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Abstract

A long-standing difficulty in AI is the introduc-
tion of human-like reasoning in machine read-
ing comprehension. Since algorithmic mod-
els can already perform as well as humans on
simple quality assurance tasks thanks to the de-
velopment of deep learning techniques, more
difficult reasoning datasets have been presented.
However, these datasets mainly focus on a sin-
gle type of reasoning. There are still significant
gaps in the studies when compared to the com-
plex reasoning used in daily life because we can
mix and match different types of reasoning un-
consciously. In this work, we introduce a brand-
new dataset, named MT R. There are two sub-
sets of it: (1)the first is mainly used to explore
mixed reasoning abilities and combines deduc-
tive and inductive reasoning; (2)the second in-
tegrates inductive and defeasible reasoning for
detecting non-monotonic reasoning ability. It
consists of more than 30k instances, requiring
models to infer relations between characters in
short stories. Compared with the correspond-
ing single reasoning datasets, MT R serves as
a more challenging one, highlighting the gap
in language models’ ability to handle sophisti-
cated inference.

1 Introduction

Natural language understanding (NLU) has long
pursued the goal of working like a human that can
perceive information and conducts logical reason-
ing over knowledge (Du et al., 2022). Deep neural
networks (DNNs) have achieved great success re-
cently (Devlin et al., 2019) and have excelled at
information perception tasks such as text classifica-
tion and sentiment analysis (Lee-Thorp et al., 2022;
Yang et al., 2019; Schick and Schütze, 2021). How-
ever, logical reasoning, which needs to confront a
novel environment or complex task, exposes the
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Inductive

Deductive

[Constance] took her daughter [Gladys] to the store to find her some 

new boots for the cold winter weather. [Thomas] loved his mother, 

[Constance].

If [Gladys]’s uncle is not [Thomas] and [Patty]'s niece is [Serena] then 

[Thomas]'s son is [Patty] and [Mona]’s brother is not [Thomas].

[Gladys] brother [Thomas] 
[Patty] is always around her 

niece [Serena].

Additional informationInductive results

Query [Gladys]        [Serena]          

Answer granddaughter unknown

[Gladys]        [Thomas]          

(a) An example of D-MT R.

Inductive

Defeasible

[Colin] is happy that his brother, [Timothy], is becoming successful. 

[Timothy]'s mother [Mona] secretly put money away for him to go on a 

trip next fall. [Colin]'s grandfather is [Dwight].

Supplementary Fact

Query [Mona]        [Dwight]          

Answer father

Supplementary Fact

father-in-law

[Mona] liked [Dwight]'s 

cooking since childhood.

[Mona] brought a lot of presents 

when she first visited [Dwight].

(b) An example of F-MT R.

Figure 1: Examples of different logical combinations
in MT R. Named entities are represented by words
in bold and in parenthesis, whereas relationships are
represented by words in orange.

weakness of DNNs’ tendency to make decisions by
non-generalizable shortcuts (Du et al., 2022). Al-
though an array of existing datasets are available for
exploring different reasoning capabilities of neural
networks, such as CLUTRR (Sinha et al., 2019),
RuleTakers (Clark et al., 2020) ,and WIQA (Tan-
don et al., 2019), most of them primarily highlight
monotonic logic (Choi, 2022) and a single form of
reasoning. For instance, RuleTaker (Clark et al.,
2020) and LogicNLI (Tian et al., 2021) only in-
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clude deductive reasoning, while CLUTRR (Sinha
et al., 2019) is exclusively related to inductive rea-
soning. As a non-monotonic reasoning dataset, δ-
NLI (Rudinger et al., 2020) only contains instances
with the simplified form of reasoning. These set-
tings bring two problems: (1) The establishment of
these datasets does not conform to our daily reason-
ing habits. (2) They also impact the effectiveness
of the evaluation of models. To solve the problems,
we explore combining different reasoning forms.
We first refer to the theory of the human reasoning
process, which shows that induction and deduction
are two major monotonic forms to make logical
reasoning. Based on the theory, we integrate in-
duction and deduction to generate cases. Besides,
most of our day-to-day reasoning is always accom-
panied by non-monotonic reasoning (Choi, 2022).
Psychological theoretical research also shows that
human reasoning lacks clarity and does not dis-
tinguish between various forms of reasoning in
a straightforward manner (Johnson-Laird, 2010b).
Different forms of reasoning are interrelated and
support each other (Liu et al., 2020; Li et al., 2022).
We also explore introducing non-monotonic logic
into the dataset.

