”, “Algebra Prob-
lem” and “Knowledge Problem”. “Story Problem”
often includes significant amount of background in-
formation like characters, objectives and behaviors.

“Algebra Problems” involves math notations or is
composed of elementary concepts. “Knowledge
Problem” asks for external knowledge like geome-
try and number sequence, as shown in Figure 1.

These types of problems can be compositionally
understood at the different level attention to the
semantics modal and quantity modal, where RNNs
and pre-trained language models usually focus on
the textual information and GCN with quantity-
centered graphs capture the relationship between
quantities and contexts. However, the encoders
in existing MWP solvers either model only the se-
mantics modality or utilize quantity modal priors to
refine the MWP encoding (Zhang et al., 2020; Shen
and Jin, 2020). Although the quantity centered re-
finement can particularly make improvements on
quantity-demanding problems, its semantics un-
derstanding is weakened (evidence can be found
in Table 3). This limitation, one joint modal can-
not do it all, decreases the generalization of MWP
solvers and is what compositional learning aims to
address. In this work, we propose to disentangle
semantics modal and quantity modal by composi-
tional learning at the encoding stage, aiming to
improve the generalization across different types
of problems.

Contributions. (i) A novel and effective bi-
modal approach is proposed for the first time to
enable MWP compositional understanding. (ii)
A joint reasoning module is designed for our bi-
modal architectures to flexibly incorporate different
modalities. (iii) Extensive experiments and abla-
tive studies on two large-scale MWP benchmarks –
Math23k (Wang et al., 2017) and MAWPS (Koncel-
Kedziorski et al., 2016) show the superiority of the
proposed approach over related works.
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Text : 348 teddy bears are sold for $23 each. There are 

total 470 teddy bears in a store and the remaining 

teddy bears are sold for $17 each. How much did the 
store earn after selling all the teddy bears?

Equation: 348×23 + 470 − 348 ×17

Quantities:

[348, teddy bears, sold]; [$20, each];

[470, teddy bears, total]; [$17, remaining].

Semantics:

Some teddy bears have been sold at a price;

The left part will be sold at a different price;
The goal is to compute the expect income.

Text : 2 times A is the same as 3 times B. B equals 28.

Compute A.
Equation: 28×3 ÷ 2

Quantities:

[2, times]; [3, times]; [28, equals].

Semantics:

2 times A equals 3 times B; B equals 28.

Story Problem:

Algebra Problem:

Text : In order to make 5 pipes of length 2 meters and 

diameter 0.2 meters (ignoring inside or outside), how 

much metal sheet is required?

Equation: 𝜋×0.2×2×5

Quantities:

[5, pipes]; [2, length]; [0.2, diameter].

Semantics:

5 pipes of length 2 and diameter 0.2 meter;

Pipe is open and do not have bottom area;

Surface area equals 𝜋×diameter×𝑙𝑒𝑛𝑔𝑡ℎ;
Compute total surface area of pipes;

Knowledge Problem:

Figure 1: Examples of different types of problems in MWP solving.

2 Related Work

Compositional Learning in NLP. Modeling
compositionality in language has been a long-
standing issue (Wong and Wang, 2007) in NLP
community. One common practice is to perform
disentanglement over language representations at
different levels (Welch et al., 2020).. They usu-
ally focus on atomic semantics units like character,
word and phrase. As logic form annotations natu-
rally own compositional features, compositionality
is incorporated in generating correct logic contents.
Therefore, the compositionality is often injected
into traditional semantic parsing tasks(Chen et al.,
2020; Yang et al., 2022) where the goals during
training can be decomposed and then reorganized
as a novel goal.

Our work firstly tries to inject compositional
prior into MWP encoding. It is worth noting that
MWP solving owns the same well-organized logic
form annotations as machine reasoning, which nat-
urally requires compositionality.

