
Findings of the Association for Computational Linguistics: ACL 2023, pages 10323–10335
July 9-14, 2023 ©2023 Association for Computational Linguistics

LightFormer: Light-weight Transformer Using SVD-based Weight
Transfer and Parameter Sharing

Xiuqing Lu, Peng Zhang∗, Sunzhu Li, Guobing Gan, Yueheng Sun∗

College of Intelligence and Computing, Tianjin University, Tianjin, China
{lvxiuqing,pzhang,lisunzhu,ganguobing,yhs}@tju.edu.cn

Abstract

Transformer has become an important tech-
nique for natural language processing tasks
with great success. However, it usually requires
huge storage space and computational cost,
making it difficult to be deployed on resource-
constrained edge devices. To compress and ac-
celerate Transformer, we propose LightFormer,
which adopts a low-rank factorization initial-
ized by SVD-based weight transfer and parame-
ter sharing. The SVD-based weight transfer can
effectively utilize the well-trained Transformer
parameter knowledge to speed up the model
convergence, and effectively alleviate the low-
rank bottleneck problem combined with pa-
rameter sharing. We validate this method on
machine translation, text summarization, and
text classification tasks. Experiments show
that on IWSLT’14 De-En and WMT’14 En-De,
LightFormer achieves similar performance to
the baseline Transformer with 3.8× and 1.8×
fewer parameters, and achieves 2.3× speedup
and 1.5× speedup respectively, generally out-
performing recent light-weight Transformers.

1 Introduction

Transformer (Vaswani et al., 2017) has been widely
used and achieved state-of-the-art results in nat-
ural language processing tasks such as machine
translation, text summarization, and text classifi-
cation. To improve the performance of networks,
we usually stack deeper transformer blocks, or in-
crease the dimension of the hidden layers (Mehta
et al., 2020; Li et al., 2020). However, this will
bring a huge amount of parameters and computa-
tions to the model, exceeding the capabilities of
many edge devices. Common methods of model
compression mainly include pruning (Han et al.,
2015), quantization (Gong et al., 2014), knowledge
distillation (Hinton et al., 2015), low-rank factor-
ization (Sainath et al., 2013), and weight sharing
(Lan et al., 2019).

∗Corresponding Author

Deploying Transformer networks on edge de-
vices is challenging. Edge devices are limited in
terms of computing power, storage resources, and
so on. We generally think of model compression as
having three metrics: compression ratio, model per-
formance, and inference speed (FLOPs) (Thakker
et al., 2020). Low-rank factorization can greatly re-
duce the parameters and computations of the model,
and we believe it has the potential to be applicable
to end-to-size scenarios.

Low-rank factorization (Kuchaiev and Ginsburg,
2017; Noach and Goldberg, 2020; Hsu et al., 2022)
is a widely used model compression technique.
Low-rank factorization can reduce the parameters
and improve the inference speed of the network.
This method can be applied to any linear layer,
which decomposes the weight matrix of the linear
layer into many small low-rank matrices. How-
ever, when compressing a model with a high com-
pression ratio, the rank of the matrix factorization
needs to be set very small, which will reduce the ex-
pression ability and affect the model performance
(Thakker et al., 2020). This phenomenon is called
the low-rank bottleneck problem.

To address this problem of low-rank matrix fac-
torization, we first propose the SVD-based Weight
Transfer to initialize the weights of low-rank ma-
trix factorization. We perform singular value factor-
ization (SVD) on the original trained Transformer
weight matrices, which can obtain the optimal low-
rank approximation of the weight matrix, and then
the obtained small weight matrices are used as
the initialization weights of low-rank factorization.
Compared with randomly initialized low-rank fac-
torization, SVD-based weight transfer for the ini-
tialization of low-rank factorization can effectively
utilize the parameter knowledge of the well-trained
Transformer, and accelerate the convergence of the
model, which can improve the performance of low-
rank matrix factorization to alleviate its low-rank
bottleneck problem.

10323

Weight sharing is also a parameter-efficient
model compression technology (Lan et al., 2019;
Reid et al., 2021; Dabre and Fujita, 2019; Takase
and Kiyono, 2021), which reduces the parameters
by reusing the parameters of the model. To fur-
ther solve the low-rank bottleneck problem and
compress the model under the premise of ensur-
ing model performance, we adopt a group-based
cross-layer weight sharing mechanism based on the
above method. It compresses the model by shar-
ing the parameters of Transformer layers within
a group. Achieving a certain compression ratio,
parameter sharing can make the low-rank factoriza-
tion take a larger rank, which can further lessen the
low-rank bottleneck.

