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Abstract

Instruction tuning has been attracting much at-
tention to achieve generalization ability across
a wide variety of tasks. Although various types
of instructions have been manually created for
instruction tuning, it is still unclear what kind
of instruction is optimal to obtain cross-task
generalization ability. This work presents in-
struction optimization, which optimizes train-
ing instructions with respect to generalization
ability. Rather than manually tuning instruc-
tions, we introduce learnable instructions and
optimize them with gradient descent by leverag-
ing bilevel optimization. Experimental results
show that the learned instruction enhances the
diversity of instructions and improves the gen-
eralization ability compared to using only man-
ually created instructions.

1 Introduction

Recently, significant progress has been made in
developing models that can generalize to arbitrary
tasks by following natural language descriptions
(Brown et al., 2020; Ouyang et al., 2022). Instruc-
tion tuning has been a region of interest as a train-
ing technique to obtain such generalization ability
(Wei et al., 2022; Sanh et al., 2022; Mishra et al.,
2022). By finetuning pretrained language models
on a variety of tasks with their instructions, mod-
els can generalize to arbitrary tasks unseen dur-
ing training. Many previous studies witnessed the
effectiveness of instruction tuning (Chung et al.,
2022; Wang et al., 2022; Lampinen et al., 2022).

Various instructions have been created for in-
struction tuning, such as task name, task defini-
tion, positive/negative exemplars of a task, expla-
nations of why each positive/negative exemplar
is correct/incorrect, etc. However, Mishra et al.
(2022); Wang et al. (2022) showed that the defini-
tion and positive exemplars of tasks are sufficient
for instruction tuning, and the effect of adding other
types of instruction is negligible or sometimes has a
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Figure 1: Outline of (a) instruction tuning and (b) in-
struction optimization (ours).

negative impact on the generalization performance.
Seeking an optimal instruction for cross-task gen-
eralization is an important issue for instruction tun-
ing, while it requires much human effort (100+
researchers have participated in previous studies).
Furthermore, human-interpretable instructions are
not necessarily optimal for obtaining cross-task
generalization ability.

Against this background, we propose instruction
optimization, which introduces learnable instruc-
tions and optimizes them w.r.t. the cross-task gen-
eralization ability. As shown in Figure 1, a model
θ is optimized to maximize the performance on
meta-train tasks following learnable instructions.
By contrast, learnable instructions ϕ are trained to
maximize the meta-test performance of the trained
model θ∗(ϕ). This optimization is called bilevel
optimization and is frequently used in hyperpa-
rameter optimization (Franceschi et al., 2017; Lor-
raine et al., 2020), meta-learning (Finn et al., 2017;
Franceschi et al., 2018), and neural architecture
search (Liu et al., 2018; Zhang et al., 2021). We re-
gard training instructions as a special type of hyper-
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parameter and optimize them with gradient descent
by relaxing the search space to be continuous.

To create learnable instructions, we propose two
methods: instruction embedder, which generates
the embeddings of instructions, and instruction ex-
tractor, which selects an optimal task exemplar. Re-
cently, prompt engineering has drawn attention to
seek the optimal prompt to achieve a task (Liu et al.,
2022b). Some work studies continuous prompts
that perform prompting in the embedding space of
tokens (Li and Liang, 2021; Lester et al., 2021),
whereas others retrieve optimal exemplars as a
testing prompt for in-context learning (Liu et al.,
2022a; Rubin et al., 2022). Our instruction embed-
der and instruction extractor follow the idea of con-
tinuous prompts and prompt retrievers, respectively.
Whereas previous work optimizes prompts to solve
an individual task on the test, our study differs in
the target and aim of optimization. We optimize
the training prompts to maximize the cross-task
generalization ability of the trained model.

In the experiment, we confirmed that the instruc-
tion extractor successfully extracted appropriate
instruction, providing proof of concept. Regard-
ing the comparison with instruction tuning, the
instruction embedder enhances the diversity of in-
structions and improves the generalization ability
compared to using only manually created instruc-
tions. In contrast, the instruction extractor does not
contributes to the performance gain, which shows
that using the same task exemplar across instances
is unexpectedly preferable for cross-task general-
ization. This study provides a basis for exploring
the optimal instructions for instruction tuning.