Math Word Problem Solving. Earlier MWP
solvers parse problem descriptions semantically,
and learn templates for generating answers (Koncel-
Kedziorski et al., 2015). Recent works (Wang
et al., 2017; Xie and Sun, 2019; Li et al., 2019;
Zhang et al., 2020; Shen and Jin, 2020; Wu et al.,
2021b,a; Lin et al., 2021; Liang and Zhang, 2021;
Jie et al., 2022) focus on employing the encoder-
decoder framework (e.g., sequence-to-sequence,

sequence-to-tree, graph-to-tree) to translate MWP
texts into equations based on traditional RNN struc-
ture. There are also new settings (Amini et al.,
2019; Miao et al., 2020) introduced to extend MWP
solving in equation group generation and diagnos-
ing awareness of external knowledge. Nowadays,
many researchers build strong MWP solvers upon
pre-trained language models (PLMs) (Huang et al.,
2021; Li et al., 2021; Yu et al., 2021; Shen et al.,
2021; Lan et al., 2022) and have achieved great per-
formance. Differently, our work lays the ground-
work of feature extraction of quantity modal, which
is orthogonal to those works.

In this work, we not only propose an explicit
compositional encoding module with a multi-layer
design, but also incorporate detailed analysis to
verify its compositional learning ability, to jointly
leverage semantic and quantity information to
achieve effective MWP understanding.

3 Our approach

3.1 Compositional Mathematical Encoder

As shown in Figure 2, our CMEncoder block con-
sists of a semantic encoder, a quantity encoder and
a dynamic fusion block. The semantic encoder
aims to extract semantic information from the prob-
lem description, understanding the background and
objectives. The latter part encodes problems only
with quantity-related graphs, helping the encoder
to know the properties of quantities and the rela-
tionship between quantities and contexts.
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Figure 2: The CMEncoder block (shown at the bottom) takes the given problem description, and runs in parallel to
obtain Hr from the semantic encoder, and Hg from the quantity encoder. A dynamic fusion module incorporates
Hr and Hg by cross-modal attention. The obtained Hf is attentively stacked with Hr and Hg . The resulted Hatt

is sent to the next CMEncoder block. The final problem representation Hfinal goes to the decoder for generating
the final solution equation.

Semantic Encoder. To demonstrate the robust-
ness of our approach, we implemented two differ-
ent semantic encoders as our backbone.

Firstly, we encode the problem description W by
a bidirectional gated recurrent unit (BiGRU) (Cho
et al., 2014). The outputs of GRU are hidden state
vectors of all tokens, Hr = {h1, h2, ..., hn}, where
n is the length of problem W .

Hr = BiGRU(Embeds(W )) (1)

where Embeds(W ) is the embedding result of tex-
tual description W in semantics modal. Empir-
ically, we find that two stacked CMEncoders as
shown in Figure 2 achieve the best performance.

Secondly, pre-trained language models (PLMs)
have been ubiquitous in NLP tasks. We use the
latest push of MWP-BERT (Liang et al., 2022) as
our semantic encoder to obtain Hr.

Quantity Encoder. To encode the quantity
modal in the problem W , we feed a graph trans-
former Gtrans with Quantity Comparison Graph
and Quantity Cell Graph following Graph2Tree
(Zhang et al., 2020),

Hg = Gtrans(Embedq(W )) (2)

where Embedq(W ) is the embedding matrix in
the quantity modal, which aims to improve the

quantity representation by incorporating quantity
magnitude information and quantity-context rela-
tionship with the above two graphs. Different from
Graph2Tree, the two embeddings Embeds(W )
and Embedq(W ) are updated in the training pro-
cess to extract the semantics and quantity feature
separately. In this way, semantics and quantity
modals are disentangled, which alleviates the issue
of “one joint modal cannot do it all”, enabling the
C-MWP solver to pay different levels of attention
when solving different problems.

