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Abstract

Conventional approaches to text classification
typically assume the existence of a fixed set of
predefined labels to which a given text can be
classified. However, in real-world applications,
there exists an infinite label space for describ-
ing a given text. In addition, depending on
the aspect (sentiment, topic, etc.) and domain
of the text (finance, legal, etc.), the interpreta-
tion of the label can vary greatly. This makes
the task of text classification, particularly in
the zero-shot scenario, extremely challenging.
In this paper, we investigate the task of zero-
shot text classification with the aim of improv-
ing the ability of pre-trained language models
(PLMs) to generalize to both seen and unseen
data across varying aspects and domains. To
solve this we introduce two new simple yet
effective pre-training strategies, Implicit and
Explicit pre-training. These methods inject
aspect-level understanding into the model at
train time with the goal of conditioning the
model to build task-level understanding. To
evaluate this, we construct and release UTCD,
a new benchmark dataset for evaluating text
classification in zero-shot settings. Experimen-
tal results on UTCD show that our approach
achieves improved zero-shot generalization on
a suite of challenging datasets across an array
of zero-shot formalizations.

1 Introduction

Text classification is the process of categorizing
text into sets of organized groups where each set
consists of similar content in a well-defined manner
(Minaee et al., 2021; Joulin et al., 2016). Super-
vised approaches have achieved great success in
recent years due to the availability of rich training
data and the advent of large pre-trained language
models such as BERT (Devlin et al., 2018). These
conventional approaches typically assume the pres-
ence of a pre-defined set of labels to which a given
text can be classified. However, in real-world ap-
plications, several challenges emerge:

Figure 1: Zero-shot Text Classification Problem: In real-
world applications, the model needs to adapt to unseen labels.
For a given aspect and domain, the interpretation of a given
text-label pair can vary greatly.

1) The label space is constantly evolving. Over
time, new labels are constantly emerging and the
definition of the label space is constantly being re-
fined. For example, intent classification systems
such as those used in chatbots and dialogue sys-
tems are constantly introducing new intents as their
range of supported features increases. Social net-
works such as Twitter encounter new and emerging
topics on a daily basis from massive amounts of
content that need to be classified. Figure 1 shows
an example of this emerging label space.

2) The range of applications for text classifica-
tion is vast. Text classification is pivotal to many
different application areas from sentiment analysis
to topic labeling, etc, and is used in a variety of
domains such as finance, health, etc. When applied
to this conglomeration of uses, it is typically as-
sumed that there exists a comprehensive dataset
of well-defined text-label pairs for each use case.
However, in many real-world settings, annotated
data is either scarce or unavailable entirely. Addi-
tionally, the use of dedicated models for each task
is impractical due to the additional compute over-
head and maintenance, thus making it difficult to
scale over time.

Zero-shot learning (ZSL) is aimed at addressing
these constraints. Zero-shot Learners are models
capable of predicting unseen classes. When applied
to text classification, these models aim to associate
a piece of text with a given label without the need
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for having been trained on that label. However,
despite recent advancements in the capabilities of
PLMs, zero-shot models still vastly underperform
their supervised counterparts (Pushp and Srivas-
tava, 2017; Puri and Catanzaro, 2019; Brown et al.,
2020). As such, this remains an open research
problem.

In this paper, we investigate the challenge of
reducing the aforementioned performance gap
present in these zero-shot models compared to their
supervised counterparts on unseen data. We theo-
rize that the poor generalization of these zero-shot
models is due to their lack of aspect-level under-
standing during their training process. To allevi-
ate this we introduce two new simple yet effec-
tive pre-training strategies, Implicit and Explicit
pre-training which specifically inject aspect-level
understanding into the model.

In order to evaluate these strategies, we canvas
the range of zero-shot formalizations for enabling
zero-shot text classification on PLMs and apply our
techniques. Additionally, we introduce the Univer-
sal Text Classification Dataset (UTCD), a large-
scale text classification dataset for evaluating zero-
shot text classification. UTCD is a compilation of
18 classification datasets spanning 3 main aspects
of Sentiment, Intent/Dialogue, and Topic classifica-
tion. Our results on UTCD show that by employing
both our implicit and explicit pre-training strategies
we can achieve improved zero-shot performance on
a suite of challenging datasets for which the model
was not trained on.

Specifically, this paper makes the following con-
tributions:

• We introduce Implicit & Explicit pre-training,
two new simple yet effective pre-training
strategies for improving zero-shot perfor-
mance.

• We construct and release UTCD, a new bench-
mark dataset for evaluating text classification
systems across a suite of diverse tasks and
domains. We release our models and dataset1.