To sum up, we propose a lightweight Trans-
former based on SVD weight transfer and parame-
ter sharing, called LightFormer. LightFormer can
greatly reduce parameters under the premise of
ensuring performance and speeding up the infer-
ence speed of the model to be more friendly to
the end-to-end scenarios. We verified our method
on machine translation, text summarization, and
classification tasks. Experimental results show that
our LightFormer outperforms recent light-weight
transformers.

The main contributions of our work can be sum-
marized as follows:

• We first propose a novel low-rank matrix fac-
torization initialized by SVD-based weight
transfer, which can effectively utilize the pa-
rameters of the trained network to accelerate
the convergence of low-rank factorization net-
works compared with random initialization.

• We propose a lightweight Transformer (Light-
Former) using low-rank factorization based on
SVD initialization and group-based parameter
sharing, which can significantly reduce the
parameters on the premise of ensuring model
performance and accelerate inference speed.

• On IWSLT’14 De-En, WMT14’En-De, and
WMT’16 En-Ro datasets of translation, Light-
Former achieves comparable BLEU scores
to the baseline Transformer with 3.8×, 1.8×,
and 3.1× fewer parameters respectively. On
dataset GigaWord of text summarization,
LightFormer achieves better performance than
baseline Transformer using 2.9× fewer pa-
rameters.

2 Preliminaries

2.1 Low Rank Factorization

Low-rank matrix factorization (LMF) is a common
and effective method to compress the deep neural
networks. To compress the fully-connected layers
(Figure 1), the weight matrix Wm×n is decomposed
into the product of two smaller matrices, as shown
in Figure 1:

Wm×n ≈ Um×r × Vr×n (1)

where r is the rank of low-rank factorization.
The original matrix W requires mn parameters,

and for the decomposed small matrices U and V ,
the parameters is r(m+ n).

W U
V

(A) Fully-Connected (B) Low-rank Factorization

m

n

m

nr

r

×

Figure 1: Fully connected layer (A), Low-rank Factor-
ization (B)

2.2 SVD

For any matrix mathematical formula: Am×n, sin-
gular value factorization (SVD) is to decompose
the matrix into the following form:

Am×n = Um×mΣm×nV
T
n×n (2)

where each column of U and V is called the left
and right singular vectors of A respectively. Σ is a
non-negative definite real diagonal matrix.

We can choose the largest r singular values and
the corresponding left and right singular vectors to
approximate the original matrix:

Am×n ≈ Um×rΣr×rV
T
r×n (3)

where r is the rank of truncated SVD.

3 Methodology

In this section, we first introduce the motivation of
our method. Secondly, we introduce SVD-based
weight transfer with parameter sharing. Finally, we
introduce the framework of our LightFormer.

10324

3.1 Motivation

Limitations of LMF based on Random Initial-
ization. The process of compressing the network
using low-rank factorization can be divided into
two steps: initializing a low-rank factorization net-
work structure, and then training this network from
scratch. The advantage of this method is that the
implementation process is simple. However, this
approach has the following limitations:

(1) Hard to Converge. The low-rank factor-
ization based on random initialization is difficult
to converge. The experimental results show that
the loss of the low-rank factorization with random
initialization can not be reduced to that of the orig-
inal Transformer. Furthermore, the low-rank fac-
torization based on random initialization is hard
to achieve the performance of the original Trans-
former.

(2) Low-rank Bottleneck. Low-rank matrix fac-
torization (LMF) will encounter a low-rank bottle-
neck problem when achieving a high compression
ratio, leading to a significant drop in the perfor-
mance of the model (Thakker et al., 2020). In
table 1, as the rank decreases, the parameters of
the model are also reduced, but the performance of
LMF Transformer also drops significantly.

Model Rank Params. BLEU

Transformer - 36.8M 34.6

LMF Transformer

256 21.9M 34.3
112 10.4M 34.1
64 6.6M 33.7
32 4.0M 31.7
16 2.7M 28.8
4 1.8M 17.4

Table 1: Experimental results of LMF Transformer on
IWSLT’14 De-En in different rank settings. Rank: the
rank of low-rank matrix factorization.

3.2 SVD-based Weight Transfer and Weight
Sharing

Many studies (Glorot and Bengio, 2010; Liu et al.,
2020) have shown that the initialization of the net-
work is very important for the optimization of the
model. Lin et al. (2021) shows that knowledge in
the trained network parameters are important.

SVD-based Weight Transfer. Based on the mo-
tivation above, we proposed a novel initialization
strategy for low-rank factorization, named SVD-

based weight transfer, which aims to retain the pa-
rameter knowledge of the original network. Unlike
the factorization method of learning from scratch
(random initialization), SVD-based weight transfer
use the weight of a fine-training network to initial-
ize a low-rank factorization network via SVD.

