
Findings of the Association for Computational Linguistics: ACL 2023, pages 10300–10313
July 9-14, 2023 ©2023 Association for Computational Linguistics

Character Coreference Resolution in Movie Screenplays

Sabyasachee Baruah
University of Southern California

sbaruah@usc.edu

Shrikanth Narayanan
University of Southern California

shri@ee.usc.edu

Abstract

Movie screenplays have a distinct narrative
structure. It segments the story into scenes
containing interleaving descriptions of actions,
locations, and character dialogues. A typical
screenplay spans several scenes and can in-
clude long-range dependencies between char-
acters and events. A holistic document-level
understanding of the screenplay requires sev-
eral natural language processing capabilities,
such as parsing, character identification, coref-
erence resolution, action recognition, sum-
marization, and attribute discovery. In this
work, we develop scalable and robust meth-
ods to extract the structural information and
character coreference clusters from full-length
movie screenplays. We curate two datasets for
screenplay parsing and character coreference
— MovieParse and MovieCoref, respectively.
We build a robust screenplay parser to handle
inconsistencies in screenplay formatting and
leverage the parsed output to link co-referring
character mentions. Our coreference models
can scale to long screenplay documents without
drastically increasing their memory footprints.
We open-source our model and datasets here.1

1 Introduction

Screenplays are semi-structured text documents
that narrate the events within the story of a movie,
TV show, theatrical play, or other creative media.
It contains stage directions that provide a blueprint
for the produced content, offering valuable informa-
tion for media understanding tasks (Turetsky and
Dimitrova, 2004; Sap et al., 2017; Martinez et al.,
2022). Automated text processing methods can en-
able a scalable and nuanced analysis of screenplays
and provide key novel insights about the narrative
elements and story characteristics (Ramakrishna
et al., 2017). This paper focuses on a critical as-

1MovieParse: https://github.com/usc-sail/movie_
screenplay_parser, MovieCoref: https://github.com/
usc-sail/movie_character_coref

INT DORMITORY - DAY 
 
[DR.HAGER] is standing in [his] room doorway while [SPAZ] and
[[his] father] are going over some last minute precautions over
[the boy's] allergies. [[Spaz's] father] hands [Hager] various
bottles. 
 

[FATHER] 
This is for sinuses. Oh, and if [he] can't  
swallow [you] give [him] one of these. And if  
[he] had trouble breathing [you] can give [him]  
some of those. 

 
[HAGER] 

All right fine. 
 
[Dr. Hager] takes the bottles and quickly backs into [his]
room, shutting the door. 
 

[FATHER] 
 (to [son]) 

Did [you] remember [your] vaporizer? 
 

[SPAZ] 
Yes, [I] put it in [my] room. 

 
[[Spaz's] father] tries to say something else to [Dr. Hager]
but realizes [he] has already gone. 
 
INT HALLWAY - DAY 
 
[Neil] pushes [his] way through a crowd of boys, carrying two
suitcases. As [he] enters [his] room, [Knox] quickly passes by. 
 

[KNOX] 
Hey, how's it going [Neil]? 

 

Figure 1: An example screenplay excerpt from the
movie Dead Poets Society (1989). Like-colored men-
tions are co-referring.

pect of automatic screenplay analysis: character
coreference resolution.

A screenplay has a hierarchical structure that
includes a sequence of scenes, with each scene
containing action passages and character utter-
ances(Argentini, 1998). A scene starts with a slug-
line that specifies where and when the scene takes
place. The action passages introduce the characters
and describe their actions, and the utterances con-
tain their verbal interactions. Sometimes, transition
phrases, such as FADE IN and CUT OUT, separate
adjacent scenes, detailing the camera movement.
These structural elements form the document-level
syntax of the screenplay. Identifying this modular
structure, called screenplay parsing, is an essential
preprocessing step for downstream analyses.

Screenwriters usually follow a uniform inden-
tation and word case scheme while formatting
the screenplay. Some standard conventions are

10300

https://github.com/usc-sail/movie_screenplay_parser
https://github.com/usc-sail/movie_screenplay_parser
https://github.com/usc-sail/movie_character_coref
https://github.com/usc-sail/movie_character_coref

to arrange sluglines and action passages at the
same indentation level and write sluglines and
speaker names in upper case (Riley, 2009). How-
ever, publicly-available screenplays can exhibit
wide variability in document formatting and de-
viate from these norms by removing indentations,
containing watermark characters, or omitting lo-
cation keywords (INT and EXT) in sluglines. A
screenplay parser should be robust to these issues
to extract the document’s structure correctly and
consistently. Once parsed, we can process the ex-
tracted structural segments for narrative analysis.

Narrativity occurs when characters interact with
each other in some spatiotemporal context (Piper
et al., 2021). Computational narrative understand-
ing involves natural language tasks such as named
entity recognition (NER) to identify the characters
(Srivastava et al., 2016), coreference resolution to
gather co-referring character mentions (Elson et al.,
2010; Baruah et al., 2021), semantic role labeling
to find their actions (Martinez et al., 2022), rela-
tion extraction to discover character attributes (Yu
et al., 2022), sentiment analysis to understand the
attitude of their interactions (Nalisnick and Baird,
2013), and summarization to spot the key events
(Gorinski and Lapata, 2015). Out of these tasks,
coreference resolution presents a unique challenge
because of the long document size of screenplays
(Baruah et al., 2021). Modern coreference models
rely on transformers to capture the discourse se-
mantics. However, the average screenplay length
(30K words) far exceeds the restricted context of
transformers (512 tokens). As document size in-
creases, the number of words between a mention
and its antecedent increases. Several scenes can
elapse before a character is mentioned again in the
screenplay. A screenplay coreference model should
be able to handle such distant coreference relations.
Fig 1 shows an example of a screenplay excerpt
annotated with character coreference labels.