• We conduct a thorough evaluation of var-
ious zero-shot text classification formaliza-
tions showing the effectiveness of our training
strategies on each as well as insights gained.

1https://github.com/ChrisIsKing/
zero-shot-text-classification

2 Task Formulation

In this section, we introduce the task of zero-shot
text classification and describe a set of formaliza-
tions for facilitating the classification of text in a
zero-shot manner, i.e. being able to predict unseen
labels.

Conventional Text Classification Text classifi-
cation approaches using PLMs assume the exis-
tence of a pre-defined set of labels tyiu1n where
for a given input sequence X , the model outputs
a representation of that sequence as a sequence of
hidden states thiu1l . Hidden states in the final layer
are pooled to a single vector. In the case of BERT
(Devlin et al., 2018), the rCLSs token is taken, and
a linear softmax layer is added to predict the proba-
bility distribution of the label set:

P⃗
´

tyiu1n
ˇ̌
h

¯
“ softmaxpWhq (1)

For the zero-shot scenario, this approach breaks
since the output class set tyiu1n is fixed. This pre-
vents the classification of text to new labels unless
the model is re-trained with the new label set or a
mapping of existing labels to unseen labels is built,
both of which are impractical and cumbersome for
real-world scenarios.

2.1 Binary Zero-shot Classification

To facilitate zero-shot classification of PLMs,
Halder et al. (2020); Pushp and Srivastava (2017);
Yin et al. (2019) formulate text classification as a
series of binary classification tasks:

fplabelpyiq, xq “ P pTrue | yi, xq (2)

The model is provided with a concatenation of
the class label labelpyiq and input text and the out-
put layer generates a binary True{False prediction
with a confidence score P. The True-prediction
class with the highest confidence is selected as the
final prediction, that is,

ŷ “ argmax
i P t1...nu

fplabelpyiq, xq (3)

where n is the number of classes/labels. Such cross-
attention (CA) models apply attention layers on the
text and labels jointly, which intuitively allows for
rich interactions. This architecture is shown in part
(a) of Figure 2.
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Figure 2: Zero-shot Text Classification Formalizations: Part (a) illustrates the binary classification formalization described
in section 2 where concatenated <text, label> pairs are passed as input to the model. Part (b) illustrates dual encoding where
text label pairs are encoded separately and scored via a distance metric. Part (c) illustrates text classification where the model
generates desired label based on a natural language instruction template.

2.2 Dual Encoding Zero-shot Classification
In contrast to cross-attention based architectures,
Dual Encoder models (Reimers and Gurevych,
2019; Casanueva et al., 2020a; Clarke et al., 2022)
instead focus on learning representations for a
given text and label independently. They separately
embed the text and label, via an encoder Φ and
compute pair-wise scores S based on the encoded
representations with a distance metric Dist, such
as dot-product or cosine similarity:

Spx, yiq “ Dist pΦpxq,Φpyiqq (4)

Sentence-Bert (Reimers and Gurevych, 2019) takes
PLMs such as BERT and RoBERTa as the base en-
coder and use siamese networks to derive sentence
embeddings by comparing similarities between sen-
tence pairs as shown in part (b) of Figure 2. For
text classification, this architecture can be used to
derive latent representations for a given text and
label and classify a sequence x according to:

ŷ “ argmax
i P t1...nu

Spx, yiq (5)

2.3 Generative Classification
Lastly, the generative formulation of zero-shot text
classification uses autoregressive language models
by passing in text and label sets as natural language
prompts and training the model to generate the
target label token by token. As described in Puri
and Catanzaro (2019), we reformulate the text clas-
sification problem as a multiple choice question
answering problem. The model is provided with

a multiple-choice question description containing
each class label in natural language, and trained to
generate the correct answer, as shown in part (c)
of Figure 2. The intuition behind this approach is
to train the model to use common sense reasoning
to select the most probable description of the text
data from a provided list of rich natural language
classes. Given some input text t, the model is op-
timized with the next token prediction language
modeling loss:

ÿ

t

Lpwt, P pŵt|wr1,t´1sqq (6)

3 Method

In this section, we outline the methodology for our
Implicit & Explicit pre-training strategies which
allow us to inject aspect-specific knowledge into
PLMs to improve generalization to unseen data.
We first define the term aspect and outline the gap
between the performance of the zero-shot models
shown in section 2 on seen data compared to that
of unseen data. Lastly, we describe our intuition
behind why localization of aspect knowledge helps
to bridge this gap.