Dynamic Fusion. To achieve joint reasoning
over the semantics information and quantity in-
formation, we design a dynamic fusion module to
flexibly incorporate the features from these two
modals. First, we get s and q from the mean pool-
ing of Hr and Hg, respectively. Then, cross-modal
attention is applied between Hr and q, Hg and s:

Att1(Hr, q) = Σn
i=1aiHri

Att2(Hg, s) = Σn
i=1biHgi

(3)

where the attention scores ai, bi come from:

ai = W 1
a tanh(W 2

a (Hri

∣∣∣∣ q))
bi = W 1

b tanh(W 2
b (Hgi

∣∣∣∣ s))
(4)

where W 1
a , W 2

a , W 1
b and W 2

b are parameter matri-
ces. The cross-modal attention here grounds the
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quantity information in the semantics modal, and
vice versa. By applying different weights on dif-
ferent modals, our model is flexible to pay more
or less attention on a certain modal. Finally, the
output of dynamic fusion is:

Hf = Att1(Hr, q)
∣∣∣∣Att2(Hg, s). (5)

3.2 Stack Multiple CMEncoders
Humans often need to make multiple glimpses to
refine an MWP solution. Similarly, a CMEncoder
can be stacked in multiple steps to refine the under-
standing of an MWP, as shown in Figure 2. Given
the output from the semantic encoder, quantity en-
coder and dynamic fusion module at layer k − 1,
the features are stacked as:

H
(k−1)
att = crH

(k−1)
r + cgH

(k−1)
g (6)

where the attention weights cr and cg are:

cr = W 1
r tanh(W 2

r (H(k−1)
r

∣∣∣∣H(k−1)
f ))

cg = W 1
g tanh(W 2

g (H(k−1)
g

∣∣∣∣H(k−1)
f ))

(7)

where W 1
r , W 2

r , W 1
g and W 2

g are parameter ma-

trices. The H
(k−1)
att will be the input for both the

semantic modal and quantity modal of K-th CMEn-
coder, which will output H

(k)
r , H

(k)
g and H

(k)
f ,

which can be sent for the update at layer k + 1.
After finishing the K-th step reasoning, we con-

catenate the final H(K)
r and H

(K)
g as the final out-

put representation Hfinal.

3.3 Decoder
We follow the same implementation as GTS (Xie
and Sun, 2019). Eventually, the decoder will output
the pre-order traversal sequence of the solution tree.

3.4 Training Method
Given the training samples with problem descrip-
tion W and the corresponding solution S, the main
training objective is to minimize the negative log
probability for predicting S from W , empowered
by the compositionality of the CMEncoders. There-
fore, the overall loss is:

L = LMWP +
∣∣∣∣Embeds

∣∣∣∣
2
+
∣∣∣∣Embedq

∣∣∣∣
2

(8)

where LMWP is the negative log prediction proba-
bility − log p(S | W ). The L2 norm of the encoder
embedding matrices is added to the loss function
as regularization terms.

4 Experiments

4.1 Datasets
Math23k (Wang et al., 2017) containing 23,162
Chinese MWPs is collected from several educa-
tional websites.
MAWPS (Koncel-Kedziorski et al., 2015) is an
MWP dataset owning 2,373 English MWPs.

4.2 Baselines
GTS (Xie and Sun, 2019) proposes a powerful tree-
based decoder. Graph2Tree (Zhang et al., 2020)
constructs graphs to extract useful relationships
in an MWP. NumS2T (Wu et al., 2021b) encode
quantities with explicit numerical values. Multi-
E/D (Shen and Jin, 2020) proposes to use multi-
ple decoders in MWP solving. HMS (Lin et al.,
2021) develops a hierarchical word-clause-problem
encoder. EEH-G2T (Wu et al., 2021a) aims to
capture the long-range word relationship by graph
network. REAL (Huang et al., 2021) proposes a
analogical auxiliary learning strategy by extract-
ing similar MWPs. BERT-CL (Li et al., 2021)
uses contrastive learning with PLMs. RPKHS
(Yu et al., 2021) performs hierarchical reasoning
with PLMs. MWP-BERT released a BERT-based
encoder that is continually pre-trained on MWP
corpus. Gen&Rank (Shen et al., 2021) designs
a multi-task learning framework with encoder-
decoder pre-training. MWPtoolkit (Lan et al.,
2022) finds a RoBERTa-to-RoBERTa model has
the best performance in MWP solving.