Intuitively, the expressibility of the decomposed
network is positively related to the top k% singular
value of the well-trained weight matrices. For ex-
ample, using SVD to compress a picture, the more
singular values retained, the clearer the restored im-
age will be. Therefore, SVD-based weight transfer
can not only reduce parameters and operations but
also retain the performance of the original network.

Group-based Weight Sharing. To further com-
press the parameters and alleviate the low-rank
bottleneck problem, we combine the group-based
cross-layer parameter sharing with the low-rank
factorization. We can divide the L layers into N
groups of size M , and each size-M group shares
parameters.

Weight sharing alleviates the low-rank bottle-
neck. For m × n fully connected layers, and the
total layers is L, the rank of the low-rank factoriza-
tion is r, and the number of groups for parameter
sharing is N , then the parameter numbers of the
low-rank network can be calculated as follows:

P = L(m+ n)r (4)

After combined parameter sharing, the parameter
numbers are given by:

P ′ = N(m+ n)r (5)

Under the same parameter settings, the rank of the
low-rank factorization combined with parameter
sharing is defined as r′:

r′ =
L

N
r (6)

where L
N > 1, r′ > r.

Low-rank factorization with parameter sharing can
make the rank set larger under the same scale pa-
rameters.

3.3 LightFormer
In this section, we propose a light-weight Trans-
former, named LightFormer, as shown in Figure 2,
using SVD-based weight transfer and weight shar-
ing. We first introduce the low-rank matrix factor-
ization Transformer (LMF Transformer). Then we

10325

Tranformer Layer

Tranformer Layer

Tranformer Layer

Tranformer Layer

LMF Tranformer
Layer

LMF Tranformer
Layer

LMF Tranformer
Layer

LMF Tranformer
Layer

SVD-based Weight Transfer

SVD-based Weight Transfer

W
The dense layers of trained
baseline Transformer
(e.g. WQ , WK, WV, WFC1, WFC2)

U V

Initializing the low-rank
layers of LightFormer

SVD

Weight
Sharing

Weight
Sharing

(A) Transformer (B) LightFormer

Figure 2: Overview of our framework. We perform SVD on the weight matrix of the original trained Transformer
including embedding layers, self-attention layers, and FFN layers, and use the obtained low-rank matrices as the
initialization of the LMF Transformer. Finally, combining weight sharing with the above method to get LightFormer.

initialize the LMF Transformer using the method
based on SVD weight transfer. Finally, we com-
bine SVD weight transfer with weight sharing to
achieve greater parameter efficiency, getting our
LightFormer.

Low-rank Layers. Based on low-rank matrix
factorization, we propose low-rank layers to re-
place the original fully-connected layers in the
Transformer for achieving model compression and
acceleration, which can be defined as follows:

W = UV (7)

where W ∈ Rm×n, U ∈ Rm×r, and V ∈ Rr×n.

LMF Transformer. Transformer includes word
embeddings, self-attention, and feed-forward net-
works (FFN), which are composed of fully-
connected layers. LMF Transformer replaces fully-
connected layers of these sublayers with low-rank
layers.

(1) LMF Embedding is defined as follows:

WE = WaWb (8)

where Wa ∈ Rd×r, Wb ∈ Rr×V , and r is the rank
of the low rank matrix factorization.

(2) LMF Self-Attention is defined as follows:

A =
XUQVQ(XUKVK)T√

dk

f(Q,K, V) = softmax(A)XUV VV

(9)

where f is the LMF self-attention function,
UQ ∈ Rd×r, VQ ∈ Rr×d, UK ∈ Rd×r, VK ∈

Rr×d, UV ∈ Rd×r, VV ∈ Rr×d. d is the dimen-
sion of hidden size, and r is the rank of low-rank
factorization.

(3) LMF Feed-Forward Network (FFN) can
be defined as follows:

g(X) = ReLU(XU1V1 + b1)U2V2 + b2 (10)

where U1 ∈ Rd×r, V1 ∈ Rr×dff , U2 ∈ Rdff×r,
V2 ∈ Rr×d, b1 ∈ Rdff and b2 ∈ Rd. r is the rank
of low-rank factorization and dff is the dimension
of FFN.

SVD-based Weight Transfer. Different from
random initialization, we use SVD-based weight
transfer to initialize LMF Transformer. The imple-
mentation process of SVD-based weight transfer is
as follows:

(1) Training baseline Transformer. Training
the original Transformer as the network for singular
value factorization (SVD).

(2) Setting the rank of SVD. We set the rank
of SVD according to the proportion of singular
values to be retained, the rank determines the model
parameter compression rate.