Aspect Definition In the scope of this work, we
define an aspect as the type of task to which a given
set of datasets belong too. For example, sentiment
is considered an aspect because it cleanly defines a
task definition of understanding the emotion con-
veyed in a given text. This definition holds true
even if the domain of the data changes. e.g senti-
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Figure 3: Zero-shot Text Classification Training Strategies. Part (a) shows standard model training where a text and the set of
label options are passed to the model. Part (b) illustrates implicit training where the aspect is additionally passed as input. Part
(c) shows injecting aspect knowledge to the model explicitly through gradient update, to initialize subsequent training.

ment detection of news data vs sentiment of social
media tweets. In addition to having a clean task
definition, we stipulate that the set of labels consid-
ered in a given aspect must convey that aspect. e.g
For intent, the label "turn off alarm" conveys that
the text describes the intention to do something.

3.1 Transfer Learning for Text Classification

The prevailing method for training models to per-
form classification tasks is to add a linear head on
top of a pre-trained language model and fine-tune
the entire network on labeled data (Devlin et al.,
2018). However, when scaled to multi-task, multi-
domain applications these models suffer from is-
sues such as catastrophic forgetting and conflicting
knowledge transfer across tasks (Aribandi et al.,
2021; Geva et al., 2021; Clark et al., 2019; Alonso
and Plank, 2016). We observe a similar trend in the
Bert Seq-CLS row of Table 3 and 2, where despite
the overarching task of text classification remaining
the same when scaling the output space of the clas-
sification head to more labels across aspects, we see
heavy performance degradation compared to hav-
ing individual dataset models. For example, in table
3 training a multi-dataset BERT sequence classi-
fier performs worse for every benchmark dataset
compared to its single-dataset counterpart. Addi-
tionally, for the zero-shot formalizations, we ob-
serve the lowest positive transfer on datasets with
the lowest level of token overlap between labels
seen during training and out-of-domain labels, as
shown in Figure 4. We theorize that the reason for
this phenomenon is that the model is over-fitting to
the specific labels seen during training instead of
generalizing to the "aspect".

3.2 Implicit Training

In order to introduce aspect specification into our
zero-shot models, we take inspiration from T5’s
(Raffel et al., 2019) text-to-text framework for
multi-task generalization. In this framework, the
model is fed some text for context and is then asked
to produce some output text. As an example, to
ask the model to translate the sentence “That is
good.” from English to German, the model would
be fed the sequence “translate English to German:
That is good.” and would be trained to output “Das
ist gut.” Similarly, for each aspect (as defined in
section 4), we introduce a conditional aspect token
to the model input that acts as a context for that
specific aspect. As such, in addition to learning the
best contextual representation for the <text, label>
input pair, the model implicitly learns a higher level
understanding of the underlying aspect. By adding
this conditional representation, even as the label
space changes, the model is better able to under-
stand the aspect at hand. This is shown in part(b)
of figure 3. In the case of implicit binary zero-shot
classification, the model is additionally provided
with a concatenation of the aspect token and the
output is selected as:

ŷ “ argmax
iPt1...nu

fplabelpyiq, aspectpayiq, xq (7)

3.3 Explicit Training

Given our hypothesis that these language models
will be able to generalize to unseen labels as a
result of implicitly learning the task at hand, we
explore the idea of explicitly training this general-
ization in a supervised manner. Instead of adding a
conditional aspect token, we add an additional pre-
training step in which the model is trained on aspect
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Dataset Aspect Train/Test #labels

in-domain

GoEmotions sentiment 43K/5.4K 28

TweetEval sentiment 45K/12K 3

Emotion sentiment 16K/2K 6

SGD intent 16K/4.2K 26

Clinc-150 intent 15K/4.5K 150

SLURP intent 12K/2.6K 75

AG News topic 120K/7.6K 4

DBpedia topic 560K/70K 14

Yahoo topic 1.4M/60K 10

Dataset Aspect Train/Test #labels

out-of-domain

Amazon Polarity sentiment 3.6M/400K 2

Fin. Phrase Bank sentiment 1.8k/453 3

Yelp sentiment 650K/50K 3

Banking77 intent 10K/3.1K 77

SNIPS intent 14K/697 7

NLU Eval intent 21K/5.2K 68

MultiEURLEX topic 55K/5K 21

Patent topic 25K/5K 9

Consumer Finance topic 630K/160K 18

Table 1: Universal Text Classification Dataset (UTCD) consists of the following datasets: Demszky et al. (2020); Barbieri et al.
(2020); Saravia et al. (2018); Rastogi et al. (2020); Larson et al. (2019); Bastianelli et al. (2020); Zhang et al. (2015); Auer
et al. (2007); Malo et al. (2014); Casanueva et al. (2020b); Coucke et al. (2018); Xingkun Liu and Rieser (2019); Chalkidis et al.
(2021); Sharma et al. (2019); Bureau (2012)

detection. This step acts as an initialization process
whereby the model representations are tuned at the
aspect level first. Once this step is completed the
model is then fine-tuned for its respective zero-shot
classification objective. This process is shown in
part (c) of figure 3. For a given text x this explicit
training step is defined as:

P⃗
´

taju1m
ˇ̌
h

¯
“ softmaxpWhq (8)

4 UTCD: Universal Text Classification
Dataset

In order to test the zero-shot generalization of these
NLP models we introduce UTCD. UTCD is a com-
pilation of 18 classification datasets spanning 3
main aspects of Sentiment, Intent/Dialogue, and
Topic classification. A breakdown of each dataset is
provided in appendix A. UTCD focuses on the task
of zero-shot text classification where the candidate
labels are descriptive of the text being classified.
To make NLP models more broadly useful, zero-
shot techniques need to be capable of label, domain
& aspect transfer. As such, in the construction of
UTCD we enforce the following principles:

Textual labels In UTCD, we mandate the use
of textual labels. While numerical label values are
often used in classification tasks, descriptive textual
labels such as those present in the datasets across
UTCD enable the development of techniques that
can leverage the class name which is instrumental
in providing zero-shot support. As such, for each

of the compiled datasets, labels are standardized
such that the labels are descriptive of the text in
natural language.

Diverse domains and Sequence lengths In addi-
tion to broad coverage of aspects, UTCD compiles
diverse data across several domains such as Bank-
ing, Finance, Legal, etc each comprising varied
length sequences (long and short). The datasets are
listed in Table 1.

As described in section 3, we define aspect as
the sub-task type to which a given set of datasets
can belong too. We simulate the Zero-shot learn-
ing case by splitting UTCD into in-domain, data
a given model would be trained on, and out-of-
domain, data with novel classes unseen during
training. Additionally, to prevent data imbal-
ance across aspects, we sub-sample the in-domain
datasets such that the total number of unique text
in each aspect is the same while maintaining class
label distribution for each dataset. Class imbalance
is known to degrade performance in deep learning
models (Buda et al., 2018; Ochal et al., 2021). We
observe a similar trend where aspect normalization
results in performance improvement.

5 Experimental Setup

Model Architectures For binary classification,
we use BERTBASE with sentence pair classifica-
tion as in Devlin et al. (2018). For dual encoding
classification, we use Sentence-BERT (Reimers
and Gurevych, 2019) with BERTBASE as the base
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Model Training
Strategy

Sentiment Intent Topic

AverageAmazon
Polarity

Fin.
Phrase Bank

Yelp
Banking

77
SNIPS

NLU
Eval

Multi
EURLEX

Patent
Consumer
Finance

BERT
Seq-CLS*

individual 96.0 97.2 84.8 88.6 99.0 88.9 94.8 64.1 82.6 88.4
full 93.1 24.9 79.0 84.7 97.3 87.4 81.4 50.2 76.9 75.0

Binary
BERT

vanilla 80.7 68.9 58.5 51.4 82.9 71.6 28.7 13.6 22.3 53.2
implicit (ours) 80.1 66.0 59.8 51.3 82.5 73.1 30.3 15.2 23.4 53.5
explicit (ours) 76.1 66.7 56.0 49.8 83.8 69.6 44.5 19.5 30.2 55.1

Bi-
Encoder

vanilla 69.9 71.7 46.5 9.4 70.4 71.1 33.5 11.7 18.4 44.7
implicit (ours) 79.6 64.0 56.8 21.1 72.5 61.9 35.4 9.6 11.3 45.8
explicit (ours) 71.5 63.6 52.1 9.7 71.9 70.0 27.4 9.3 27.0 44.7

GPT-2:
vanilla 88.3 71.1 70.9 22.8 52.2 61.7 22.3 23.5 12.6 47.3

implicit (ours) 89.3 61.4 71.9 16.5 33.7 63.1 18.6 25.8 12.2 43.6
explicit (ours) 89.7 75.9 71.5 22.4 54.1 60.7 23.5 21.6 13.9 48.2

BART; Zero-shot 91.0 40.2 75.2 42.2 61.4 40.1 19.8 8.9 24.6 44.8

GPT-3; Zero-shot 54.4 52.8 77.0 23.7 13.9 37.9 - - - 43.3

Table 2: Aspect-Normalized out-of-domain accuracy. *Supervised upper bound, not a zero-shot framework. :In case none of the
given labels are generated at inference, the generated text is embedded and compared with label embeddings. ;Out-of-the-box
zero-shot classifier.

encoder, mean pooling, and cosine similarity as
the distance metric. For generative classification,
we use the 345M GPT-2 (Radford et al., 2019) as
the language model and the input representation
described in Puri and Catanzaro (2019). These
models are denoted Binary BERT, Bi-Encoder, and
GPT-2 respectively.