2 Preliminaries

Instruction tuning trains a model θ to minimize the
training loss defined in Eq. (1):

θ∗=argmin
θ
L(θ)

=argmin
θ

∑

t∈Ttrain

Nt∑

i=1

−log pθ(y(i)
t |[It;X

(i)
t ])

(1)

where X(i)
t and It denote the embedding matrix of

the i-th input and instruction of the task t, respec-
tively. y(i)

t is a sequence of tokens that represents
a class label or reference text. Instruction tuning
regards all tasks as the conditional text generation
given the concatenation of the instruction and task

input [It;Xt]. By prepending the instruction to the
task input, the trained model θ∗ can generalize to a
variety of unseen tasks t /∈ Ttrain.

The optimal training instructions have been
sought by manually creating various types of in-
struction for instruction tuning (Mishra et al., 2022;
Wei et al., 2022; Sanh et al., 2022). However,
Mishra et al. (2022); Wang et al. (2022) showed
that task definition and task exemplars are sufficient
for instruction tuning, while adding other types of
instruction is negligible or sometimes negatively
affects the generalization performance. This ob-
servation motivates us to automatically optimize
training instructions, rather than manually tuning
them. We introduce learnable instructions and op-
timize them with gradient descent by leveraging
bilevel optimization. The next section provides the
details of instruction optimization.

3 Instruction Optimization

Instruction optimization splits training tasks Ttrain
into two sets: meta-train tasks Tmeta−train and
meta-test tasks Tmeta−test. Subsequently, a model
θ is trained to minimize the inner loss on meta-train
tasks following learnable instructions Iϕ in Eq. (2).

θ∗(ϕ) = argmin
θ
Lin(θ,ϕ)

=argmin
θ

∑

t∈Tmeta−train

Nt∑

i=1

−log pθ(y(i)
t |[Iϕ;X

(i)
t ])

(2)

where ϕ is a parameter for learnable instructions.
Iϕ is constructed using an instruction embedder
(Section 3.1) or an instruction extractor (Section
3.2), which will be explained later.

If the learnable instruction Iϕ is randomly cre-
ated, the trained model θ∗(ϕ) performs poorly
on unseen tasks. Therefore, we optimize ϕ such
that the trained model θ∗(ϕ) achieves high perfor-
mance on meta-test tasks, which are not shown
during training. ϕ is updated to minimize the outer
loss in Eq. (3).

ϕ∗ = argmin
ϕ
Lout(θ∗(ϕ))

=argmin
ϕ

∑

t∈Tmeta−test

Nt∑

i=1

−log pθ∗(y
(i)
t |[It;X

(i)
t ])

(3)

This optimization is called bilevel optimization and
is commonly used in hyperparameter optimization.
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Figure 2: Outline of instruction embedder and instruction extractor. Instruction tuning uses a manually created
instruction or randomly selected exemplar as training instruction. In contrast, instruction embedder introduces the
learnable embeddings of instruction, while instruction extractor selects an optimal exemplar as training instruction.

Note that we use the manually created instruction
It to measure the meta-test performance because
we aim to develop a model that can accept arbitrary
human-created instructions.

3.1 Instruction Embedder

This section presents a method for creating learn-
able instructions Iϕ. As shown in Figure 2 (left),
the instruction embedder replaces manually created
instructions with the embeddings of learnable in-
structions or prepends them to manually created
instructions. We consider the following two types
of parameterizations of learnable instructions:

Direct Parameterization (DP) We parameterize
the learnable instruction Iϕ by preparing a learn-
able matrix for each task: Iϕ = Wt ∈ Rl×d where
l denotes the arbitrary length of a learnable instruc-
tion, and d is the dimension of the embeddings in
the model θ. Although this parameterization is very
simple, the size of the parameter ϕ (|Ttrain|×l×d)
increases when many training tasks exist. More-
over, as each learnable matrix Wt is updated only
when task t is used for computing the meta-train
loss, the matrices are updated infrequently when
the number of training task is large. Therefore, we
propose another parameterization method that is
scalable for a large number of training tasks.