(3) SVD-based Weight Transfer. As shown
in Figure 2, we perform singular value factoriza-
tion on parameter matrices of Embedding, Self-
Attention, and FFN layers of the trained Trans-
former, which can be written as:

Wm×n ≈ Um×rΣr×rV
T
r×n = Um×rV

′
r×n (11)

where V ′
r×n = Σr×rV

T
r×n.

10326

We use the small weight matrices as the initial
value of the corresponding layers of the LMF Trans-
former. The rank in SVD should be consistent with
the rank of the matrix factorization in the previous
step.

Combining with Group-based Weight Sharing.
We use group-based parameter sharing for the LMF
Transformer. We share the network parameters
within a group of the model’s Encoder layers. Each
group consists of several contiguous LMF Trans-
former layers. We share all parameters across lay-
ers, including feed-forward network (FFN) and self-
attention, as shown in Figure 2.

4 Experiments

4.1 Datasets and Evaluation

Machine translation: We conduct experiments on
three machine translation datasets: IWSLT’14 De-
En, WMT’16 En-Ro and WMT’14 En-De, which
have been widely used for machine translation.
The IWSLT’14 De-En dataset consists of about
160K/7K/7K sentence pairs for training, validation,
and testing respectively. It has a joint byte pair
encoding (BPE) (Sennrich et al., 2016) vocabulary
of about 10K tokens, which is the same setup as
Liu et al. (2020). For WMT’14 En-De, we train the
model on WMT’16 training data with 4.5M sen-
tence pairs, validate on newstest2013, and test on
newstest2014, the same as Wu et al.. The WMT’16
En-Ro dataset consists of 600K/2K/2K sentence
pairs for training, validation, and testing respec-
tively. It has a joint BPE vocabulary of about 35K
tokens, which is the same setup as Mehta et al.
(2020). For evaluation, we use beam search de-
coding in three tasks. For De-En and En-Ro, the
beam size is 5. For En-De, the beam size is 4 and
length penalty 0.6. The performance was measured
by case-sensitive tokenized BLEU (Papineni et al.,
2002) for all translation tasks. The evaluation set-
ting is the same as Mehta et al. (2020).

Text summarization: We evaluate on the Giga-
Word dataset, which consists of a total of 3.8M
article-title pairs in English. We take the article
as the encoder input and title as the decoder input.
We use the F1 score of ROUGE-1, ROUGE-2 and
ROUGE-L as the evaluation metric1 on the Giga-
Word testset. We use beam search with a beam size
of 5 for inference.

1https://github.com/pltrdy/files2rouge

Text classification: We validate our method on
four text classification tasks. CR (Hu and Liu,
2004): Customer reviews composed of positive
or negative product reviews; MR (Pang and Lee,
2004): Movie reviews divided into positive and neg-
ative categories; SUBJ: Subjectivity dataset where
the target is to classify a text as being subjective
or objective; MPQA (Wiebe et al., 2005): Opinion
polarity detection subtask.

4.2 Architecture
Deep Encoder and Shallow Decoder for Se-
quence Modeling. The vanilla Transformer
(Vaswani et al., 2017) adopts 6 encoder layers and 6
decoder layers. Besides the 6-6 setting, we choose
a deep encoder shallow decoder setting that assigns
18 encoder layers and 3 decoder layers. Assigning
more layers on encoders than decoders is beneficial
for inference speed while maintaining its perfor-
mance (Li et al., 2021; Kasai et al., 2021).

Transformer Encoder for Text Classification.
For text classification, we use the Transformer en-
coders as the baseline. The number of encoder
layers L = 6, and the dimension of model d = 512.
And word embeddings are initialized by GloVe
(Pennington et al., 2014).

4.3 Experimental Setup
Baselines and Implementations. We compare our
method with Transformer (Vaswani et al., 2017)
and recent light-weight Transformers including
Lite Transformer (Wu et al.), Hardware-Aware
Transformers (HAT) (Wang et al., 2020a), De-
lighT (Mehta et al., 2020), and Subformer (Reid
et al., 2021). The implementation of all models use
Faiseq Library (Ott et al., 2019). We reproduce the
results of baselines following the setting from their
papers or download the trained models from their
official GitHub.2 3 4

Speed Measures. We do not use FLOPs as a
speed metric because Wang et al. (2020a) found
that FLOPs does not reflect the measured latency
in autoregressive Transformer. The inference speed
metric we used is tokens/s, which means the num-
ber of tokens translated per second. We sample
50 sentences of an average output length to test
inference speed. We run these samples 10 times