Especially, inspired by CLUTRR (Sinha et al.,
2019) for inductive reasoning diagnosis on rela-
tionships, we introduce a new dataset for multi-
ple reasoning combinations, MT R1(Multi-Type
Reasoning Dataset). MT R is the semi-automatic
extension to CLUTRR and includes two parts, D-
MT R and F -MT R. Part I (D-MT R) includes
various deductive rules and combines deductive
reasoning with inductive reasoning. As a result,
D-MT R involves negation logic in relationship
understanding, which prevents the reasoning pro-
cess from using shortcuts. In practice, we have
introduced an additional relation, "unknown", to
represent the situation where the relationship can-
not be inferred through the given text reasoning.
Examples are provided in Figure 1(a). Part II (F-
MT R) makes the process of inductive reasoning
defeasible. We first construct new inductive rea-
soning stories. These stories have the characteristic
that when only given an inductive reasoning story,
two compatible relationships between family mem-
bers can be inferred. As the example in Figure 1(b),
both "father" and "father-in-law" are reasonable
without supplementary facts. However, with the ad-
ditional new fact, this inference tends towards one

1The dataset will soon be available.

Dataset Deductive Inductive Defeasible
RuleTaker ✓
LogicNLI ✓
LogiQA ✓

ProofWriter ✓
CLUTRR ✓
HotpotQA ✓
QuaRTz ✓
δ-NLI ✓

MT R(Ours) ✓ ✓ ✓

Table 1: Comparison with existing reading comprehen-
sion datasets and our MT R.

of the answers. For example, if we subsequently
learn that "someone cooks for him since he was
a child", the choice of "father-in-law" is greatly
abandoned.

We also experiment on MT R, with several
state-of-the-art neural models developed for NLU.
Results show that models’ performance on MT R
is significantly reduced compared with the one on
CLUTRR. This phenomenon is evident that state-
of-the-art neural models still lack logical reason-
ing capabilities in logic-entangling scenarios. Fur-
ther analysis on D − MT R shows that similar
inference rules can significantly interfere with mod-
els’ hybrid inference and models trained on non-
inferential order data have better anti-interference
ability. During non-monotonic reasoning tests on
F −MT R, neural models cannot benefit from the
supplementary facts before answering a defeasible
inference query.

2 Background and Related Work

2.1 Reasoning Datasets
Many datasets have been proposed to test the rea-
soning ability of NLU systems. RuleTaker (Clark
et al., 2020) is a dataset known as deductive
reasoning. Many neural methods have been
developed for this dataset and achieved results
when only dealing with single deductive reason-
ing. ProofWriter (Tafjord et al., 2021) and Log-
icNLI (Tian et al., 2021) also focus on deduc-
tive reasoning but enrich in logical forms. The
dataset LogiQA (Liu et al., 2020) also includes
multiple types of deductive reasoning. In contrast,
many datasets like HotpotQA (Yang et al., 2018),
QuaRTz (Tafjord et al., 2019), CLUTRR (Sinha
et al., 2019), etc., deal with inductive reasoning
over textual inputs. δ-NLI (Rudinger et al., 2020)
is a dataset for defeasible inference in natural lan-
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guage. However, few datasets include the combina-
tion of various reasoning types, which make them
difficult to evaluate the logical reasoning ability of
models comprehensively.

2.2 Reasoning Definition

Traditional logic have two branches: deduction
and induction (Gillies, 1994). These classical
logic forms can ensure the certainty of reason-
ing both syntactically and semantically. But in
real-world situations, a clash of knowledge fre-
quently appears (Allaway et al., 2022), introducing
uncertainty into the daily reasoning process. Non-
monotonic reasoning is therefore recommended
as a crucial artificial intelligence thinking tech-
nique (Strasser and Antonelli, 2019; Ginsberg,
1987). Defeasible reasoning is a type of non-
monotonic logic, where logical conclusions are not
monotonically true.