Instance Conversion (IC) Another parameteri-
zation method is to convert a task instance z(i)

t into
Iϕ as shown in Eq. (4) and (5).

h
(i)
t = avgpool(z

(i)
t Vϕ) (4)

Iϕ = Wϕh
(i)
t (5)

where the task instance z(i)
t is a sequence of tokens

defined as “Input: x(i)
t Output: y(i)

t ”, where x
(i)
t

and y
(i)
t represents the i-th input and output of a

task t, respectively. Vϕ∈Rv×d′ is an word embed-
ding matrix where v denotes the vocabulary size,
and avgpool denotes the average-pooling operation
across the embedded tokens. h(i)

t ∈Rd′ denotes a
latent representation of z(i)

t , and Wϕ∈Rl×d×d′ is
a learnable tensor to convert the latent representa-
tion into an instruction1. We assume that Vϕ and
Wϕ are optimized to generate an optimal instruc-
tion given a task instance. As the parameters are
shared across all training tasks, this parameteriza-
tion is scalable for a large number of training tasks.

3.2 Instruction Extractor

We consider another type of instruxction that has
multiple candidates to use. A task exemplar is
one example because every task instance j ∈
{1, . . . , Nt} in the training set can be used as a
task exemplar. While instruction tuning randomly
selects a task exemplar as instruction, an optimal
task exemplar would exist for cross-task general-
ization. We explore how to select the optimal task
exemplar that maximizes the performance on un-
seen tasks. An outline of the instruction extractor
is shown in Figure 2 (right).

We parameterize the probability pϕ(z
(j)
t ), where

the j-th instance is selected as an exemplar of task
t. Similar to the instruction embedder, we consider
the following two parameterizations:

1We attempted to use T5 encoder for obtaining h
(i)
t ; how-

ever, it makes bilevel optimization unstable due to a large
number of parameters.
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Direct Parameterization (DP) We parameterize
the logits of pϕ(z

(j)
t ) by using a learnable vector

vt ∈ RNt for each task t. The logits are converted
into probabilities using softmax function in Eq. (6).

pϕ(z
(j)
t ) =

exp(v
(j)
t )

∑Nt
j=1 exp(v

(j)
t )

(6)

This parameterization is simple but not scalable
when the number of training tasks is large.

Instance Conversion (IC) While direct parame-
terization parameterizes pϕ(z

(j)
t ) regardless of the

task instance (i.e., task input and output), instance
conversion considers the conditional probability
given a task instance. Specifically, instance con-
version parameterizes the probability where z

(j)
t is

selected as the exemplar of instance z(i)
t in Eq. (7).

pϕ(z
(j)
t |z

(i)
t ) =

exp(h
(j)
t Wϕh

(i)
t )

∑Nt
j=1 exp(h

(j)
t Wϕh

(i)
t )

(7)

where Wϕ ∈ Rd′×d′ denotes a learnable matrix,
and h

(j)
t ∈Rd′ is a latent representation of the task

instance z
(j)
t obtained by Eq. (4). This parameter-

ization assumes that Vϕ and Wϕ are optimized to
select an optimal exemplar given a task instance.
As the parameters ϕ are shared across all training
tasks, this parameterization is also scalable for a
large number of training tasks.

Subsequently, an instance with the highest prob-
ability is extracted as an instruction as shown in Eq.
(8) and (9).

zt = argmax
j

pϕ(z
(j)
t ) (8)

Iϕ = ztVθ (9)

where Vθ ∈Rv×d is the word embedding matrix
of the model θ. Since argmax operation is not dif-
ferentiable, we use the straight-through estimator
(Bengio et al., 2013) to approximate the gradient in
the backward pass2. As computing the probability
of all instances requires a high computational cost
when the number of instances is significant, we set
a constant value as Nt=N and randomly sampled
N instances from all training instances.

2We also tried to compute Iϕ using the expectation of z(j)
t :

Iϕ=Epϕ [z
(j)
t Vθ] instead of argmax operation; however, it

significantly underperforms.