4.3 Experimental Results
As Table 1 shows, our approach outperforms all
other RNN-based baselines in terms of answer ac-
curacy On Math23k, we outperform the latest RNN-
based push from Wu et al. (2021a) by 1.8%. For
the first time, an RNN-based MWP solver reaches
over 80% answer accuracy on the Math23k dataset.
What is more, the even fewer parameters with the
best performance suggest that our model is also
memory-efficient.

PLM-based solvers benefit from the pre-training
on a huge amount of corpus and thus achieve great
semantic understanding ability. From a different
point of view, our work aims to effectively and
efficiently integrate semantic and quantity under-
standing. Therefore, by incorporating the MWP-
BERT model as our semantic extractor, the answer
accuracy of C-MWP achieves state-of-the-art per-
formance. It proves the feasibility of combining
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Math23k Math23k∗ MAWPS #E
RNN Based

DNS - 58.1 59.5 3.0M

GTS 75.6 74.3 82.6 7.2M

Graph2Tree 77.4 75.5 83.7 9.0M

NUMS2T 78.1 - - 7.9M

Multi-E/D 78.4 76.9 - 14.2M

HMS 78.4 - 80.3 9.5M

EEH-G2T 78.5 − 84.8 9.9M

C-MWP (RNN) 80.3 77.9 84.9 7.6M

PLM Based
REAL 82.3 80.0 − 110M

BERT-CL 83.2 − − 102M

RPKHS 83.9 82.2 − 102M

MWP-BERT 84.7 82.4 − 110M

Gen&Rank 85.4 84.3 − 610M

MWPtoolkit − 76.9 88.4 110M

C-MWP (PLM) 86.1 84.5 89.1 130M

Table 1: Math23k column shows the results when eval-
uating on the public test set of Math23k, while the
Math23k∗ column shows the result of 5-fold cross vali-
dation on Math23k dataset. The last column #E denotes
the number of parameters in encoders.

Graph
Encoder

Compositional
Structure

Dynamic
Fusion

Acc(%)

GTS ✗ ✗ ✗ 75.6

Graph2Tree X ✗ ✗ 77.4

X X ✗ 78.1

X ✗ X 78.9

C-MWP X X X 80.3

Table 2: Accuracy among different ablated models.

PLM-based semantic modal encoder and graph-
based quantity modal encoder, which will be an
interesting inspiration to the community.

Ablative Study of Different Components.

In order to evaluate the effectiveness of each com-
ponent in C-MWP, we report the model perfor-
mance after removing several components. Com-
pared with Graph2Tree, our compositional struc-
ture and dynamic fusion module allow the full
usage of both modals and excel in improving
performance. “Compositional Structure” denotes
separating the semantic and quantity modal with
two different encoders that run in parallel. “w
Compositional Structure and w/o Dynamic Fusion”
means we replace the Dynamic Fusion module
with a simple addition of two features from two
encoders. “w/o Compositional Structure and w Dy-
namic Fusion” means, we employ the structure of
Graph2Tree, then utilize our dynamic fusion mod-
ule to fuse the feature from the RNN Encoder and

Model Overall Story Algebra KNWL
GTS 75.4 75.1 82.8 64.3

Graph2Tree 77.4 76.3 89.7 57.1
Multi-E/D 78.4 77.8 88.8 61.9

C-MWP (RNN) 80.3 80.0 90.0 66.7
MWP-BERT 84.7 85.6 88.8 72.0

C-MWP (PLM) 86.1 87.5 90.7 72.0

Table 3: The answer accuracy (%) of problems in dif-
ferent types. KNWL stands for the external knowledge
required problems.

the feature from the GNN Encoder of Graph2Tree.