2https://github.com/mit-han-lab/lite-transformer
3https://github.com/mit-han-lab/hardware-aware-

transformers
4https://github.com/sacmehta/delight

10327

Model IWSLT’14 De-En WMT’14 En-De

Params. Ratio Speed BLEU Params. Ratio Speed BLEU
Transformer 36.8M 1.0× 1.0× 34.5 63.2M 1.0× 1.0× 27.3
Lite Transformer 13.9M 2.6× 1.5× 33.6 33.6M 1.9× 1.1× 26.5
HAT Transformer 28.2M 1.3× 1.7× 34.5 46.2M 1.4× 1.7× 26.9
DelighT 19.9M 1.8× 0.8 × 34.4 23.3M 2.7× 1.2× 26.7

LightFormer 7.7M 4.8× 2.1× 34.6 22.5M 2.8× 1.5× 27.1
w/o SVD WT 7.7M 4.8× 2.1× 34.0 22.5M 2.8× 1.5× 26.5

Table 2: Results on IWSLT’14 De-En and WMT’14 En-De. Params: the whole model parameters including
the embedding layer. Ratio: dividing the parameters of the by parameters of Transformer (Vaswani et al., 2017).
w/o SVD WT: Not using the initialization method of SVD Weight Transfer for LightFormer. Compared to the
Transformer (Vaswani et al., 2017) and lightweight Transformers (Wu et al.; Wang et al., 2020a; Mehta et al., 2020)
LightFormer (Ours) require significantly fewer parameters to achieve similar performance.

5 10 15 20 25 30 35
IWSLT'14 De-En Params(M)

31

32

33

34

BL
EU

LightFormer (Ours)
Transformer
LMF Transformer
Lite Transformer
DeLighT

10 20 30 40 50 60
WMT'16 En-Ro Params(M)

29

30

31

32

33

34

LightFormer (Ours)
Transformer
LMF Transformer

10 20 30 40 50 60
WMT'14 En-De Params(M)

21

22

23

24

25

26

27

LightFormer (Ours)
Transformer
LMF Transformer
Lite Transformer
DeLighT

Figure 3: The comparison of performance with LightFormer, LMF Transformer, and other recent light-weight
Transformers on IWSLT’14 De-En (Left), WMT’16 En-Ro (Center), and WMT’14 En-De (Right).

Model Params. Ratio Speed BLEU

Transformer 62M 1.0× 1.0× 34.4
DelighT 22.0M 2.8× 1.2× 34.3
Subformer 20.0M 3.1× - 34.1

LightFormer 15.3M 4.1× 1.8× 34.3
w/o SVD WT 15.3M 4.1× 1.8× 33.9

Table 3: Results on WMT’16 En-Ro. Compared
to Transformer and light-weight Transformers (Mehta
et al., 2020; Reid et al., 2021)

and remove 10 % of the fastest and slowest results,
and average the rest 80 % results. We test the speed
on 1 core Intel Xeon E5-2678 v3 @ 2.50GHz CPU.
We evaluate the inference speed with the batch size
of 1 to simulate the inference of edge devices.

4.4 Experimental Results

In Table 2 and 3, we first compare the results be-
tween our method with previous light-weight Trans-
formers (Wang et al., 2020a; Wu et al.; Mehta et al.,

Model Params. R-1 R-2 R-L

Transformer 51.28M 37.5 18.9 34.7
LightFormer 13.04M 37.5 19.2 35.0
w/o SVD WT 13.04M 37.1 18.7 34.7

Table 4: Results on GigaWord. R is short for ROUGE.

2020) in the setting of Transformer Base (Vaswani
et al., 2017) on IWSLT’14 De-En, WMT16’ En-Ro,
and WMT14’ En-De tasks. Under the similar or
even better performance, LightFormer compresses
Transformer 2.9 ∼ 4.4× parameters, and acceler-
ates Transformer 1.5 ∼ 2.3× on Intel CPU, which
generally outperforms recent light-weight Trans-
formers in compression ratio, inference speed, and
performance.

Table 4 and Table 5 show the experimental re-
sults of text classification and text summarization
tasks. As shown in Table 4, LightFormer achieves
comparable performance to the baseline Trans-
former, while the number of parameters is only

10328

Model Params. CR MR SUBJ MPQA Average

Transformer 12.8M 86.2 80.1 95.4 90.0 87.93
LightFormer 0.5M 87.3 80.6 95.4 90.1 88.35
w/o SVD WT 0.5M 86.5 80.3 95.1 89.7 87.90

Table 5: Experimental results (Accuracy) on text classification.