Algorithm 1 Bilevel Optimization
while not converged do

for k = 1, . . . ,K do
θ(k) ← θ(k−1) − η ∇θLin(θ,ϕ)|θ=θ(k−1)

end for
ϕ← ϕ− η∇ϕLout(θ(K))

end while

3.3 Efficiently Solving Bilevel Optimization

Directly solving bilevel optimization requires a sub-
stantial computational cost because it includes a
nested formulation. As shown in Alg. 1, approx-
imating the inner optimization in Eq. (2) by K-
gradient steps significantly reduces the computa-
tional cost, where K is large enough to reach the
optimal points of the inner-loop (Franceschi et al.,
2017; Shaban et al., 2019).

Computing the hypergradient ∇ϕLout(θ(K))
still requires large memory space O(K|θ|+ |ϕ|)
as it needs to store K-step gradients (Franceschi
et al., 2017), and the language model θ contains
a lot of parameters. Using the implicit function
theorem in Eq. (10) and (11), the hypergradient
can be computed without storing the intermediate
gradients (Bengio, 2000; Lorraine et al., 2020).

∇ϕLout(θ(K)(ϕ))=
∂Lout(θ(K))

∂θ(K)

∂θ(K)(ϕ)

∂ϕ

(10)

∂θ(K)(ϕ)

∂ϕ
=−

[∂Lin(θ,ϕ)
∂θ∂θ

]−1∂Lin(θ,ϕ)
∂θ∂ϕ

∣∣∣∣
θ(K),ϕ

(11)

However, it is impractical to compute the in-
verse of the Hessian matrix in Eq. (11) as exactly
inverting Hessian often requires O(|θ|3) compu-
tational cost. We thus approximate the inverse-
Hessian using the Neumann approximation, which
is introduced in the hyperparameter optimization
(Lorraine et al., 2020; Zhang et al., 2021). The
inverse of the Hessian matrix can be approximated
as shown in Eq. (12).

[∂Lin(θ,ϕ)

∂θ∂θ

]−1
= lim

M→∞
γ

M∑

m=0

[
E−γ

∂Lin(θ,ϕ)

∂θ∂θ

]m
(12)

where E denotes an identity matrix. γ ∈ R is suffi-
ciently small to satisfy ∥E−γ ∂Lin(θ,ϕ)

∂θ∂θ ∥ < 1 in the
operator norm. Consequently, the computational
cost of the hypergradient considerably decreases to
O(|θ|+|ϕ|) as shown in Lorraine et al. (2020).
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Figure 3: Left: ROUGE-L on test tasks where a task exemplar is used as testing instruction, while training instruction
is varied as above. Right: the percentage of training instances where a task exemplar is used as training instruction.

Split Meta-
train

Meta-
test

Valid Test

# of tasks 715 42 757 119
# of task types 50 10 60 12
# of instances/task 100 100 10 100

Table 1: Statistics of the dataset.

4 Experiments

4.1 Experimental Setup3

Dataset In this experiment, we used SUPER-
NATURALINSTRUCTIONS (SUP-NATINST; Wang
et al., 2022) as a benchmark to measure cross-task
generalization. SUP-NATINST consists of over
1,600 diverse tasks and their instructions across
multiple languages. We used English tasks and
their instructions, resulting in 876 tasks in total.

We used the same test split of tasks (12 types;
119 tasks) and 100 instances for each task as Wang
et al. (2022). The remaining 60 task types (757
tasks) were used for meta-train, meta-test, and
validation. The validation set consisted of 10 in-
stances across all 757 tasks, which were used to de-
termine hyperparameters including meta-train/test
split. Based on the validation performance, we split
the 60 task types into 50 and 10 types, which were
used for the meta-train and meta-test set, respec-
tively. We used 100 instances of each task for the
meta-train/test set. Table 1 summarizes the statis-
tics for each split. The task types in each split are
listed in Appendix A.1.