Deductive Reasoning is described as apply-
ing broad concepts to specific situations (Johnson-
Laird, 2010a; Sanyal et al., 2022). Deductive rea-
soning relies on making logical premises and bas-
ing a conclusion around those premises. Starting
with a rule, the deduction task is then applied to a
real-world scenario. For instance, we can conclude
that "Socrates is mortal" based on the tenets "All
men are mortal" and "Socrates is a man" (Johnson-
Laird, 1999; Heit and Rotello, 2010).

Inductive Reasoning is described as drawing
conclusions by going from the specific to the gen-
eral. It includes the process of making predictions
about novel cases based on past experience or ob-
servations (Hayes et al., 2010; Lavrac and Dzeroski,
1994). The form of induction task begins with facts
about individual cases and then generalizes to a
general rule, such as deducing from the facts that
"Swallows can fly" and "Orioles can fly" the conse-
quence that "All birds can fly" (Heit, 2000; Hayes
and Heit, 2018). So, if given "Tweety is a bird", we
can entail that "Tweety can fly".

Defeasible Reasoning is the mode of reasoning
where conclusions are modified with additional
information (Pollock, 1987). It has been studied by
both philosophers and computer scientists (Koons,
2005). The conclusion is not logically sound and
could be refuted by fresh information, such as the
clarification that "Tweety is a penguin" provided in
the case above (Lascarides and Asher, 1991).

Statistics D-MT R F-MT R
#Instances 30k 2k

Avg. Length 76.6 43.2
Max. Length 189 121

#Hop ≤ 5 ≤ 5

Table 2: Statistics of D-MT R and F-MT R.

3 Dataset

3.1 Overview

To evaluate the models’ ability under complex
mixed-reasoning scenarios, we create a new dataset
MT R, including multi-type reasoning that re-
quires kinship inferring. MT R is the extension
to the existing natural language inductive dataset,
CLUTRR (Sinha et al., 2019), and includes the
mixed reasoning types of induction, deduction, and
defeasibility. As a result, MT R is a dataset with
the expansion of relation types and complexity.
Specifically, we add two kinds of logic (deduction
and defeasibility) to construct two sub-datasets, D-
MT R and F-MT R. The detailed statistics are
summarized in Table 2.

3.2 D-MT R
D-MT R is the subset that inferring is accom-
plished by the combination of induction and de-
duction. Taking Type ① in Figure 2 as an example,
we can perceive the relationship chains that "[son,
Sharon, Christopher], [aunt, Christopher, Diana],
[daughter,Debra,Diana]" from the story. Based on
inductive reasoning, we can infer that "[mother,
Sharon, Debra]". Next, we need to choose the ap-
propriate deduction rule that "If [Sharon]’s mother
is [Debra] then [Debra]’s Sister is [Lois]". After
combining inductive and deductive reasoning, we
can judge the final relationship between [Sharon]
and [Lois].

We adopt a semi-automatic method to generate
D-MT R with three steps: 1) logic generation, 2)
logic correction and 3) natural language generation.
As for the logic generation, we adopt an automatic
method to generate each logic expression to ensure
the validity of deductive reasoning. Specially, we
define a set of logical templates T in advance. It
concentrates on diverse first-order logical forms (in-
cluding conjunction ∧, disjunction ∨, negation ¬,
and implication →). Then we conduct the knowl-
edge base (KB) that contains all single rules, such
as [grandfather, X, Y] ⊢ [[father, X, Z], [father, Z,
Y]]. In this type of knowledge graph, we present
the vector computation method and the accompa-
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Deductive Rule

(¬)$!(%!, %") → $"(%", %#)

(¬)$!(%!, %") ∧ $"(%#, %$) → $#(%!, %#)

(¬)$!(%!, %") ∨ $" (%#, %$) → $#(%!, %#)

(¬)$!(%!, %") → $"(%", %#) ∧ $#(%", %$)

Story: [Sharon] enjoyed a homemade dinner with her son [Christopher]. If [Sharon]'s mother is [Debra]

then [Debra]’s Sister is [Lois]. If [Sharon]'s grandmother is [Debra] then [Debra]’s mother is [Lois]. 