Training We train all models with AdamW
(Loshchilov and Hutter, 2019) and weight decay of
0.01 on all in-domain data for 3 epochs, for both
pre-training and fine-tuning stages. For explicit
pre-training, we use a learning rate of 2e-5, batch
size of 16, and linear learning rate warmup over the
first 10% steps with a cosine schedule. For binary
and dual encoding we use a learning rate of 2e-5,
batch size of 16, with 10% warmup and a linear
schedule. For generative classification fine-tuning,
we use a learning rate of 4e-5, batch size of 128,
with 1% warmup and a cosine schedule as reported
in Puri and Catanzaro (2019). We pre-process data
and train all models with different random seeds
over multiple runs.

6 Results & Discussion

In this section we present and analyze the results
of our experiments, detailing our insights and dis-
cussing the implications of each of our techniques.

Evaluation Task We report accuracy on the test
set of all in-domain and out-of-domain datasets.
In multi-label cases where there is more than one

valid label, the prediction is considered correct if
the model predicts any one of the correct labels. For
generative classification, we observe instances in
which GPT-2 may not generate one of the label op-
tions, a known problem for PLM generation (Rad-
ford and Narasimhan, 2018; Pascual et al., 2021).
In such cases, we consider the label option most
similar to the generated answer as prediction, by
mapping the generated output and the valid classes
to an embedding space. For this encoding, we use
the pre-trained model MPNet (Song et al., 2020)
with mean pooling encoder from Sentence-BERT
(Reimers and Gurevych, 2019) for mapping the
labels and cosine similarity as the distance met-
ric. This ensures the consistency of GPT-2’s output
with the other zero-shot formalizations.

Upper-bound & Zero-shot Baselines To gauge
the ability of our models to generalize to unseen
data, we establish our upper-bound as the perfor-
mance of a fully supervised model on the target
data. Specifically, we fine-tune two variations of
BERTBASE for sequence classification which we de-
note as "individual" and "full". For individual, we
fine-tune a dedicated classification model for each
dataset in UTCD. For full, we fine-tune a single
model for all datasets. Additionally, we compare
the zero-shot performance of our models to the pop-
ular LLM GPT-3 (Brown et al., 2020), and BART
MNLI (Yin et al., 2019) which is the most pop-
ular and widely downloaded zero-shot model on
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Model Training
Strategy

Sentiment Intent Topic

AverageGo
Emotions

Tweet
Eval

Emotion SGD
Clinc
-150

SLURP
AG

News
DBpedia Yahoo

BERT
Seq-CLS*

individual 63.0 69.5 92.9 78.7 95.2 85.5 94.1 99.2 73.4 83.4
full 56.7 55.4 91.1 80.5 82.9 77.3 86.7 98.6 66.6 77.3

Binary
BERT

vanilla 59.3 67.6 92.4 91.5 87.8 81.8 90.0 98.9 67.9 81.9
implicit (ours) 59.9 67.2 91.8 93.5 87.1 81.8 89.2 98.9 68.1 82.0
explicit (ours) 60.2 66.6 91.8 93.4 88.0 80.4 88.7 98.9 67.8 81.7

Bi-
Encoder

vanilla 59.2 65.7 92.8 82.2 84.4 79.9 89.3 99.0 67.4 80.0
implicit (ours) 56.9 66.0 90.9 81.3 82 78.9 88.8 99.0 67.9 79.1
explicit (ours) 58.8 66.8 91.8 82.7 83.3 79.9 89.5 98.9 67.7 80.0

GPT-2:
vanilla 58.8 70.6 75.9 84.2 81.4 75.3 86.7 98.5 68.3 77.7

implicit (ours) 59.0 70.3 71.4 84.7 81.7 73.1 87.7 98.4 68.3 77.2
explicit (ours) 60.1 70.1 76.4 84.3 81.9 76.7 87.9 98.6 68.6 78.3

BART; Zero-shot 24.2 47.8 37.7 41.4 50.4 27.5 71.7 65 49.2 46.1

Table 3: Aspect-Normalized in-domain accuracy.

Huggingface Hub2.

6.1 Out-of-domain Performance

In table 2, we report results on the out-of-domain
test set for UTCD. To evaluate the ability of our
zero-shot models to adapt to unseen data, we eval-
uate our fine-tuned models from table 3 on the out-
of-domain test set without training on any out-of-
domain data. Across the zero-shot formalizations,
we observe that our explicit Binary BERT achieves
the best performance with a 2% increase over its
vanilla counterpart. Thus showing the power of the
explicit pre-training strategy for binary classifica-
tion formalization.