Evaluation & Baselines We assessed the cross-
task generalization in two settings: a zero-shot set-
ting that uses task definition as testing instruction,

3The code is available at https://github.com/
misonuma/instopt.

and a one-shot setting that uses a task exemplar
(n=1) as testing instruction. We adopted ROUGE-L
(Lin, 2004) to evaluate all tasks. Wang et al. (2022)
shows that the human evaluation results align quite
well with ROUGE-L across a variety of tasks.

For baseline training instructions, we used man-
ually created instructions (e.g., task definition), ex-
emplars randomly selected for each task or each
instance. Learnable instructions induced by the in-
struction embedder or optimal exemplars selected
by the instruction extractor were compared.

Implementation Details In our experiment, we
used pretrained T5 (Raffel et al., 2020) as the model
θ. Specifically, we use the LM-adapted version
of the original T5-base (220M)4, which is further
trained with a language modeling objective (Lester
et al., 2021). The hyperparameters of model θ
were tuned based on the validation performance of
instruction tuning (baselines), and the same hyper-
parameters were used for instruction optimization.
The hyperparemters of learnable instructions ϕ
were determined w.r.t. the validation performance
of instruction optimization. Further details are pro-
vided in Appendix A.2.

4.2 Proof of Concept

Before moving on to the comparison with instruc-
tion tuning, we show that our instruction extractor
successfully optimizes the training instruction. We
trained models with two types of training instruc-
tions: one of which is a task exemplar, and the other
is a blank text. Then, we evaluated them on the test
set, where a task exemplar is used as the testing
instruction. As shown in Figure 3 (left), the model

4https://huggingface.co/google/
t5-base-lm-adapt
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Training Instruction ROUGE-L

Def. 33.82 ± 0.47
Def. + Pos. 27.74 ± 0.41
Def. + Pos. + Neg. 27.91 ± 0.66
Def. + Pos. + Neg. + Expl. 29.07 ± 0.31

Instruction Embedder (DP) 11.79 ± 0.27
Instruction Embedder (IC) 11.99 ± 0.22
Def. + Instruction Embedder (DP) 34.79 ± 0.33
Def. + Instruction Embedder (IC) 34.97 ± 0.46

Table 2: Zero-shot evaluation where task definition is
used as testing instruction, while training instruction
is varied as above. Def.: task definition; Pos.: posi-
tive exemplar (n=1), Neg.: negative exemplar (n=1);
Expl.: explanation why each positive/negative exemplar
is correct/incorrect. DP and IC represents direct param-
eterization and instance conversion, respectively.

trained with a task exemplar achieves nearly 40%
ROUGE-L (black), whereas the model trained with
blank text significantly declines to approximately
20% ROUGE-L (gray).

Following these preliminary results, we verified
that our instruction extractor appropriately selects
a task exemplar from the two training instructions
and obtains sufficient generalization ability. Fig-
ure 3 (left) shows that our instruction extractor
achieves competitive performance with the model
trained with a task exemplar. Specifically, the in-
stance conversion (IC; blue) converges faster than
the direct parameterization (DP; light blue). Fig-
ure 3 (right) presents the percentage of training
instances where a task exemplar is selected as the
training instruction. Regarding the DP, the per-
centage increases smoothly, whereas it saturates at
approximately 50%. In contrast, the IC reaches al-
most 100%, though the increase is slightly unstable.
These results indicate that our instruction extrac-
tor successfully selects an appropriate training in-
struction. Note that the training time of instruction
optimization is reasonable compared to instruction
tuning, as shown in Appendix A.3.

4.3 Main Results

Here, we examine the effectiveness of instruction
optimization by comparing it with the baselines. In
Table 2 and 3, we show the average performance
across 8 different random seeds and 95% confi-
dence intervals w.r.t. the t-distribution.