[Christopher] took his Aunt [Diana] out for her favorite meal. [Debra] had a daughter named [Diana].

Story: [James] and his brother [Shawn] are constantly trying to one up each other. [Shawn] bought a 

present for his mother [Kathryn]. If [James]'s mother is [Kathryn] and [Maryann]'s father-in-law is 

[Gwendolyn] then [Kathryn]'s father is [Maryann]. If [James]’s aunt is [Kathryn] and [Maryann]'s 

father-in-law is [Gwendolyn] then [Kathryn]’s son is [Maryann]. [Maryann]'s mother [Kathryn] 

wanted to surprise him for his birthday, so she baked him a cake.

Text

Story: [Kathryn] is playing in the park with her son [Shawn]. [Norman] is calling his sister [Kathryn] to 

let her know it's going to start to rain. [Timothy] went to the movies with his daughter-in-law [Veronica]. 

If [Norman]'s brother is [Shawn] or [Geraldine]'s brother is [Alfredo] then [Shawn]’s aunt is 

[Geraldine]. [Geraldine] bought his brother [Alfredo] a new wallet for his birthday.

[Timothy] took his son [James] to school this morning because he missed the bus. [James] and his aunt, 

[Aurora], went to Disney World. They had a great time! If [Timothy]'s sister is [Aurora] then 

[Aurora]'s grandfather is [Thomas] and [Timothy]'s mother-in-law is [Brittney].  If [Timothy]’s mother

is [Aurora] then [Aurora]'s grandson is [Thomas] and [Timothy]’s father-in-law is [Brittney].

Query-Answer

Q: [Sharon]    [Lois]

A: Aunt

Q: [James] [Gwendolyn]

A: Aunt

Q: [Norman]  [Alfredo]

A: Uncle

Q: [Timothy] [Thomas] 

A: Grandfather

[$!(%!, %") → $"(%", %#)] ∧
[¬$!(%!, %") → $#(%", %#)] Story: [Sharon] enjoyed a homemade dinner with her son [Christopher]. If [Sharon]‘s mother is [Debra]

then [Debra]’s Sister is [Lois] else [Debra]’s mother is [Lois] . [Christopher] took his Aunt [Diana] out 

for her favorite meal. [Debra] had a daughter named [Diana].

Q: [Sharon]    [Lois]

A: Aunt

1

2

3

4

5

Figure 2: Examples of each type of deductive logical reasoning in D-MT R. Circles with different letters indicate
the different entities. Underlined sentences indicate corresponding rules and partially displayed noise rules.

nying subtraction operation. The above example
can be changed to the following form: [father, Z,
Y] = [[grandfather, X, Z] − [father, Z, Y]]. We
design relation checking and final label generation
using the relation knowledge base. With regard
to the creation of natural language, we first use a
rule-based approach to produce the initial language
expressions and then perform manual adjustments.
Grammatical errors and semantic ambiguities are
corrected manually. Figure 2 shows the statistics
and representative examples of the reasoning types
in our dataset. For example, although Type② and
Type③ are only distinguished conjunction(∧) and
disjunction(∨), there is a big difference in deduc-
tive reasoning and requires a strong logical reason-
ing ability of the models.

We incorporated different methods formulate the
deductive rules to stop the model from processing
reasoning through erroneous statistical correlations.
On the one hand, we introduce two negations in
deductive reasoning. By introducing negation, the
model is prevented from drawing relational con-
clusions from erroneous correlations. (1) Nega-
tion words are used to introduce the first type of
negation, which is logical negation, such as the
fact "Colin’s grandfather is not Dwight.". (2) We
formulate relation contradiction as contradictory
statements without negation cues. Relation contra-
diction events are not identifiable as negations on
their own, but demonstrate reversed semantic or

pragmatic meaning when paired with their affirma-
tive counterparts (e.g., the fact that "Colin’s grand-
father is Dwight." vs. "Colin’s father is Dwight.").
These negated or contradictory statements shift the
relation implications of the original premise in non-
trivial ways.