When compared to the "full" supervised out-of-
domain model, despite having not been trained on
any data from the target dataset, across the aspects
of sentiment and intent, our models are able to gen-
eralize well. Specifically, across all formalizations,
our models are able to outperform the supervised
model on the financial phrase bank dataset. We
observe that this drop is due to conflicting domain
data. UTCD’s out-of-domain set consists of similar
financial datasets in the other aspects of intent and
topic. Given that examples from the finance phrase
banks dataset are general in nature, without seeing
the label, it is difficult for the sequence classifier
to understand the task at hand, thus causing it to
classify to conflicting labels from similar datasets.
This showcases the need to include aspect-specific
knowledge.

Lastly, when inspecting the performance of

2https://huggingface.co/facebook/
bart-large-mnli

vanilla fine-tuning compared implicit and explicit
training, we are able to outperform vanilla on gen-
eralizing to unseen data on 6, 6, and 8 of the 9
datasets in out-of-domain UTCD across Binary
BERT, Bi-encoder, and GPT-2 models respectively.
In particular, for explicit training on Binary BERT,
we achieve a massive improvement in zero-shot
generalization (as much as +%16 for the topic as-
pect, +9% on average). Additionally, in compar-
ison to the massive zero-shot baselines of BART
and GPT-3 our models are able to outperform on 7
and 8 of the 9 datasets respectively.

6.2 In-domain Performance

In table 3, we report results on the in-domain test
set for UTCD. For in-domain, we conduct implicit
& explicit training across each zero-shot formal-
ization. We observe that when compared with the
"full" supervised model, our zero-shot models are
more performant while maintaining the flexibil-
ity of facilitating zero-shot. When compared with
the "individual" variation, as our zero-shot mod-
els are trained jointly across different datasets, we
achieve better performance than the single super-
vised model on datasets such as SGD, showing
the power of knowledge transfer from other intent
datasets such as Clinc-150 & SLURP.

For vanilla fine-tuning without implicit or ex-
plicit training, we observe that across zero-shot
formalizations, injecting task specification through
implicit and explicit pre-training preserves perfor-
mance for in-domain data. Showing that while
achieving better zero-shot transfer ability our mod-
els do not suffer performance loss on data already
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seen during training.

6.3 Importance of Label token overlap

In addition to the need for aspect-specific knowl-
edge, we also observe a high correlation in zero-
shot generalization results between the overlap of
tokens seen during training and those evaluated on
the out-of-domain test. Figure 4 shows the pairwise
overlap of label tokens across the in-domain and
out-of-domain datasets. When inspected across as-
pects, we see that our models are able to achieve
the best out-of-domain performance on datasets
with the most overlapping label tokens to those
seen during training.

7 Related Work

Zero-shot text classification is the task of classify-
ing text into novel categories unseen during train-
ing. Early zero-shot classification studies frame
the problem as binary classification on whether a
given label describes the text (Pushp and Srivas-
tava, 2017; Yin et al., 2019). With the advancement
of PLMs, subsequent works (Yin et al., 2019; Puri
and Catanzaro, 2019) rely on transformer archi-
tectures to learn representations from descriptive
labels passed in. In particular, Puri and Catanzaro
(2019) fine-tune an autoregressive language model
to generate titles based on a prompt template con-
taining Tweet articles and a list of title options.
Though the model is trained on a great variety of ti-
tle options, the approach limits the learning to topic
classification only, as the authors only analyze per-
formance on topic datasets, unlike our approach
which considers a wide array of aspects, each re-
quiring focus on different sections of a given text.

Yin et al. (2019) similarly categorize zero-shot
text classification by aspects and implicitly intro-
duce aspects during training with a dedicated tem-
plate for each aspect. They further propose the
classification of a text, label pair as a logic entail-
ment problem. However, the authors analyze a less
challenging zero-shot case where a model is trained
on a subset of text, label pairs, and evaluated on the
remaining text with unseen labels in the same do-
main. Additionally, the authors introduce WordNet
definition of the labels as the labels are all single
words. This process requires manual intervention
and is not applicable for multiple-word label se-
quences common in intent classification, such as
"Check Balance". Our work evaluates a more di-
verse set of datasets for each aspect and a more

Figure 4: UTCD Out-of-domain Dataset Label Pair-wise
Overlap with In-domain Dataset. 0 is no overlap, 100 is
exactly the same label set. From sentiment to intent to topic,
label overlap decreases in general.

comprehensive set of zero-shot architectures.