Table 2 shows the average ROUGE-L across
all test tasks where the task definition is used as
the testing instruction, while varying the training
instruction. As the baseline of training instruc-

Training Instruction ROUGE-L

Random Exemplar (each task) 39.59 ± 0.14
Random Exemplar (each instance) 37.19 ± 0.25

Instruction Extractor (DP) 37.85 ± 0.67
Instruction Extractor (IC) 37.15 ± 0.52

Table 3: One-shot evaluation where a task exemplar is
used as testing instruction while training instruction is
varied as above. Random Exemplar denotes exemplars
randomly selected for each task or each instance (n=1).
DP and IC represents direct parameterization and in-
stance conversion, respectively.

tions, we used manually created task definitions
concatenated with positive/negative exemplars and
explanations about each positive/negative exemplar.
When using only learnable instructions generated
by the instruction embedder, the performance is
considerably worse than that of baselines. This
underperformance suggests that the learned instruc-
tions cannot alternate with manually created in-
structions. However, concatenating learnable in-
struction with task definition leads to performance
gain, whereas prepending other instructions (pos-
itive/negative exemplars and explanations) has a
negative effect. As will be elaborated in Section
5.1, adding learnable instructions improves the di-
versity of instructions and achieves higher general-
ization performance.

In Table 3, we show the results where a task
exemplar is used as the testing instruction. Unfor-
tunately, our instruction extractor underperforms
exemplars randomly selected for each task (i.e.,
the same exemplar is used for each instance). To
investigate the reason for the worse performance,
we added another baseline, which randomly selects
an exemplar for each instance (i.e., different exem-
plars are used for each instance). Unexpectedly,
the random exemplars yield considerably worse
ROUGE-L when they are selected for each instance.
This result indicates that using the same exemplar
across all instances of each task is preferable for
cross-task generalization. As the instruction ex-
tractor (DP and IC) updates the optimal exemplar
during the optimization, it performs worse than
exemplars randomly selected for each task. In par-
ticular, as IC varies the optimal exemplar for each
instance, it results in a lower performance.

The evaluation results of each test task type are
shown in Appendix A.4.
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Figure 4: Embeddings of the instructions in the meta-train set. Left: task definition; Right: learned instruction
concatenated with task definition. Each point represents a task, while each color denotes the task type.

5 Discussion

5.1 Analysis of Learned Instruction

We discuss how the learned instruction contributes
to the improvement of cross-task generalization.

As the instruction embedder directly generates
instruction embeddings in a continuous space, the
learned instruction is difficult to interpret. Follow-
ing Lester et al. (2021), we computed the nearest
neighbors of each token in the learned instruction
from the vocabulary of the model θ; however, we
could not find explicit patterns for the nearest to-
kens. Therefore, we computed the embeddings
of the learned instructions and visuzalized them
at a two-dimensional space using t-SNE (Van der
Maaten and Hinton, 2008). The embeddings were
obtained by the average pooling across the last hid-
den states encoded by the T5 encoder.

In Figure 4, we show the embeddings of top 20
task types with respect to the number of tasks in
the meta-train set. The embeddings of the task def-
inition (left) are closely clustered by the task type,
and training tasks do not cover some spaces. On
the other hand, the embeddings of learned instruc-
tions (right) are roughly clustered, and some task
types are scattered over the embedding space (e.g.,
sentiment analysis and toxic language detection).
As learned instructions enhance the diversity of in-
structions and cover a broader embedding space,
the trained model can generalize to wider variety
of instructions. Thus, learned instructions improve
the generalization performance on unseen tasks.

Figure 5 shows the generalization performance
concerning the length of the learnable instruction
prepended to the task definition. The model’s per-
formance saturates when the length is 26 = 64.
When the instruction is longer than 64, the perfor-

R
O

U
G

E-
L

Length of learnable instructions

Figure 5: ROUGE-L on the test set where the length of
learnable instructions is varied.

mance declines significantly. As bilevel optimiza-
tion tends to be unstable for large-scale hyperpa-
rameters, a large instruction length leads to low
generalization performance.

5.2 Analysis of Meta-train/test Split

We study how meta-train/test split affects the gen-
eralization performance of the trained model.

Number of Meta-train/test Tasks Figure 6
shows the performance with different numbers of
task types in the meta-train/test split: 1/59, 10/50,
20/40, 30/30, 40/20, 50/10, and 59/1. In each split,
meta-train/test tasks were randomly chosen. The
trained model achieves the best generalization per-
formance when the number of categories in the
meta-test is 10. The performance worsens as the
number of meta-test tasks increases, while the num-
ber of meta-train tasks decreases correspondingly.