In this paper, we tackle character coreference res-
olution in movie screenplays. We focus on charac-
ters because they are the primary agents that drive
the plot (Bamman et al., 2013) through rich and dy-
namic interactions (Labatut and Bost, 2019). Long-
range coreference relations are also more common
for characters than other entities (Bamman et al.,
2020). To support our modeling, we augment exist-
ing screenplay datasets synthetically and through
human annotations. First, we systematically add
different formatting perturbations to screenplay

documents and train our screenplay parser to be
robust to these variations. We use this parser to
find speakers and segment boundaries as a prepro-
cessing step to coreference resolution. Second,
we annotate character mentions in six full-length
screenplays and model the coreference relation by
scoring word pairs (Dobrovolskii, 2021). We adapt
the model inference to long screenplay documents
by fusion-based and hierarchical methods. We sum-
marize our contributions as follows:

1. We curate and share two screenplay datasets
called MovieParse and MovieCoref for movie
screenplay parsing and character coreference
resolution, respectively.

2. We develop a robust screenplay parser to ex-
tract the screenplay structure. It can handle
various screenplay formatting styles.

3. We build a character coreference model and
adapt it to long screenplay documents.

2 Related Work

Screenplay Parsing. Van Rijsselbergen et al.
(2009) used unified modeling language to represent
the structural elements of the screenplay document.
Agarwal et al. (2014) trained support vector ma-
chines on synthetic training data to build a robust
screenplay parser. We adopt a similar approach,
but handle a wider set of document-related issues
and leverage modern sequence embedding mod-
els instead of hand-crafted features. Winer and
Young (2017) used a recursive descent parser to ex-
tract the spatiotemporal information from sluglines.
Ramakrishna et al. (2017) built a rule-based screen-
play parser to find character names and utterances,
ignoring the action passages. Baruah et al. (2021)
annotated the line-wise structural tag of 39 screen-
play excerpts to evaluate their rule-based parser.
We extend this dataset with synthetic formatting
variations to train our robust screenplay parser.

Screenplay Coreference Resolution. Baruah
et al. (2021) established annotation guidelines for
the character coreference task in screenplays. They
annotated three screenplay excerpts to evaluate pre-
trained coreference models. They combined the
neural model with rules inspired by the narrative
structure of screenplays. The limitation of their
work is that they used excerpts instead of full-
length scripts. We adopt their annotation guidelines
to label six full-length screenplays, enabling us to
study how our models scale to the entire narrative.

10301

Literary Coreference Resolution. Several past
studies have tried to extract social networks from
literary texts to study character interactions, where
they naturally need to unify different character men-
tions to create the network’s nodes (Labatut and
Bost, 2019). Most methods clustered the person
names using heuristics such as matching gender
and honorifics or finding name variations and nick-
names (Elson et al., 2010; Elsner, 2012; Coll Ar-
danuy and Sporleder, 2014; Vala et al., 2015). Bam-
man et al. (2019) and Bamman et al. (2020) created
the LitBank corpus containing entity, event, and
coreference annotations of 100 works of English-
language fiction and trained an end-to-end neural
coreference model. Yoder et al. (2021) developed
a text processing pipeline for fan-fiction stories
where they used Joshi et al.’s (2020) SpanBERT
model to find character coreference clusters.

Coreference Resolution. Lee et al.’s (2017)
seminal work on end-to-end training of neural
coreference models was a significant breakthrough
in coreference resolution. Lee et al. (2018) later im-
proved the model’s efficiency by splitting the coref-
erence scoring into coarse and fine stages. Joshi
et al. (2019) and Joshi et al. (2020) replaced the
encoder with BERT-based architectures. Reduc-
ing time and memory footprints became imper-
ative with the introduction of transformer-based
encoders. Kirstain et al. (2021) bypassed cre-
ating explicit span representations and modeled
each span by the word embeddings of its bound-
ary tokens. Combined with mention pruning,
they achieved quadratic complexity in document
size. Dobrovolskii (2021) substituted spans with
head words, removing the need for mention prun-
ing and maintained the same quadratic runtime.
Bohnet et al. (2022) used a text-to-text paradigm
to make sentence-level co-referential decisions and
achieved state-of-the-art performance using the T5
text-to-text encoder (Raffel et al., 2022).

However, these methods do not scale to long
documents because the quadratic complexity of
scoring mention (span or token) pairs becomes in-
tractable as document size increases.2 Memory-
bounded methods (Xia et al., 2020; Toshniwal et al.,
2020; Thirukovalluru et al., 2021) keep a finite
set of entity representations and update it incre-
mentally for each mention. Most of these models
are evaluated on the OntoNotes (Pradhan et al.,

2Our experiments show that a 48 GB GPU can run infer-
ence on a document of length at most 20K tokens

2012) and LitBank corpora whose average docu-
ment length is less than 500 and 2K tokens, respec-
tively: an order of magnitude less than the average
screenplay size. The entity spread (number of to-
kens between the first and last mention) and the
maximum active entity count (active entity count
of a token is the number of entities whose spread
includes the token) are larger for screenplays be-
cause the main characters tend to appear throughout
the story in bursts (Bamman et al., 2020). In this
work, we adapt Dobrovolskii’s (2021) word-level
coreference model to movie screenplays by fusing
the word-pair coreference scores from overlapping
segments or by running inference hierarchically.

3 Screenplay Parsing

3.1 Problem Setup

Agarwal et al. (2014) posed screenplay parsing as
a classification task of assigning a single structural
label to each screenplay line. The structural types
include slugline, action, speaker, expression, ut-
terance, and transition. We define a screenplay
segment as a contiguous sequence of lines with the
same structural label.

Sluglines indicate the beginning of a new scene.
They contain information about the scene’s loca-
tion, time, and whether it occurs in an interior (INT)
or exterior (EXT) setting. Action lines describe
the characters and their actions. Most non-dialogue
lines fall under this class. Speaker lines contain
character names that immediately precede their
utterances. Utterance lines comprise words spo-
ken by the characters. Expression lines describe
speech acts or other scene information that pro-
vide more context to utterances, such as shouting,
interrupting, contd., pause, and O.S. (off-screen).
Screenwriters usually enclose expressions in paren-
theses. Expressions can appear alongside speakers
and utterances on the same line. We classify such
lines into the latter class (speaker or utterance) to
avoid ambiguity. Transition lines detail the cam-
era movement when the scene changes on screen.
Fig 2a shows an example of a well-formatted and
parsed screenplay.