On the other hand, we don’t just make up our
deductive principles at random. The five rules of
deductive logic are all artificially designed. For
instance, in Type⑤, we make the reasoning more
challenging by allowing both positive and negative
derivations existing simultaneously. The model can
only carry out further reasoning after determining
whether or not the conditions are true. To avoid
spurious reasoning brought by a single rule, we
add homologous interference rules to each form
of reasoning. In practice, we have also introduced
an additional relation, “unknown”, to represent the
situation where the relationship between the two
cannot be inferred from given facts or rules. This
innovative relation keeps the option of expanding to
more unknown relationships while also increasing
uncertainty during model inference.

3.3 F-MT R
F-MT R is designed to evaluate the non-
monotonic reasoning ability, specifically combin-
ing defeasible and inductive inference in natural
language. As shown in Figure 1(b), we find that
the results of the same inductive reasoning text are
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B
father grandson

Query: son

B
father grandson

Query: nephew

A C

A C

(a) A defeasible pair where the identical line
of reasoning leads to a different conclusion.

son nephew
tells a story every night 
before bed.

help take care of him for a 
week.

tells him not to be late for 
school every morning.

plan to go on vacation 
with his parents next week.

… …

(b) Some supplementary facts are used to update the de-
feasible reasoning

Figure 3: Examples of the defeasible pair and supple-
mentary facts collected for F-MT R.

not unique. Both "father" and "father-in-law" are
reasonable. The likelihood of a particular choice
changes when the supplementary fact is supplied,
either strengthening or weakening it. In a word,
neural models can benefit from the supplementary
fact before answering a defeasible inference query.

To generate F-MT R, we first construct defea-
sible pairs D. The defeasible pairs must satisfy the
following conditions, all of which can be derived
from the same relationship path. Figure 3(a) shows
an example of defeasible pair. Both [son, A, C]
and [nephew, A, C] can be deduced through the
same relational path ([[father, A, B],[grandson, B,
C]]). Then, for each defeasible pair, we build sup-
plemental facts U that is used for update reasoning.
We employ three post-graduate students to collect
supplemental facts. There are at least four sup-
plementary facts provided for each option to be
chosen at random. Specifically, given the premise
of a text, the model’s conclusion derivation is not
unique. Given a supplementary fact u ∈ U , the
model may determine whether a specific fact is less
likely to be true or more likely to be true. Given
the inference instance in Figure 3(a), the model is
unable to distinguish between the defensible pair.
When we are given additional information, such as

"tells a story every night before bed."(see in Fig-
ure 3(b)), the model would infer that "son" is most
likely true.

We conduct hop extension on inductive infer-
ences to produce the final dataset with defeasible
reasoning. The new relational paths are selected
from the defeasible pairs D. It can guarantee that
the outcomes of the new reasoning is ambiguous.
Then, we select one supplementary fact u ∈ U at
random for each of the different defeasible pairs
to make one of the inference directions stronger or
weaker.

4 Experiments

4.1 Baselines

We conduct experiments on several natural lan-
guage understanding systems to systematically
measure their reasoning ability. Bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997;
Graves, 2012; Cho et al., 2014) (with and without
attention) are always used to reason on unstruc-
tured text. Relation Networks (RN) (Santoro et al.,
2017) and Compositional Memory Attention Net-
work (MAC) (Hudson and Manning, 2018) are re-
cently proposed methods, which outperform other
systems when dealing with relational reasoning.
Pre-trained models also give the current state-of-
the-art results on machine reading. In particular,
we measure the reasoning ability of BERT (Devlin
et al., 2018), as well as a trainable LSTM encoder
on top of the pre-trained BERT embeddings. In
our task, both BERT and BERT-LSTM (a one-layer
LSTM encoder is added on top of pre-trained BERT
embeddings) are 12-layered frozen and encode the
sentences into 768-dimensional vectors.