8 Conclusion

In this paper, we investigate the task of zero-shot
text classification with the aim of improving the
ability of PLMs to generalize both seen and unseen
data across domains without the need for additional
training. We introduce two new simple yet effective
pre-training strategies, Implicit training & Explicit
pre-training which specifically inject aspect-level
understanding into the model at train time. To
evaluate this, we release UTCD, a new benchmark
dataset for evaluating text classification in zero-
shot settings. Experimental results on UTCD show
that our approach achieves improved zero-shot gen-
eralization on a suite of challenging datasets in
UTCD and across many zero-shot formalizations.

9 Limitations

While our approach is shown to be effective in
improving the zero-shot adaption ability of these
PLMs, the scope of this work has only been ex-
tended to English languages and has not been tested
on other languages. In addition, another limitation
of this work is the scope of the aspect. Aspect is de-
fined across 3 main categories of intent, sentiment,
and topic in the work. However, given the massive
space of text label interpretations, our aspect range
can be refined and expanded even further, lending
to more analysis of the stability of implicit & ex-
plicit training as the number of aspects grows. We
do not investigate this scenario in this work.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Iñigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020b. Ef-
ficient intent detection with dual sentence en-
coders. In Proceedings of the 2nd Workshop
on NLP for ConvAI - ACL 2020. Data avail-
able at https://github.com/PolyAI-LDN/task-specific-
datasets.

Ilias Chalkidis, Manos Fergadiotis, and Ion Androut-
sopoulos. 2021. Multieurlex – a multi-lingual and
multi-label legal document classification dataset for
zero-shot cross-lingual transfer. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5931–5937, Florence, Italy. Asso-
ciation for Computational Linguistics.

Christopher Clarke, Joseph Peper, Karthik Krishna-
murthy, Walter Talamonti, Kevin Leach, Walter
Lasecki, Yiping Kang, Lingjia Tang, and Jason Mars.
2022. One agent to rule them all: Towards multi-
agent conversational AI. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 3258–3267, Dublin, Ireland. Association for
Computational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. ArXiv, abs/1805.10190.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan S. Cowen, Gaurav Nemade, and Sujith
Ravi. 2020. Goemotions: A dataset of fine-grained
emotions. ArXiv, abs/2005.00547.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Mor Geva, Uri Katz, Aviv Ben-Arie, and Jonathan Be-
rant. 2021. What’s in your head? emergent behaviour
in multi-task transformer models.

1017

https://doi.org/10.48550/ARXIV.1612.02251
https://doi.org/10.48550/ARXIV.1612.02251
https://doi.org/10.48550/ARXIV.2111.10952
https://doi.org/10.48550/ARXIV.2111.10952
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.emnlp-main.588
https://doi.org/10.18653/v1/2020.emnlp-main.588
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/https://doi.org/10.1016/j.neunet.2018.07.011
https://www.consumerfinance.gov/data-research/consumer-complaints/
https://www.consumerfinance.gov/data-research/consumer-complaints/
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2003.04807
https://arxiv.org/abs/2109.00904
https://arxiv.org/abs/2109.00904
https://arxiv.org/abs/2109.00904
https://doi.org/10.18653/v1/P19-1595
https://doi.org/10.18653/v1/P19-1595
https://doi.org/10.18653/v1/2022.findings-acl.257
https://doi.org/10.18653/v1/2022.findings-acl.257
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.2104.06129
https://doi.org/10.48550/ARXIV.2104.06129


Kishaloy Halder, Alan Akbik, Josip Krapac, and Roland
Vollgraf. 2020. Task aware representation of sen-
tences for generic text classification. In COLING
2020, 28th International Conference on Computa-
tional Linguistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and
P. Takala. 2014. Good debt or bad debt: Detecting se-
mantic orientations in economic texts. Journal of the
Association for Information Science and Technology,
65.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning–based text classification: A
comprehensive review. ACM Comput. Surv., 54(3).

Mateusz Ochal, Massimiliano Patacchiola, Amos
Storkey, Jose Vazquez, and Sen Wang. 2021. Few-
shot learning with class imbalance.

Damian Pascual, Béni Egressy, Clara Meister, Ryan
Cotterell, and Roger Wattenhofer. 2021. A plug-and-
play method for controlled text generation. ArXiv,
abs/2109.09707.

Raul Puri and Bryan Catanzaro. 2019. Zero-shot
text classification with generative language models.
ArXiv, abs/1912.10165.

Pushpankar Kumar Pushp and Muktabh Mayank
Srivastava. 2017. Train once, test anywhere:
Zero-shot learning for text classification. CoRR,
abs/1712.05972.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits

of transfer learning with a unified text-to-text trans-
former.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8689–8696.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,
Junlin Wu, and Yi-Shin Chen. 2018. CARER: Con-
textualized affect representations for emotion recog-
nition. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3687–3697, Brussels, Belgium. Association
for Computational Linguistics.