3.2 Screenplay Document Issues

Screenplay documents retrieved from online re-
sources like IMSDB 3 and DailyScript 4, or even

3https://imsdb.com/
4https://www.dailyscript.com/

10302

EXT. BARTON HOME - DAY Slugline

CLOSE ON: A HOUSE-ARREST ANKLE BRACELET. Transition

CLINT BARTON (O.S.) Speaker

Okay, you see where you’re going? Let’s work on how to
get there. Utterance

Pan up to find...CLINT BARTON, with his daughter, LILA, coaching
her as she notches an arrow in her bow. Action

CLINT BARTON Speaker

(CONTD.) Expression

Okay, good...tip down...bow arm out...three fingers- Utterance

LILA BARTON Speaker

Why three? Utterance

CLINT BARTON Speaker

‘Cause two’s not enough and four’s too much- Utterance

(a) Well-formatted parsed screenplay

BARTON HOME - DAY Missing scene keyword

AVENGERS Watermark

CLOSE ON: A HOUSE-ARREST ANKLE BRACELET.

CLINT BARTON (O.S.) Name contains keyword

Okay, you see where you’re going? Let’s work
on how to get there.

Pan up to find...CLINT BARTON, with his daughter,
LILA, coaching her as she notches an arrow in her bow.

clint barton Lowercased Speaker

ENDGAME Watermark

Okay, good...tip down...bow arm out...three
fingers-

LILA BARTON No Whitespace

Why three?

CLINT BARTON Name contains keyword

** ‘Cause two’s not enough and four’s too much pg 1 Extra Symbols

(b) Screenplay with formatting issues

Figure 2: Structural types and formatting issues of screenplay documents (Avengers Endgame, 2019)

shooting drafts shared by movie studios, can con-
tain optical character recognition (OCR) errors or
disregard formatting conventions. The most com-
mon issues found are:

1. No Whitespace - The screenwriting conven-
tion is that sluglines and action lines should
have the smallest indent, followed by utter-
ances and speakers. Screenwriters should
separate segments by at least one blank line
(Riley, 2009). Non-adherence to these rules
or OCR errors might remove all indents and
blank lines, making it challenging to deter-
mine segment boundaries.

2. Missing Scene Keywords - Sluglines omit
the INT or EXT keyword.

3. Uncapitalization - Sluglines and speaker
names are written in lowercase.

4. Watermark - Some screenplays might only
be publicly-available as PDF files containing
watermark logos or stamps to credit the cre-
ator. OCR conversion of the PDF might retain
text-based watermarks as spurious letters in
screenplay lines.

5. Speaker Name contains Keyword - Speaker
names might include keywords used in slug-
lines or transitions, for example, CLINT,
CUTTER, DEXTER. These names can con-
fuse rule-based parsers relying on keyword
lookup for classification.

6. Extra Expressions - Expressions might be
misplaced and appear between action lines,
instead of with utterances.

7. Extra Symbols - Asterisks or page numbers
can occur in the beginning or end of screen-
play lines.

Fig 2b shows some screenplay formatting issues.
The performance of rule-based parsers declines
with the preponderance of these anomalies.

3.3 Data Augmentation

Following Agarwal et al. (2014), we create syn-
thetic data to train a robust parser. We collect
clean screenplay excerpts annotated line-wise with
structural labels. Then, for each issue described
in Sec 3.2, we create a noisy copy of the labeled
data wherein some lines are changed or inserted to
contain the corresponding anomaly.

For example, for the Missing Scene Keyword
type, we remove INT and EXT keywords from all
sluglines. For the Watermark type, we randomly
insert a new watermark line containing spurious
English letters. We create the other copies similarly.
We augment the original clean corpus with these
noisy copies and use the combined collection for
training and validating our screenplay parser.

3.4 Screenplay Parsing Model

In a typical screenplay, action lines follow slug-
lines, utterances follow speakers, and transitions
mainly occur before sluglines. We model our
screenplay parser as a recurrent neural network
(RNN) to exploit this structural arrangement.

We encode each line using a concatenation of
sentence embeddings and syntactic, orthographic,
and keyword-based features. Sentence embeddings
capture the semantics of a sentence in a fixed di-

10303

mensional vector representation. Syntactic features
include counts of part-of-speech and named entity
tags. Orthographic features comprise counts of
left and right parentheses and capitalized words.
Keyword-based features contain tallies of slugline
and transition keywords.

We input the feature representations to a bidirec-
tional RNN to obtain a sequence of hidden vectors.
Each hidden vector corresponds to a screenplay
line. We feed each vector into a densely connected
feed-forward neural network. We compute the label
probability as a softmax function over the output
neurons of the dense layer. We train the model
using class-weighted cross entropy loss.

4 Screenplay Character Coreference
Resolution

4.1 Problem Setup

Character coreference resolution is a document-
level hard-clustering5 task where each cluster is a
set of text spans that refer to a single unique charac-
ter. We call text spans that refer to some character
as character mentions. Character mentions can oc-
cur in any structural segment of the screenplay.

4.2 Screenplay Coreference Model

We adapt the word-level coreference resolution
model of Dobrovolskii (2021) to the screenplay
character coreference resolution task. The model
first finds the coreference links between individual
words and then expands each word to the subsum-
ing span. We chose this model because it achieved
near-SOTA6 performance on the OntoNotes dataset
while having a simple architecture and maintaining
quadratic complexity.

Following Lee et al. (2017), we formulate the
coreference resolution task as a set of antecedent
assignments yi for each word i. Possible yi values
are Yi = {ϵ, 1, . . . i−1}. yi = ϵ if word i does not
have an antecedent or is not a character mention.
We model the probability distribution P (yi) over
candidate antecedents as:

P (yi) =
es(i,yi)∑

y′∈Yi
es(i,y′)

(1)

s(i, j) is the coreference score between words i
and j. We fix s(i, ϵ) = 0. Following steps show
how we compute s(i, j).