Performance on Different Types of MWP.
In order to investigate how our model performs
across various types of MWP, we introduce a
new split of Math23k with regard to three types
of problems: story problems, algebra problems
and knowledge problems. Split details are shown
in the appendix. The evaluation results are pre-
sented in Table 3. Without a compositional man-
ner, Graph2Tree and Multi-E/D perform better
than GTS on story and algebra testing problems,
whereas they perform worse on knowledge prob-
lems. As stated before, one joint modal cannot do
it all. These baselines work well on some types
of problems while having weak performance on
other types of problems. Our C-MWP offers a gen-
eral accuracy improvement, which firmly supports
our motivation for alleviating the generalization
issue. This provides clear evidence that our model
leverages general math knowledge across differ-
ent types of MWP, successfully solving some non-
trivial problems that Graph2Tree failed to solve.

5 Conclusion and Future Work

The semantic meaning and quantity information
are important intrinsic properties of a math word
problem. Aiming at dealing with uni-modal bias
and achieve better generalization, we make the first
attempt to propose a compositional MWP solver, C-
MWP. Multi-layer reasoning and specified training
methods are leveraged to enhance the generalizabil-
ity of the model. As the method could be applied in
a broader range of neuro-symbolic learning prob-
lems, we will keep exploring the adaptiveness of
this compositional encoding method.
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Limitations
Explainability Most current MWP solvers are
only able to generate solutions. In our work, al-
though we achieved better generalization ability,
it is still hard to explain how the model solves
MWPs both correctly or incorrectly. These auto-
mated solvers would be much more helpful for tu-
toring students if they could explain their equation
solutions by generating reasoning steps.
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Appendix

Implementation Details
We train our model on an NVIDIA RTX 2080Ti
GPU, all implementation of training and testing
is coded in Python with Pytorch framework. For
our RNN-based model, 2 CMEncoders are stacked
and only 1 CMEncoder is used in the PLM-based
model. The size of hidden dimensions in encoders
and decoders are set to 512 and 768 for RNN-solver
and PLM-solver, respectively. Each GCN block has
2 GraphConv layers and each GNN encoder has
4 heads of GCN blocks. During training, Adam
optimizer is applied with the initial learning rates
of 0.001/0.00003 for RNN/PLM, which would be
halved every 30 epochs. During testing, we use a
5-beam search to get reasonable solutions. We also
apply Gaussian noise with mean 0 and variance
1 on the embedding result during training. This
simple operation can help models to learn more
robust parameters. Through grid search at 0.1 level,
the noise is multiplied by 0.2 to achieve the best
performance.

Hyper-Parameter Tuning
In general, we apply grid-search with manually de-
signed search space and use answer accuracy as the
evaluation metric to select the hyper-parameters.
For the number of stacked encoders, the search
space is {1, 2, 3, 4} and we finally use 2. For the
weight of L2 normalization loss, we choose weight
1 from {0.01, 0.1, 1, 5, 10}. The weight of ran-
dom noise 0.2 is selected from 0.1 level by grid
search with range 0 to 1. We also tune the beam
size of beam search from {3, 4, 5, 6, 7} and choose
5. The dropout probability 0.5 is selected from

K = 1 K = 2 K = 3 K = 4

C-MWP (RNN) 79.1 80.3 78.9 78.1
C-MWP (PLM) 86.1 85.9 85.2 85.1

Table 4: Accuracies across different numbers of
stacked CMEncoder on Math23k.

{0.1, 0.3, 0.5, 0.7}. Initial learning rate 0.001 is se-
lected from {0.01, 0.001, 0.0001}. For the hidden
size and embedding size in encoder, we select 256
from {64, 128, 256, 512}.