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG-
PATENT: A large-scale dataset for abstractive and
coherent summarization. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2204–2213, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. In Advances in
Neural Information Processing Systems, volume 33,
pages 16857–16867. Curran Associates, Inc.

Pawel Swietojanski Xingkun Liu, Arash Eshghi and Ver-
ena Rieser. 2019. Benchmarking natural language
understanding services for building conversational
agents. In Proceedings of the Tenth International
Workshop on Spoken Dialogue Systems Technology
(IWSDS), pages xxx–xxx, Ortigia, Siracusa (SR),
Italy. Springer.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

A UTCD Datasets

UTCD is a compilation of 18 classification
datasets spanning 3 categories of Sentiment, In-
tent/Dialogue and Topic classification. UTCD fo-
cuses on the task of zero-shot text classification

1018

https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3439726
https://doi.org/10.48550/ARXIV.2101.02523
https://doi.org/10.48550/ARXIV.2101.02523
http://arxiv.org/abs/1712.05972
http://arxiv.org/abs/1712.05972
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://arxiv.org/abs/1903.05566
https://arxiv.org/abs/1903.05566
https://arxiv.org/abs/1903.05566
https://doi.org/10.48550/ARXIV.1909.00161
https://doi.org/10.48550/ARXIV.1909.00161
https://doi.org/10.48550/ARXIV.1909.00161
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf


where the candidate labels are descriptive of the
text being classified. UTCD consists of 6M/800K
train/test examples.

For sentiment we have the datasets Go Emotion
(Demszky et al., 2020), TweetEval (Barbieri et al.,
2020), Emotion (Saravia et al., 2018), Amazon
Polarity (Zhang et al., 2015), Finance Phrasebank
(Malo et al., 2014) and Yelp (Zhang et al., 2015).
The GoEmotions dataset contains 58k carefully cu-
rated Reddit comments labeled for 27 emotion cat-
egories or Neutral. The TweetEval dataset consists
of seven heterogenous tasks in Twitter, all framed
as multi-class tweet classification. The tasks in-
clude - irony, hate, offensive, stance, emoji, emo-
tion, and sentiment. We used the sentiment portion
of this dataset for UTCD. Emotion is a dataset of
English Twitter messages with six basic emotions:
anger, fear, joy, love, sadness, and surprise. The
Amazon Polarity dataset consists of reviews from
Amazon. The data spans a period of 18 years, in-
cluding 35 million reviews up to March 2013. Re-
views include product and user information, ratings,
and a plaintext review. The Finance Phrasebank
dataset consists of 4840 sentences from English
language financial news categorised by sentiment.
The Yelp dataset consists of over 600k reviews for
the task of sentiment classification.

For the intent/dialogue aspect we have the
datasets: Schema Guided Dialgoue (Rastogi et al.,
2020) is an annotated multi-domain, task-oriented
conversations between a human and a virtual as-
sistant. Clinc-150 (Larson et al., 2019) is an in-
tent classification (text classification) dataset con-
sisting of 150 in-domain intent classes. SLURP
(Bastianelli et al., 2020) is dialuge dataset derived
from SLU systems English spanning 18 domains.
Banking77 (Casanueva et al., 2020b) is an intent
classification dataset for the banking domain. It
comprises 13,083 customer service queries labeled
with 77 intents. Snips is an NLU dataset of over
16,000 crowdsourced queries distributed among 7
user intents. NLU Evaluation (Xingkun Liu and
Rieser, 2019) is an NLU dataset from the conversa-
tional domain annotated with corresponding intents
and dialogue scenarios.

Lastly, for the topic aspect we have the datasets:
AG News (Zhang et al., 2015) is a topic classifi-
cation dataset extract from the AG News article
corpus. It consist of 4 classes from the original cor-
pus. Each class contains 30,000 training samples
and 1,900 testing samples. Yahoo Answers dataset

(Zhang et al., 2015) contains 4,483,032 questions
and their answers across 10 categories. Each class
contains 140,000 training samples and 5,000 test-
ing samples. DBpedia (Auer et al., 2007) dataset
is a topic classification dataset constructed from
picking 14 non-overlapping classes from DBpedia
2014. Multi Eurlex (Chalkidis et al., 2021) is a
multilingual dataset for topic classification of legal
documents. The dataset comprises 65k European
Union (EU) laws, officially translated in 23 lan-
guages, annotated with multiple labels from the
EUROVOC taxonomy. Big Patent (Sharma et al.,
2019) is a topic classification dataset for the legal
domain consisting of 1.3 million records of U.S.
patent documents along with human written ab-
stractive summaries. Consumer Finance (Bureau,
2012) dataset is a collection of complaints about
consumer financial products and services sent to
companies for response.
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