5a text span can belong to at most one cluster
6Dobrovolskii (2021) achieves 81.0 F1. SOTA is 83.3 F1

Word Representations. Given a screenplay S con-
taining n words, we tokenize each word to obtain
m wordpiece subtokens. We encode the subto-
kens using BERT-based transformers (Devlin et al.,
2019) to obtain contextualized subtoken embed-
dings T. We do not pass the whole subtoken se-
quence to the transformer because the sequence
length m is usually greater than the transformer’s
context window. Instead, we split the subtoken
sequence into non-overlapping segments and en-
code each segment separately. Joshi et al. (2019)
showed that overlapping segments provided no im-
provement. We obtain the word representations X
as a weighted sum of its subtoken embeddings. We
find the weights by applying a softmax function
over the attention scores of its subtokens. We cal-
culate the subtoken attention scores A by a linear
transformation W on T.

A = T ·W (2)

Character Scores. The character score of a word
calculates its likelihood to be the head word of a
character mention. We calculate character scores
because we only want to model the coreference be-
tween characters instead of all entity types. We ob-
tain word-level character representations Z by con-
catenating the word representations X with word
feature embeddings. The word features include
part-of-speech, named entity, and structural tags of
the word. The word’s structural tag is the structural
tag of the screenplay line containing the word. We
apply a bidirectional RNN to Z to obtain hidden
vectors H. We input each hidden vector Hi to a
feed-forward neural network with a single output
neuron to find the character score sr(i) for word i.

H = RNNr(Z) (3)

sr(i) = FFNr(Hi) (4)

Coarse Coreference Scores. The coarse corefer-
ence score is a computationally efficient but crude
estimate of how likely two words corefer each other.
We calculate it as the sum of the bilinear trans-
formation Wc of the word embeddings and the
character scores of the words.

sc(i, j) = Xi ·Wc ·X⊺
j + sr(i) + sr(j) (5)

Antecedent Coreference Score. We retain the top
k likely antecedents of each word according to the
coarse coreference scores sc. We encode a word
and candidate antecedent pair (i, j) by concatenat-
ing their word embeddings, the element-wise prod-
uct of their word embeddings, and a pairwise rep-
resentation ϕ which encodes the distance between

10304

words i and j, and whether they are spoken by the
same character. We feed the word-antecedent rep-
resentations to a feed-forward neural network to
obtain antecedent coreference scores sa(i, j).

sa(i, j) = FFNa([Xi;Xj;Xi ⊙Xj;ϕ]) (6)

The final coreference score of the word and candi-
date antecedent pair (i, j) is the sum of coarse and
antecedent coreference scores s(i, j) = sc(i, j) +
sa(i, j). The predicted antecedent for word i is the
antecedent with the maximum s(i, j) score. Word
i has no antecedents if s(i, j) is negative for all k
candidate antecedents.
Span Boundary Detection. We find the span
boundaries of the words that are coreferent with
some other word. We concatenate the word embed-
ding with embeddings of neighboring words and
pass the pairwise representations through a convo-
lutional neural network followed by a feed-forward
network to get start and end scores. The preceding
and succeeding words with maximum start and end
scores mark the span boundaries.

We obtain the final coreference clusters by using
graph traversal on the predicted antecedent rela-
tionship between the head words of the spans. The
time and space complexity of the model is O(n2).

4.3 Training

The large document size of screenplays prevents
us from calculating gradients from the entire doc-
ument within our resource constraints. Therefore,
we split the screenplay at segment boundaries (seg-
ments are defined in sec 3.1) into non-overlapping
subdocuments and train on each subdocument sepa-
rately. We do not split at scene boundaries because
scenes can get very long.

Following Dobrovolskii (2021), we use marginal
log-likelihood LMLL and binary cross entropy
LBCE to train the coarse and antecedent corefer-
ence scorers. We optimize the marginal likelihood
because the antecedents are latent and only the clus-
tering information is available, as shown in Eq 7.
Gi denotes the set of words in the gold cluster con-
taining word i. The binary cross entropy term LBCE
improves the coreference scores for individual co-
referring word pairs. We scale it by a factor α. We
use cross entropy loss to train the character scorer
and span boundary detection modules, denoted as
LChar and LSpan, respectively. We train the corefer-
ence, character scorer and span boundary detection
modules jointly (Eq 8).

LMLL = − log
n∏

i=1

∑

ŷ∈Yi∩Gi

P (ŷ) (7)

L = LMLL + αLBCE + LChar + LSpan (8)

4.4 Inference
Unlike training, we cannot run inference separately
on non-overlapping subdocuments because we will
miss coreference links between words occuring
in different subdocuments and each coreference
cluster will be confined to a single subdocument.
We devise two approaches to scale inference to
long screenplays, one based on fusing coreference
scores and the other is a hierarchical method.

4.4.1 Fusion-Based Inference
We split the screenplay into overlapping subdoc-
uments and run inference separately on each to
obtain coreference scores sk(i, j) for each subdoc-
ument k. If a word pair (i, j) lies within the over-
lap region of two adjacent subdocuments k1 and
k2, we might calculate two different coreference
scores sk1(i, j) and sk2(i, j). We average the two
scores to obtain the final coreference value s(i, j)
and use it to find the final coreference clusters. This
method finds coreference scores for all word pairs
whose separation is less than the overlap length.

4.4.2 Hierarchical Inference
We split the screenplay into non-overlapping sub-
documents. We run inference and find coreference
clusters for each subdocument separately. For each
subdocument coreference cluster, we sample some
representative words that have the highest character
scores sr. We calculate the coarse and antecedent
coreference scores for every word pair (i, j), where
words i and j are representative words of corefer-
ence clusters from different subdocuments. If the
average coreference score s(i, j) is positive, we
merge the corresponding subdocument coreference
clusters. We obtain the final coreference clusters af-
ter no further merging can take place. This method
allows merging distant clusters together.

5 Experiments

5.1 Screenplay Parsing
Dataset. We use the screenplay parsing dataset
of Baruah et al. (2021). We inject noise into
this dataset according to Sec 3.3 and create the
MovieParse dataset. The MovieParse dataset con-
tains clean and noisy versions of 39 screenplay
excerpts, totaling 224,260 labeled lines.