0 5000 10000 15000 20000
steps

4

6

8

10

12

Lo
ss

WMT'16 En-Ro Train
Transformer
Random Initialization
SVD Weight Transfer

0 5000 10000 15000 20000
steps

5

6

7

8

9

10

11

WMT'16 En-Ro Valid
Transformer
Random Initialization
SVD Weight Transfer

0 10000 20000 30000 40000
steps

4

5

6

7

8

9

10
IWSLT'14 De-En Train

Transformer
Random Initialization
SVD Weight Transfer

0 10000 20000 30000 40000
steps

4

5

6

7

8

9
IWSLT'14 De-En Valid

Transformer
Random Initialization
SVD Weight Transfer

Figure 4: Loss on the training and valid sets of WMT’16 En-Ro and IWSLT’14 De-En, by applying SVD-based
Weight Transfering and random initialization for low-rank factorization.

about 1/4 of the baseline model. On text classifi-
cation datasets, LightFormer outperforms Trans-
former by 0.5 higher average accuracy, while the
parameters are only 0.5M.

To further verify the effectiveness of our method,
we compare our LightFormer with Transformer,
LMF Transformer, and other lightweight Trans-
formers on different model scales on IWSLT’14
De-En, WMT’16 En-Ro, and WMT’14 En-De. As
shown in Table 3, LightFormer is consistently bet-
ter than LMF Transformer and recent light-weight
Transformers, which shows that our method can
effectively alleviate the low-rank bottleneck prob-
lem.

Furthermore, compared to the LMF Transformer
with randomly initialized weights, our method con-
verges faster during training and has a even lower
loss on De-En, En-Ro, and En-De train and valid
datasets, as shown in Figure 4. This shows that us-
ing the parameter knowledge of the teacher model
can indeed improve the convergence speed of the
LMF Transformer model and improve the perfor-
mance of the model, which also demonstrates the
effectiveness of our proposed SVD-based weight
transfer method.

4.5 Ablation Study

Ablation on methods. In Table 6, we show the ab-
lation study of how the vanilla Transformer evolve
into our LightFormer and evaluate the impact of

low-rank matrix factorization and weight sharing.
Weight sharing (r3) can reduce model parameters
while maintaining model performance compared
to the baseline Transformer (r1,r2). Using low-
rank matrix factorization (r4) can greatly reduce
parameters while model performance drops a little.
The performance of low-rank factorization with
weight sharing (r5) is better than only matrix fac-
torization (r4). Based on the low-rank factorization
model with weight sharing, the SVD-based param-
eter transfer method (r6) can further improve the
performance of the model and achieve a similar
performance to the original Transformer.

Model E-D Params. BLEU

r1
Transformer

6-6 36.8M 34.5
r2 18-3 52.5M 34.8

r3 + Weight Sharing 18-3 33.6M 34.6

r4 + LMF 18-3 14.6M 33.9

r5 + LMF & WS 18-3 7.7M 34.0

r6 LightFormer 18-3 7.7M 34.6

Table 6: Ablation on IWSLT’14 De-En. r3: Compress-
ing Transformer with weight sharing. r4: Low-rank
matrix factorization for Transformer. r5: Low-rank fac-
torization combined with weight sharing. On the basis
of r5, combine the SVD-based parameter initialization
to get our LightFormer (r6).

10329

Ablation on Deep to Shallow Setting. In previ-
ous experiments, we adopt 18 encoder layers and 3
decoder layers besides the 6-6 setting. As shown in
Table 7, we assign different encoder and decoder
layers settings to the experiment on IWSLT’14
De-En. According to the experimental results, we
found that the 18-3 mode is a better trade-off be-
tween compression ratio and model performance.
The deep and shallow setting has a speed advantage
over the original 6-6 setting.

Model E-D Params. Speed BLEU
Transformer 6-6 36.8M 1.0× 34.5

LightFormer

6-6 7.7M 1.3× 34.5
18-3 7.7M 2.1× 34.6
18-2 6.7M 2.4× 34.2
18-1 5.8M 3.0× 33.6
12-3 7.7M 2.0× 34.4
12-2 6.7M 2.5× 34.1
24-3 7.7M 1.8× 34.6

Table 7: Ablation on deep to shallow setting on
IWSLT’14 De-En. E-D: the numbers of encoder (E)
and decoder (D).

Ablation on Weight Shared Groups. For
weight sharing, the number of independent lay-
ers (shared groups) is an important hyperparameter.
In Table 8, we perform ablation experiments on
IWSLT’14 De-En with different group numbers
of weight sharing. According to the experimental
results, we can see that 6 independent layers of
LightFormer 18-3 is a good setting on De-En.

Model Groups Params. BLEU

LightFormer 6-6
3 6.9M 34.4
2 6.4M 34.2
1 5.8M 34.2

LightFormer 18-3

9 9.4M 34.7
6 7.7M 34.6
3 5.9M 34.1
1 4.8M 34.0

Table 8: Ablation on shared groups of weight sharing
on IWSLT’14 De-En. Groups mean the number of inde-
pendent layers.