4.2 Experimental Setup

The final dataset D-MT R contains 30K questions
split into [25K|5k] questions in the [train|test] folds.
During the experiments, we performed sequential
and random operations on the data set, specifically
referring to arranging the sentences in the input
text according to logical reasoning order and il-
logical order(using "Sequential" and "Random"
for abbreviation). We also compare how these
models perform on the single inductive reasoning
dataset CLUTRR and test in the same way. The
final dataset F-MT R contains 2K questions. We
assess the accuracy of the F -MT R with and with-
out supplementary facts. We consider a model to
be correct if it predicts one of the answers without
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Data(Accuracy) Models

Sequence Type BiLSTM-Attention BiLSTM-Mean RN MAC BERT BERT-LSTM

Sequential

① 0.13±0.03 0.08±0.02 0.12±0.03 0.08±0.02 0.14±0.01 0.09±0.03

② 0.23±0.02 0.21±0.03 0.10±0.02 0.24±0.01 0.13±0.02 0.23±0.02

③ 0.13±0.02 0.09±0.02 0.08±0.02 0.10±0.03 0.12±0.02 0.15±0.01

④ 0.46±0.02 0.38±0.03 0.14±0.03 0.37±0.05 0.10±0.03 0.40±0.04

⑤ 0.73±0.05 0.73±0.06 0.60±0.05 0.63±0.05 0.17±0.02 0.65±0.05

Average 0.34±0.03 0.30±0.03 0.22±0.03 0.29±0.03 0.13±0.03 0.33±0.02

Random

① 0.26±0.06 0.23±0.06 0.09±0.03 0.28±0.02 0.11±0.01 0.26±0.03

② 0.17±0.02 0.16±0.02 0.10±0.03 0.16±0.02 0.10±0.02 0.18±0.02

③ 0.10±0.04 0.10±0.04 0.08±0.02 0.09±0.01 0.10±0.02 0.09±0.03

④ 0.36±0.03 0.31±0.03 0.10±0.02 0.32±0.03 0.08±0.01 0.32±0.04

⑤ 0.64±0.06 0.62±0.06 0.49±0.03 0.55±0.04 0.15±0.03 0.62±0.05

Average 0.31±0.04 0.28±0.04 0.17±0.03 0.28±0.02 0.11±0.02 0.29±0.03

CLUTRR Average 0.61±0.08 0.59±0.08 0.54±0.07 0.61±0.06 0.30±0.07 0.56±0.05

Table 3: Results on D-MT R and CLUTRR. "Sequential" means that we train on D-MT R in the logical order of
inference input and test on the sequential test set. On the contrary, "Random" means that we train on D-MT R in
the random logical order of inference input and test on the random test set.

providing any additional information. We adopt a
similar setting as Sinha et al. (2019) during training.
Specially, all models were trained for 40 epochs
with Adam optimizer with a learning rate of 1e-3.
We train our models with a batch size of 8. All
experiments were run 5 times with random data
classification.

4.3 Main Results
Total Accuracy. Table 3 illustrates the per-
formance of different models on D-MT R and
CLUTRR. Overall, we find that the BiLSTM-
Attention baseline outperforms other models across
most testing scenarios (0.34 on "Sequential", 0.31
on "Random", and 0.61 on CLUTRR). In contrast,
BERT does not build reasoning on relational texts
without fine-tuning. Under the same models, the
performance of D-MT R (both "Sequential" and
"Random") is much lower than that of CLUTRR.
It can demonstrate that dealing with multiple rea-
soning types is significantly more difficult than
dealing with single logic. Next, we compare the re-
sults of D-MT R between "Sequential" and "Ran-
dom". Relational reasoning is more difficult for
the models to conduct on non-reasoning order text.
Models struggle with Type② and Type③, indicat-
ing a deficit in handling conjunction ∧ and disjunc-
tion ∨. The performance on Type⑤ is all consid-
erably above average. The results on Type① are
worse than our expectation. Compared with other
types, Type① does not contain complex combina-
tions of first-order logic in deductive reasoning, but