10305

Baseline. We employ the rule-based parser of
Baruah et al. (2021) as our baseline.
Implementation. We use the pretrained Sentence
MPNet (Masked and Permuted Language Model-
ing) transformer (Song et al., 2020) to get sentence
embeddings. The model uses Siamese and triplet
network structure to obtain sentence representa-
tions. We employ English Spacy models (Hon-
nibal et al., 2020) to find the syntactic features.
The parser’s RNN layer is a single layer LSTM
with 256-dimensional hidden vectors. We train the
parser on sequences of 10 screenplay lines. We
use learning rates of 1e-3 and 1e-5 for the sentence
encoder and LSTM, respectively. We train for 5
epochs using Adam optimizer.
Evaluation. We use leave-one-movie-out cross-
validation and average the performance across the
39 excerpts to obtain the final evaluation scores.
We use per-class F1 as the evaluation metric.

5.2 Screenplay Coreference Resolution

Movie W M C

Avengers Endgame (f) 35,816 5,025 71
Dead Poets Society (f) 26,200 3,778 51
John Wick (f) 24,954 2,580 34
Prestige (f) 35,910 5,140 34
Quiet Place (f) 27,843 2,786 9
Zootopia (f) 27,127 3,677 113
Shawshank Redemption (e) 8,090 888 44
The Bourne Identity (e) 8,087 911 39
Inglourious Basterds (e) 7,777 1,008 23

Total 201,804 25,793 418

Table 1: Descriptive statistics of the MovieCoref dataset.
f = full-length, e = excerpt, W = Words, M = Mentions,
C = Characters. The excerpt scripts were annotated by
Baruah et al. (2021).

Dataset. We label six full-length screenplays for
character coreference using the annotation guide-
lines of Baruah et al. (2021). The scripts are pub-
licly available from IMSDB. Three trained individ-
uals annotated two unique screenplays each plus
an additional script excerpt previously labeled by
experts for rater-reliability measures. The average
LEA F1 (Moosavi and Strube, 2016) of the anno-
tators against the expert labels is 85.6. We used
the CorefAnnotator tool to annotate the screenplay
documents (Reiter, 2018).

The six movies are Avengers Endgame, 2019;
Dead Poets Society, 1989; John Wick, 2014; Pres-
tige, 2006; Quiet Place, 2018; and Zootopia, 2016.
We add these movies to the coreference dataset

annotated by Baruah et al. (2021) to create the
MovieCoref dataset. The average document length
of the full-length screenplays is about 30K words.
MovieCoref covers 25,793 character mentions for
418 characters in 201,804 words. The maximum
active entity count (defined in sec 1) is 54. The
same statistic for OntoNotes and LitBank is 24 and
18 respectively (Toshniwal et al., 2020). Table 1
shows per-movie statistics of MovieCoref dataset.

Baseline. We use the screenplay coreference model
of Baruah et al. (2021) as our baseline. It combines
the neural model of Lee et al. (2018) with structural
rules to adapt to the movie domain.

Implementation. We retain the architecture of
the word-level coreference model of Dobrovolskii
(2021) for the word encoder, coreference scorers,
and span boundary detection modules. We pretrain
these modules on the OntoNotes corpus. Following
Dobrovolskii (2021), we use RoBERTa (Zhuang
et al., 2021) to encode the subtokens. The character
scorer uses a single-layer bidirectional GRU with
256-dimensional hidden vectors.

We train the coreference model using a learning
rate of 2e-5 for the RoBERTa transformer and 2e-4
for the other modules. We decrease the learning
rates linearly after an initial warmup of 50 training
steps. We use L2 regularization with a decay rate
of 1e-3. The size of the training subdocuments is
5120 words because it is the maximum we could fit
in 48 GB A40 NVIDIA GPUs. We retain the top 50
antecedent candidates during the pruning stage. We
set the binary-cross-entropy scaling factor α = 0.5.
Appendix A contains additional details.

Evaluation. We use leave-one-movie-out cross-
validation to evaluate the model. We obtain the
final evaluation score by averaging across the six
full-length screenplays. The conventional evalua-
tion metric for coreference resolution is CoNLL
F1, which is the average of the F1 scores of three
metrics: MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), and CEAFe (Luo, 2005). Moosavi
and Strube (2016) pointed out interpretability and
discriminative issues with these metrics and pro-
posed the alternative LEA (Link-Based Entity
Aware) metric. LEA calculates the weighted sum
of the resolution scores of the clusters. The reso-
lution score of a cluster is the fraction of detected
coreference links, and its weight equals its cardi-
nality. We use LEA F1 as the primary evaluation
metric.

10306

Issue Slugline Action Speaker Utterance Expression Transition
B R B R B R B R B R B R

- 97.8 95.8 89.8 98.8 97.8 99.6 93.5 99.3 86.2 98.1 89.4 97.8
No Whitespace 0.6 92.3 0.4 97.5 92.9 98.9 66.3 98.3 81.1 98.7 2.9 95.8
Missing Scene Kw 64.2 95.6 87.4 98.8 97.8 99.6 93.5 99.4 86.2 98.1 89.4 98.3
Uncap Slugline 64.9 95.5 87.5 98.8 97.8 99.6 93.5 99.4 86.2 98.1 89.4 97.8
Uncap Speaker Name 97.8 95.7 63.8 98.7 64.7 99.5 64.5 99.3 60.4 97.7 88.3 98.3
Watermark 65.0 94.3 36.8 96.8 41.8 90.8 63.7 97.9 74.8 90.9 57.6 93.1
Speaker contains Kw 97.8 95.6 74.4 98.8 72.6 99.6 72.7 99.4 66.0 98.2 14.9 98.1
Extra Expressions 97.8 95.5 88.4 98.4 97.8 99.0 93.8 98.1 97.8 98.6 89.4 98.1
Extra Symbols 89.7 91.4 64.9 96.2 94.8 91.2 75.1 97.2 83.2 94.3 78.4 93.7

Table 2: Per-class F1 scores of rule-based parser Baruah et al. (2021) (B) and our parser (R) across different
formatting issues on the MovieParse dataset. Kw = Keyword, Uncap = Uncapitalized.