5 Related work

Generally, model compression methods mainly in-
clude low-rank factorization (Thakker et al., 2020;

Hsu et al., 2022), parameter sharing (Lan et al.,
2019; Reid et al., 2021; Dehghani et al.), knowl-
edge distillation (Sun et al., 2019; Wang et al.,
2020b; Jiao et al., 2020), pruning (Cui et al., 2019;
Hou et al., 2020), and quantization (Zafrir et al.,
2019; Dettmers et al., 2022). In this paper, our fo-
cus is on low-rank factorization and wight sharing.

Low-rank factorization is a widely used tech-
nique in model compression (Kuchaiev and Gins-
burg, 2017; Lan et al., 2019). The goal of low-rank
matrix factorization is to decompose a large matrix
into two small matrices of low rank. Therefore, the
parameters and calculations of the model will be
reduced. However, there is a low-rank bottleneck
problem in low-rank matrix factorization.

Weight sharing. Dabre and Fujita (2019) shares
the weights across all Transformer layers for ma-
chine translation with a small performance drop.
Universal Transformer (Dehghani et al.) shares the
weights across all layers, allowing for recurrent
computation with a dynamic halting mechanism.
ALBERT (Lan et al., 2019) uses weight sharing to
reduce the parameters of BERT. Although weight
sharing can greatly reduce the number of model
parameters, it cannot improve the inference speed
of the model.

6 Conclusion

In this paper, we propose a lightweight Transformer
(LightFormer) based on SVD weight Transfer and
parameter sharing, which can guarantee the perfor-
mance of the model but with fewer operations and
parameters. Compared with the randomly initial-
ized low-rank matrix factorization, our method can
effectively alleviate the low-rank bottleneck prob-
lem and speed up the convergence of the model. We
validate our method on three machine translation
tasks. Experimental results show that our method is
consistently better than recent light-weight Trans-
formers.

Limitations

Our experiments are mainly on traditional datasets
and do not fully demonstrate the effectiveness of
the method in end-to-end scenarios. In order to
solve the low-rank bottleneck problem, this paper
proposes a method of SVD weight transfer, but
this method is limited to matrix factorization and
does not apply this method to more general low-
rank factorization, such as tensor factorization. We
leave it as future work.

10330

Acknowledgements

This work is supported in part by the Natural Sci-
ence Foundation of China (grant No.62276188 and
No.61876129), TJU-Wenge joint laboratory fund-
ing, and MindSpore.

References
Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei

Zhang. 2019. Fine-tune bert with sparse self-
attention mechanism. In EMNLP.

Raj Dabre and Atsushi Fujita. 2019. Recurrent stack-
ing of layers for compact neural machine translation
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6292–6299.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. Universal trans-
formers. In International Conference on Learning
Representations.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2022. 8-bit optimizers via block-wise
quantization. ArXiv, abs/2110.02861.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

Yunchao Gong, L. Liu, Ming Yang, and Lubomir D.
Bourdev. 2014. Compressing deep convolu-
tional networks using vector quantization. ArXiv,
abs/1412.6115.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7).

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, and
Qun Liu. 2020. Dynabert: Dynamic bert with adap-
tive width and depth. ArXiv, abs/2004.04037.

Yen-Chang Hsu, Ting Hua, Sung-En Chang, Qiang Lou,
Yilin Shen, and Hongxia Jin. 2022. Language model
compression with weighted low-rank factorization.
ArXiv, abs/2207.00112.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. ArXiv, abs/1909.10351.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2021. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In International Conference on Learning
Representations.

Oleksii Kuchaiev and Boris Ginsburg. 2017. Factor-
ization tricks for lstm networks. arXiv preprint
arXiv:1703.10722.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao,
Chunliang Zhang, and Jingbo Zhu. 2020. Learn-
ing light-weight translation models from deep trans-
former. arXiv preprint arXiv:2012.13866.

Yanyang Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021.
An efficient transformer decoder with compressed
sub-layers. arXiv preprint arXiv:2101.00542.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du,
Tong Xiao, and Jingbo Zhu. 2021. Weight distilla-
tion: Transferring the knowledge in neural network
parameters. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2076–2088, Online. Association for Computa-
tional Linguistics.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5747–5763.

Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2020.
Delight: Very deep and light-weight transformer.

Matan Ben Noach and Yoav Goldberg. 2020. Compress-
ing pre-trained language models by matrix decompo-
sition. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
884–889.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. arXiv preprint cs/0409058.

10331

https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://openreview.net/forum?id=KpfasTaLUpq
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.463

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
arXiv preprint arXiv:2101.00234.

Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani,
Ebru Arisoy, and Bhuvana Ramabhadran. 2013. Low-
rank matrix factorization for deep neural network
training with high-dimensional output targets. 2013
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 6655–6659.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725. Association for Compu-
tational Linguistics.

S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In EMNLP.

Sho Takase and Shun Kiyono. 2021. Lessons on pa-
rameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022.

Urmish Thakker, Jesse Beu, Dibakar Gope, Ganesh
Dasika, and Matthew Mattina. 2020. Rank and run-
time aware compression of nlp applications. arXiv
preprint arXiv:2010.03193.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020a. Hat:
Hardware-aware transformers for efficient natural lan-
guage processing. arXiv preprint arXiv:2005.14187.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. ArXiv, abs/2002.10957.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language resources and evaluation,
39(2):165–210.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. Lite transformer with long-short range attention.
In International Conference on Learning Representa-
tions.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. 2019
Fifth Workshop on Energy Efficient Machine Learn-
ing and Cognitive Computing - NeurIPS Edition
(EMC2-NIPS), pages 36–39.

10332

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

A Experiment on Raspberry Pi

In this section, we conducted our experiments on
the end-side device (Raspberry Pi) to verify the
effectiveness of our method. We compare Light-
Former with Transformer on three machine transla-
tion datasets.

Dataset Model Params S(Pi) BLEU

De-En
Transformer 36.8M 1.0× 34.5 / 33.4
LightFormer 7.7M 2.5× 34.6 / 33.6

En-De
Transformer 63.2M 1.0× 27.3 / 26.3
LightFormer 22.5M 1.4× 27.1 / 26.2

En-Ro
Transformer 62.0M 1.0× 34.4 / 33.5
LightFormer 15.3M 1.9× 34.3 / 33.6

Table 9: Comparisons of parameters, inference speedup,
and BLEU (Tokenized BLEU / SacreBLEU) for Trans-
former and LightFormer. S(Pi): the inference speedup
of Raspberry Pi ARM CPU.

As shown in Table 9, our method has achieved
significant compression performance on three
datasets. Achieving similar BLEU scores on three
tasks, LightFormer can compress the Transformer
parameters 2.8 ∼ 4.8×, and speedup it 1.4 ∼
2.5× on Raspberry Pi ARM CPU. Therefore, our
proposed LightFormer is an end-to-side friendly
lightweight Transformer model.

B Low-rank factorization Based on SVD
Parameter Initialization

The previous low-rank factorization methods ap-
plied to model compression can be mainly divided
into two categories, one is random initialization
of parameters, and then optimizes through down-
stream tasks to update parameters; the other is to
decompose and compress trained network parame-
ters using SVD (Hsu et al., 2022).

Different from the above methods, the method
proposed in this paper can effectively utilize the
trained parameter knowledge. We first train a net-
work model with a deep architecture as the baseline
model and then perform SVD on the trained model
to obtain a low-rank matrix as the initial value of
the low-rank network parameters. Finally, the low-
rank factorization network is trained to converge
in a downstream task. SVD parameter transfer is
essentially an initialization method for low-rank
factorization.

C Experiment Details

Setting of SVD rank: The rank in the singular
value factorization determines the ratio of retaining
the original network weight information. The larger
the rank, the more original weight information is
retained, and the model performance is better.

Suppose the dimensions of the input and output
of the fully connected layer are m and n respec-
tively, we reserve the largest k singular values for
matrix compression, where k < m,n, and the pa-
rameter compression ratio is p, then the rank k of
SVD should satisfy the following formula:

p =
mn

(m+ n)k

k =

⌊
mn

p(m+ n)

⌋
; k ∈ Z+

(12)

Therefore, the selection of rank depends mainly
on the parameter compression rate. In this paper,
we set the rank based on the parameter compression
rate. Of course, the rank selection is also a valuable
research work, and our future work may involve
this aspect.

10333

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The last section.

�7 A2. Did you discuss any potential risks of your work?
The work of this paper is mainly to compress the Transformers model, which does not involve
potential risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
The Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

�3 B1. Did you cite the creators of artifacts you used?
Section 4.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
The code in this article is implemented based on an open source library, and the dataset is also open
source

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The dataset processing steps used in this paper are consistent with the baseline model, and are
mainly processed according to the data preprocessing of the baseline model.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10334

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
The experimental results in this paper are obtained by taking the average value of multiple experi-
ments.

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Because we follow the default hyperparameters of the baseline model

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
The paper does not involve human annotators.

�7 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
The dataset used in this paper is open source

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
The dataset used in this paper is open source

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
The dataset used in this paper is open source

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
The dataset used in this paper is open source

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
The dataset used in this paper is open source

10335