Accuracy (w/o) Supplementary Facts

Models w o

BiLSTM-Attention 0.04 0.09
BiLSTM-Mean 0.03 0.08

RN 0.02 0.04
MAC 0.03 0.08
BERT 0.05 0.03

BERT-LSTM 0.08 0.07

Table 4: Results on F-MT R. We train on the D-
MT R sequentially and test on F-MT R with and
without supplementary facts. "w" indicates that the
input texts are supplemented with additional informa-
tion. "o" indicates that the input texts lack extra facts.

it causes great difficulties to models. In the follow-
up, we will undertake a more detailed analysis.

Table 4 illustrates the performance of different
models on F-MT R. We consider a model to
be correct if it predicts one of the answers on F-
MT R with no supplementary facts associated to
the input texts. As a result, we can consider it a
single inductive reasoning problem. Results show
that models trained on D-MT R(both "Sequential"
and "Random") do not have the ability to transfer
to F-MT R(o). This demonstrates that simply
adding deductive reasoning to the data set does not
increase the model’s inductive reasoning abilities,
but rather interferes with them.

When we compare the accuracy with and with-
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out the supplemental facts, we find that models
can be loosely classified into two groups. The
first category includes models lacking BERT, such
as BiLSTM-Attention, BiLSTM-Mean, RN, and
MAC, whose performance on F-MT R with sup-
plemental facts is roughly half that without. These
models do not deal with defeasible reasoning. Sup-
plementary facts used to aid defeasible reasoning
actually hinder rather than help model reasoning.
However, supplementary facts can help with the
rest’s models. Although there is still a performance
discrepancy when compared to D-MT R, it can
be seen that supplementary facts enhance the de-
feasible inference. This phenomenon supports the
notion that pre-trained language models contain a
plethora of information (Petroni et al., 2019). This
knowledge assists the models in distinguishing dif-
ferences between defeasible pairs.

4.4 Further Analysis

In this section, we provide further analysis of our
designed dataset. On the one hand, we present addi-
tional insight as to why the virtual label "unknown"
is introduced into D-MT R. On the other hand,
more experiments are conducted to investigate the
unexpected deductive rule (Type①).

Analysis of "unknown". As shown in Fig-
ure 1(a), the "unknown" label indicates that the
relationship between the two cannot be deduced
from the known material. Situations that are un-
known or cannot be reasoned about are common
in everyday life. Therefore, it is critical to comple-
ment the space of the relation. We can summarize
two effects of the “unknown”: 1) “unknown” pro-
vides more accurate relation information for model
training, thereby effectively suppressing the im-
pacts of spurious correlations caused by dataset
bias; 2) “unknown” makes the diagnostic scenarios
more complete and complex, so it can better dis-
tinguish the relation reasoning abilities of different
models.

As shown in Figure 5, we examine the models’
accuracy on the new label "unknown" and com-
pared it to the overall dataset average. On "Sequen-
tial" data (Figure 5(a)), most models are unable
to reason about this new label and perform much
worse than the average. Judging the conclusion of
the "unknown" requires the models to exclude all
inferable relations. "RN" and "BERT" do poorly
on the full dataset, but deduce most of the answers
as "unknown"(BERT: from 0.13 on average up to
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(a) Performance of different models when trained on "Se-
quential" D-MT R.
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(b) Performance of different models when trained on "Ran-
dom" D-MT R.

Figure 4: The different accuracy of "unknown". The bar
in the figure represents the average accuracy rate, and
the line represents the accuracy rate of the "unknown"
label.

0.42 on "unknown"). This demonstrates that the
two models have not fully developed their reason-
ing abilities. On "Random" data(Figure 5(b)), the
performance of the models on the new labels is sig-
nificantly improved (BiLSTM-Attention from 0.07
up to 0.33, MAC from 0.09 up to 0.26) and remains
close to the average. Comparing "Sequential" data
with "Random" data, the former calls for a more
robust level of model reasoning. Tests demonstrate
that models trained on more complicated datasets
perform better on new labels. This is implicit evi-
dence to support that the "unknown" demands more
precise reasoning abilities from the model.