Model MUC B3 CEAFe LEA CoNLL
P R F1 P R F1 P R F1 P R F1 F1

Baseline 89.3 79.2 83.7 54.8 63.3 57.5 61.5 40.9 47.9 63.2 54.7 57.3 63.1
Fusion 93.9 92.8 93.3 81.3 69.0 74.5 34.7 62.9 43.3 81.0 68.7 74.2 70.4
Hierarchical 94.2 92.4 93.2 70.6 78.8 73.8 39.5 60.4 46.2 70.3 78.6 73.5 71.1

Table 3: Leave-one-movie-out cross-validation scores on the character coreference resolution task on the MovieCoref
dataset. Baseline refers to the screenplay coreference model of Baruah et al. (2021) built on top Lee et al. (2018).

6 Results

6.1 Screenplay Parsing
Table 2 compares the per-class F1 scores of the rule-
based parser of Baruah et al. (2021) against our
parser for different formatting issues. Our parser
performs significantly better across most structural
tags and formatting variations of the screenplay
document (t-test, p < 1e−4). The rule-based parser
is a better slugline detector for well-formatted
screenplays, but its performance degrades signifi-
cantly for noisy screenplays. The performance of
our parser varies significantly less than the rule-
based parser across document issues, proving its
robustness (F-test, p < 1e−4).

6.2 Screenplay Coreference Resolution
Table 3 shows the cross-validation results of our
model and the baseline (Baruah et al., 2021) on
the character coreference resolution task. For the
fusion-based inference, we split the screenplay into
overlapping subdocuments, each of length 5120
words with an overlap of 2048 words. For the hier-
archical inference, we split the screenplay into non-
overlapping subdocuments, each of length 5120
words, and sample three representative words per
cluster. Both inference approaches achieved signif-

icantly better F1 scores than the baseline except on
the CEAFe metric but did not differ significantly
from each other (t-test, p < 0.05). The hierarchi-
cal approach retrieves more coreference links (+10
LEA recall) but is less precise (-11 LEA precision)
than the fusion-based approach. This might be be-
cause the hierarchical approach performs a second
round of coreference clustering, which merges dis-
tant clusters but also introduces wrong coreference
links. We use Bonferroni correction (n = 3) to
adjust for multiple comparisons.

6.2.1 Character Scorer Ablation

Model LEA F1

(w/o character scorer) 72.2
(w/ character scorer) 74.2

Table 4: LEA F1 score of fusion-based inference with
and without the character scorer module

The main difference between our model and Do-
brovolskii’s (2021) word-level coreference model
is the inclusion of the character scorer module. Ex-
cluding the character scorer module implies that we
do not have the sr terms in Eq 5 and the LChar term
in Eq 8. Table 4 shows that the coreference perfor-

10307

mance of the fusion-based approach improves (+2
LEA F1) by adding the character scorer module.
Similar results hold for the hierarchical approach.

6.2.2 Fusion-Based Inference

SubDoc Overlap (words)
(words) 256 512 1024 2048

2048 51.5 (7.6) 53.1 (7.6) - -
3072 52.4 (7.7) 59.2 (7.7) 63.8 (7.7) -
4096 58.6 (7.8) 58.4 (7.8) 68.7 (7.8) -
5120 60.1 (7.9) 62.4 (7.9) 70.8 (8.0) 74.2 (8.0)

8192 64.6 (8.5) 67.0 (8.5) 72.9 (8.5) 76.6 (8.5)

Table 5: LEA F1 scores of fusion-based inference
for different subdocument (SubDoc) and overlap sizes.
Parenthesized numbers are GPU memory usage in GB.

Table 5 shows the coreference performance and
memory usage of the fusion-based inference ap-
proach across different subdocument and overlap
lengths. Performance improves significantly if we
split the screenplay into larger subdocuments with
greater overlap (t-test, p < 0.05). Increasing the
subdocument size enables the model to directly find
the coreference score of more word pairs. Increas-
ing the overlap between adjacent subdocuments
allows the model to score all word pairs whose
separation is less than the overlap length. Memory
consumption remains almost steady for increasing
overlap sizes at a given subdocument length.

6.2.3 Hierarchical Inference

SubDoc Representative Words
(words) 1 2 3 4

2048 61.7 (9.2) 67.5 (14.0) - -
3072 63.6 (8.8) 72.1 (12.6) 73.5 (18.8) -
4096 69.8 (8.6) 73.0 (12.0) 74.9 (17.4) -
5120 72.9 (8.5) 72.3 (11.3) 73.5 (15.8) -
8192 72.9 (8.7) 75.1 (10.6) 75.6 (14.3) 75.9(19.5)

Table 6: LEA F1 scores of hierarchical inference for
different subdocument sizes (SubDoc) and number of
representative mentions. Parenthesized numbers are
GPU memory usage in GB.

Table 6 shows the coreference performance and
memory usage of the hierarchical inference ap-
proach across different subdocument sizes and
number of representative words. Similar to the
fusion-based approach, performance improves sig-
nificantly upon increasing the subdocument length
(t-test, p < 0.05). Sampling more words per sub-

document cluster also improves performance be-
cause they provide more information from different
discourse locations about the character. However,
it substantially increases memory usage. Memory
consumption decreases for greater subdocument
sizes for a given number of representative words.
This might be because increasing the subdocument
length decreases the total number of subdocuments,
which reduces the number of clusters obtained from
the first round of coreference scoring.

7 Conclusion

We introduce two movie screenplay datasets for
parsing and character coreference resolution tasks.
We develop a robust screenplay parser that can han-
dle various document formatting issues. We devise
inference approaches to scale coreference models
to long documents without drastically increasing
memory consumption and evaluate them on full-
length screenplays. Future work entails applying
our screenplay coreference model to gather longi-
tudinal insights on movie character interactions.