Variance and Significance Evaluation

We evaluated our solver with 5-fold cross-
validation and found that the accuracy of our
RNN-based C-MWP (0.779±0.028) is significantly
higher than Graph2Tree (0.755±0.016) (p<0.01),
and the accuracy of our PLM-based C-MWP
(0.845±0.21) is significantly higher than vanilla
MWP-BERT (0.824±0.016) (p<0.01).

Sensitivity Analysis about Stacking Number K

As we mentioned in Section 2.2, our CMEncoder
can be stacked into multiple layers to improve the
representation of an MWP. To obtain a better un-
derstanding about the hyperparameter K, i.e., the
number of stacked CMEncoders, we conduct a sen-
sitivity analysis in Table 4. We can see that the best
K for RNN-encoder is 2, just like humans often
need to make multiple glimpses to refine an MWP
solution. In the meantime, the best K for PLM-
based encoder is 1. The potential reason is that one
pre-trained language model (PLM) already has an
outstanding ability to encode texts. It is thus not
necessary to apply another CMEncoder to refine
the encoded features.

Case Study

Figure 3 shows generated solutions of two selected
problems by GTS (Xie and Sun, 2019), Graph2Tree
(Zhang et al., 2020), Multi-E/D (Shen and Jin,
2020) and our proposed C-MWP (RNN-Based).
The first problem has 4 quantities and they are all
useful, which means that it requires sufficient prob-
lem understanding and mathematical reasoning to
generate the right answer. Both Graph2Tree and
Multi-E/D which directly connect semantics modal
and quantity modal fail to extract clear represen-
tations of the problem, finally resulting in unrea-
sonable solutions which only contain 3 quantities.
For the second problem, although Graph2Tree and
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The starting price of a taxi is 

6 yuan, it costs additional 1.2 

yuan per kilometer after 3 

kilometers, how much yuan 

should someone pay if he/

she take a taxi for 5 

kilometers?

某地出租车收费标准
为：起步价为6元，3千
米后每千米加收1.2元，
某人乘坐出租车5千米，
则应付款多少元?

Problem (Chinese) Problem (English)

+

6 *

1.2 5

Graph2Tree Multi-E/D C-MWP (Ours)

+

6 *

3 5

+

6 *

-
1.2

5 3

Some salt water weighs 200 

grams, and the weight of salt 

accounts for 20% of the 

water. After adding some 

water, the weight of salt 

accounts for 10% of the 

water. How many grams of 

water were added?

一种盐水重200克，盐的
重量占盐水的20%，加了
一些水后，盐的重量占
盐水重量的10%．加了多

少克水？

-

200 /

* 200

20% 10%

-

200 /

*200

20% 10%

-

200/

200

*

10%

20%

+

6 *

1.2 5

GTS

-

200 /

200 10%

Figure 3: Case study from Math23k

Overall Story Algebra Knowledge

train 21,162 17,546 2,595 957
val 1,000 817 133 50
test 1,000 842 116 42

Table 5: Statistics of different types of problems in
Math23k.

Multi-E/D utilize all 3 quantities in the problem
description, they still fail to generate a plausible
solution. These two cases show that our proposed
encoder is able to extract more comprehensive rep-
resentations from problem descriptions, eventually
guiding the decoder to generate the correct solu-
tions.

MWPs in Different Categories
Figure 1 shows the MWP examples of “Story Prob-
lem”, “Algebra Problem” and “Knowledge Prob-
lem”. “Story Problem” often includes a signifi-
cant amount of background information like char-
acters, objectives and behaviors. “Algebra Prob-
lems” involves math notations or is composed of
elementary concepts. “Knowledge Problem” asks
for external knowledge like geometry and number
sequence. The category of each problem is deter-
mined based on keywords. The keywords of “Story”
and “Knowledge” problems are selected from the
appendix of (Liu et al., 2019). Inspired by them, we
categorize Math23k into 3 subsets - story, algebra,
and knowledge. The statistics of these problems
are shown in Table 5.
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