Analysis of Type①. To further understand the
results on Type① in Table 3, we perform the analy-
sis of why models produce surprising results. The
form of Type① is defined as "(¬)R1(X1, X2) →
R2(X2, X3)". It only includes negation(¬) and
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(b) Results on "Random" D-MT R.

Figure 5: Further results on Type ①. In both "Sequen-
tial" and "Random" D-MT R, we test on two differ-
ent Type ① test datasets. "Noise" represents the result
on Type①, where we retain deductive inference rules
that have the same form but are unrelated to reasoning.
"Clean" represents the improvement of accuracy after
removing the interference rules.

implication(→) but is almost the hardest type to
handle in "Sequential". We discover that models
tend to mistakenly select the deductive principles
that are seemingly similar. When there are just two
classes of first-order logic, noise is considerably
more deceiving. By contrasting rules that account
for noise versus those that do not, we shall illustrate
the propositions(shown in Figure 5).

After using the data without noise rules, the accu-
racy is improved, as indicated by the blue "Clean"
portion. On Type① dataset free of noise and mod-
els without retraining, all models exhibit noticeable
performance gains. In partial, models with more
inference capability also perform better after elim-
inating noise(such as BERT-LSTM and BiLSTM-
Attention improve accuracy by 0.31 after removing

[Josephine] and her father [Cruz] like to spend the holidays together. 

[Cruz] will often invite his grandson [Norman] to join them.

Supplementary fact: [Josephine] said to visit [Norman]’s father 

next time.

Query: [Josephine]  [Norman]

Model (w) : father

Model (o) : son

Defeasible Pair: son / nephew

Figure 6: Case study of BiLSTM-Attention on F-
MT R. Model(w) and Model(o) are the model’s predic-
tion results with and without additional supplemental
facts, respectively. The word in the gray background
has the model’s attention.

interference rules in "Sequential" D-MT R). Com-
paring the results in Figure 5(a) and Figure 5(b),
we discovered that the performance improvement
of the models trained on "Random" data is signifi-
cantly less than that trained on "sequential" data.

4.5 Case Study

To further understand the defeasible inference pro-
cess of the model, we perform a case study on
F-MT R. A comparison between the prediction
made by BiLSTM-Attention with and without ad-
ditional facts is shown in the situation in Figure 6.
Two possible relations can be deduced from the
existing text in the absence of the supplementary
fact. BiLSTM-Attention can successfully predict
one of the correct relations (son).

When we provide the new fact "[Josephine]
said to visit [Norman]’s father next time.", the
model provides the wrong prediction "father". This
means that the model cannot capture the fact that
[Josephine] is not the "father" of [Norman], which
is even affected. However, it is easy for us to rule
out the "son" relationship between [Josephine] and
[Norman] from the provided fact. We examine the
model’s inference process and discover that the
model focuses on the erroneous relationship "fa-
ther" in the fact. This shows that the model does not
capture the information of the entire sentence, but
focuses on the part. It also demonstrates how far
behind humans in terms of complicated reasoning
state-of-the-art neural models perform.

5 Conclusion

In this paper, we propose MT R, a large-scale
logical reasoning dataset including deductive, in-
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ductive, and defeasible reasoning. It is a more
complex relational inference dataset with a mixture
of various inferences. In addition to testing the rea-
soning capacities of state-of-the-art neural models,
our dataset helps to re-examine some deficiencies
in the research of logical artificial intelligence in
the era of deep learning NLP. The results demon-
strate that even the most advanced machine readers
lag well below human ability.

Limitations

There are two limitations: (1) Although MT R
include three types of reasoning types (deductive,
inductive ,and defeasible reasoning), we only focus
on relation reasoning task. For other tasks, it is
also necessary to construct more datasets with the
fusion of multiple reasoning types. (2) Our primary
focus remains monotonic reasoning, however, the
combined reach of deduction and induction is only
the tip of the iceberg of human reasoning (Choi,
2022). This also inspires us to focus on more non-
monotonic reasoning and more logical combina-
tions.
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