8 Limitations

The coreference annotations of the MovieCoref
dataset exclude plural character mentions because
the annotation guidelines did not cover them
(Baruah et al., 2021). It contains few singleton
coreference clusters (65). Our model only identi-
fies singular characters and cannot retrieve single-
ton clusters. All the movies in the dataset have a
linear narrative. Non-linear stories can confuse a
coreference model because of time skips and flash-
backs which is not explored in our work. Both
our inference approaches require at least 10 GB of
GPU memory for finding coreference clusters from
full-length screenplays.

9 Ethics Statement

Our work adheres to the ACL Ethics Policy. Us-
ing our proposed models, we can scale corefer-
ence resolution to long documents while leveraging
transformer-based mention-pair scorers and with-
out substantially increasing memory consumption.

References
Apoorv Agarwal, Sriramkumar Balasubramanian,

Jiehan Zheng, and Sarthak Dash. 2014. Parsing
screenplays for extracting social networks from
movies. In Proceedings of the 3rd Workshop on Com-
putational Linguistics for Literature (CLFL), pages

10308

https://doi.org/10.3115/v1/W14-0907
https://doi.org/10.3115/v1/W14-0907
https://doi.org/10.3115/v1/W14-0907

50–58, Gothenburg, Sweden. Association for Com-
putational Linguistics.

Paul Argentini. 1998. Elements of Style for Screen
Writers. Lone Eagle Publishing Company.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In The first international
conference on language resources and evaluation
workshop on linguistics coreference, volume 1, pages
563–566. Citeseer.

David Bamman, Olivia Lewke, and Anya Mansoor.
2020. An annotated dataset of coreference in English
literature. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 44–54,
Marseille, France. European Language Resources
Association.

David Bamman, Brendan O’Connor, and Noah A.
Smith. 2013. Learning latent personas of film char-
acters. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 352–361, Sofia, Bulgaria.
Association for Computational Linguistics.

David Bamman, Sejal Popat, and Sheng Shen. 2019. An
annotated dataset of literary entities. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2138–2144, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Sabyasachee Baruah, Sandeep Nallan Chakravarthula,
and Shrikanth Narayanan. 2021. Annotation and
evaluation of coreference resolution in screenplays.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2004–2010,
Online. Association for Computational Linguistics.

Bernd Bohnet, Chris Alberti, and Michael Collins. 2022.
Coreference resolution through a seq2seq transition-
based system.

Mariona Coll Ardanuy and Caroline Sporleder. 2014.
Structure-based clustering of novels. In Proceedings
of the 3rd Workshop on Computational Linguistics for
Literature (CLFL), pages 31–39, Gothenburg, Swe-
den. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Vladimir Dobrovolskii. 2021. Word-level coreference
resolution. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7670–7675, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Micha Elsner. 2012. Character-based kernels for novel-
istic plot structure. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 634–644, Avignon,
France. Association for Computational Linguistics.

David Elson, Nicholas Dames, and Kathleen McKeown.
2010. Extracting social networks from literary fic-
tion. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
138–147, Uppsala, Sweden. Association for Compu-
tational Linguistics.

Philip John Gorinski and Mirella Lapata. 2015. Movie
script summarization as graph-based scene extraction.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1066–1076, Denver, Colorado. Association for
Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spacy: Industrial-
strength natural language processing in python.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021. Coref-
erence resolution without span representations. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 14–19,
Online. Association for Computational Linguistics.

Vincent Labatut and Xavier Bost. 2019. Extraction
and analysis of fictional character networks. ACM
Computing Surveys, 52(5):1–40.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages

10309

https://aclanthology.org/2020.lrec-1.6
https://aclanthology.org/2020.lrec-1.6
https://aclanthology.org/P13-1035
https://aclanthology.org/P13-1035
https://doi.org/10.18653/v1/N19-1220
https://doi.org/10.18653/v1/N19-1220
https://doi.org/10.18653/v1/2021.findings-acl.176
https://doi.org/10.18653/v1/2021.findings-acl.176
https://doi.org/10.48550/ARXIV.2211.12142
https://doi.org/10.48550/ARXIV.2211.12142
https://doi.org/10.3115/v1/W14-0905
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.605
https://doi.org/10.18653/v1/2021.emnlp-main.605
https://aclanthology.org/E12-1065
https://aclanthology.org/E12-1065
https://aclanthology.org/P10-1015
https://aclanthology.org/P10-1015
https://doi.org/10.3115/v1/N15-1113
https://doi.org/10.3115/v1/N15-1113
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/2021.acl-short.3
https://doi.org/10.18653/v1/2021.acl-short.3
https://doi.org/10.1145/3344548
https://doi.org/10.1145/3344548
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108

687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution perfor-
mance metrics. In Proceedings of Human Language
Technology Conference and Conference on Empiri-
cal Methods in Natural Language Processing, pages
25–32.

Victor R. Martinez, Krishna Somandepalli, and
Shrikanth Narayanan. 2022. Boys don’t cry (or kiss
or dance): A computational linguistic lens into gen-
dered actions in film. PLOS ONE, 17(12):1–23.

Nafise Sadat Moosavi and Michael Strube. 2016. Which
coreference evaluation metric do you trust? a pro-
posal for a link-based entity aware metric. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 632–642, Berlin, Germany. Associa-
tion for Computational Linguistics.

Eric T. Nalisnick and Henry S. Baird. 2013. Character-
to-character sentiment analysis in shakespeare’s
plays. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 479–483, Sofia, Bul-
garia. Association for Computational Linguistics.

Andrew Piper, Richard Jean So, and David Bamman.
2021. Narrative theory for computational narrative
understanding. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 298–311, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on
EMNLP and CoNLL - Shared Task, pages 1–40, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2022. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Anil Ramakrishna, Victor R. Martínez, Nikolaos Ma-
landrakis, Karan Singla, and Shrikanth Narayanan.
2017. Linguistic analysis of differences in portrayal
of movie characters. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1669–
1678, Vancouver, Canada. Association for Computa-
tional Linguistics.

Nils Reiter. 2018. CorefAnnotator - A New Annotation
Tool for Entity References. In Abstracts of EADH:
Data in the Digital Humanities.

Christopher Riley. 2009. The Hollywood standard: the
complete and authoritative guide to script format and
style. Michael Wiese Productions.

Maarten Sap, Marcella Cindy Prasettio, Ari Holtzman,
Hannah Rashkin, and Yejin Choi. 2017. Connota-
tion frames of power and agency in modern films.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2329–2334, Copenhagen, Denmark. Association for
Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. Advances in
Neural Information Processing Systems, 33:16857–
16867.

Shashank Srivastava, Snigdha Chaturvedi, and Tom
Mitchell. 2016. Inferring interpersonal relations in
narrative summaries.

Raghuveer Thirukovalluru, Nicholas Monath, Kumar
Shridhar, Manzil Zaheer, Mrinmaya Sachan, and An-
drew McCallum. 2021. Scaling within document
coreference to long texts. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 3921–3931, Online. Association for
Computational Linguistics.

Shubham Toshniwal, Sam Wiseman, Allyson Ettinger,
Karen Livescu, and Kevin Gimpel. 2020. Learning to
Ignore: Long Document Coreference with Bounded
Memory Neural Networks. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8519–8526,
Online. Association for Computational Linguistics.

R. Turetsky and N. Dimitrova. 2004. Screenplay align-
ment for closed-system speaker identification and
analysis of feature films. In 2004 IEEE International
Conference on Multimedia and Expo (ICME) (IEEE
Cat. No.04TH8763), volume 3, pages 1659–1662
Vol.3.

Hardik Vala, David Jurgens, Andrew Piper, and Derek
Ruths. 2015. Mr. bennet, his coachman, and the arch-
bishop walk into a bar but only one of them gets
recognized: On the difficulty of detecting characters
in literary texts. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 769–774, Lisbon, Portugal. Asso-
ciation for Computational Linguistics.

Dieter Van Rijsselbergen, Barbara Van De Keer,
Maarten Verwaest, Erik Mannens, and Rik Van de
Walle. 2009. Movie script markup language. In Pro-
ceedings of the 9th ACM Symposium on Document
Engineering, DocEng ’09, page 161–170, New York,
NY, USA. Association for Computing Machinery.

Marc Vilain, John Burger, John Aberdeen, Dennis
Connolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

10310

https://doi.org/10.1371/journal.pone.0278604
https://doi.org/10.1371/journal.pone.0278604
https://doi.org/10.1371/journal.pone.0278604
https://doi.org/10.18653/v1/P16-1060
https://doi.org/10.18653/v1/P16-1060
https://doi.org/10.18653/v1/P16-1060
https://aclanthology.org/P13-2085
https://aclanthology.org/P13-2085
https://aclanthology.org/P13-2085
https://doi.org/10.18653/v1/2021.emnlp-main.26
https://doi.org/10.18653/v1/2021.emnlp-main.26
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://doi.org/10.18653/v1/P17-1153
https://doi.org/10.18653/v1/P17-1153
https://doi.org/10.18419/opus-10144
https://doi.org/10.18419/opus-10144
https://doi.org/10.18653/v1/D17-1247
https://doi.org/10.18653/v1/D17-1247
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12173
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12173
https://doi.org/10.18653/v1/2021.findings-acl.343
https://doi.org/10.18653/v1/2021.findings-acl.343
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.1109/ICME.2004.1394570
https://doi.org/10.1109/ICME.2004.1394570
https://doi.org/10.1109/ICME.2004.1394570
https://doi.org/10.18653/v1/D15-1088
https://doi.org/10.18653/v1/D15-1088
https://doi.org/10.18653/v1/D15-1088
https://doi.org/10.18653/v1/D15-1088
https://doi.org/10.1145/1600193.1600231
https://www.aclweb.org/anthology/M95-1005
https://www.aclweb.org/anthology/M95-1005

David R Winer and R Michael Young. 2017. Auto-
mated screenplay annotation for extracting story-
telling knowledge. In Thirteenth Artificial Intelli-
gence and Interactive Digital Entertainment Confer-
ence.

Patrick Xia, João Sedoc, and Benjamin Van Durme.
2020. Incremental neural coreference resolution in
constant memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8617–8624, Online. As-
sociation for Computational Linguistics.

Michael Yoder, Sopan Khosla, Qinlan Shen, Aakanksha
Naik, Huiming Jin, Hariharan Muralidharan, and Car-
olyn Rosé. 2021. FanfictionNLP: A text processing
pipeline for fanfiction. In Proceedings of the Third
Workshop on Narrative Understanding, pages 13–23,
Virtual. Association for Computational Linguistics.

Mo Yu, Yisi Sang, Kangsheng Pu, Zekai Wei, Han
Wang, Jing Li, Yue Yu, and Jie Zhou. 2022. Few-shot
character understanding in movies as an assessment
to meta-learning of theory-of-mind. arXiv preprint
arXiv:2211.04684.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227, Huhhot, China. Chinese Informa-
tion Processing Society of China.

A Appendix

Implementation Details : For the cross-validation
experiments on the MovieCoref dataset, we up-
date the model parameters after every forward pass
on a subdocument. Within the forward pass, we
use batching for the character scoring, antecedent
coreference scoring, and span boundary detection
stages to decrease GPU memory consumption. We
use a batch size of 64. We feed word sequences
containing 256 words to the character scorer RNN.
The pairwise feature encoder ϕ also encodes the
document genre. OntoNotes defines seven genres
such as newswire, broadcast, and telephone conver-
sations. We set the genre as web data. Performance
did not differ significantly from the other genres.
Baruah et al. (2021) suggested inserting the expres-
sion says between speaker names and utterances
before finding coreference clusters in screenplays.
We forgo this preprocessing step because we did
not observe any performance improvement.

10311

https://ojs.aaai.org/index.php/AIIDE/article/view/12994
https://ojs.aaai.org/index.php/AIIDE/article/view/12994
https://ojs.aaai.org/index.php/AIIDE/article/view/12994
https://doi.org/10.18653/v1/2020.emnlp-main.695
https://doi.org/10.18653/v1/2020.emnlp-main.695
https://doi.org/10.18653/v1/2021.nuse-1.2
https://doi.org/10.18653/v1/2021.nuse-1.2
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 8

�3 A2. Did you discuss any potential risks of your work?
Section 9

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10312

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 6

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10313