Diverse vs. Not Diverse We examine whether
meta-test tasks should be diverse or not diverse.
If meta-test tasks are diverse, the generalization
performance would be improved because the in-
struction is trained to achieve higher performance
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Figure 6: ROUGE-L on the test set w.r.t. the number of
task types in the meta-test set.

on various tasks. However, it also increases the risk
that some of meta-test tasks are similar to meta-
train tasks, which would negatively affect the per-
formance on unseen tasks. It is not obvious whether
meta-test tasks should be diverse or not diverse.

To answer this question, we prepared two types
of meta-test splits. One comprises randomly se-
lected tasks, whereas the other consists of tasks that
are grouped by k-means clustering. We prepared
16 different random splits, while k-means divided
the tasks into 16 groups based on the embeddings
of the task definition. Then, for both random split
and k-means, the best split for the validation set
was chosen from the 16 splits. Experimental re-
sults show that model trained on the random split
achieves 36.1 ROUGE-L, while that of k-means
scores 35.0 ROUGE-L on the test set. Although the
margin is not significant, we confirmed that diverse
meta-test tasks are more preferable for cross-task
generalization.

6 Related Work

Instruction Tuning Instruction tuning has at-
tracted considerable attention to achieve models
that are generalizable across a variety of tasks (Wei
et al., 2022; Sanh et al., 2022; Mishra et al., 2022).
By prepending either a few exemplars (Min et al.,
2022b; Chen et al., 2022) or text-based instructions
(Wei et al., 2022; Sanh et al., 2022; Mishra et al.,
2022) to multi-task learning, the trained model can
generalize to tasks unseen during training. Further
progress has been made by scaling the number of
tasks (Wang et al., 2022; Chung et al., 2022), scal-
ing the model size (Chung et al., 2022; Scao et al.,
2022), and improving the training strategy (Lang
et al., 2022; Min et al., 2022a; Ye et al., 2023). In
contrast, our work is the first study to optimize
training instructions to improve the cross-task gen-

eralization ability.
Although SUPER-NATURALINSTRUCTIONS

(Wang et al., 2022) is used as the benchmark for
measuring cross-task generalization in our study,
our instruction optimization can be applied to other
cross-task benchmarks, such as CROSSFIT (Ye
et al., 2021) and PromptSource (Bach et al., 2022).

Prompt Engineering Recent instruction-based
NLP has evolved prompt engineering, which seeks
the most appropriate prompt to achieve a task (Liu
et al., 2022b). While there are numerous studies
to search for an optimal prompt in a discrete token
space (Shin et al., 2020; Schick and Schütze, 2021;
Gao et al., 2021), some work studies continuous
prompts that perform prompting in the embedding
space of tokens (Li and Liang, 2021; Lester et al.,
2021; Qin and Eisner, 2021). Other studies retrieve
appropriate exemplars as a testing prompt for in-
context learning and achieve better performance
than randomly selected exemplars (Das et al., 2021;
Liu et al., 2022a; Rubin et al., 2022). Whereas
the aforementioned methods optimize prompts to
achieve an individual task in the test, our study
differs in the target and aim of optimization; we
optimize the training prompts to maximize the gen-
eralization performance of the trained model.

Bilevel Optimization Bilevel optimization has
been used to optimize hyperparameters (Franceschi
et al., 2017; Lorraine et al., 2020), initial model
weights (Finn et al., 2017; Franceschi et al., 2018),
and model architectures (Liu et al., 2018; Zhang
et al., 2021). We optimize the training instructions
by regarding them as a special type of hyperparam-
eters. Learnable instructions are constructed by
many hyperparameters, which makes bilevel opti-
mization difficult in terms of computational cost
and stability. Recent studies (Rajeswaran et al.,
2019; Lorraine et al., 2020; Zhang et al., 2021)
significantly reduce the computational cost and
improve the stability by combining the implicit
function theorem with efficient inverse Hessian ap-
proximations. We leverage this idea for instruction
optimization, achieving instruction optimization at
a reasonable computational cost and stability.

7 Conclusion

This study presents instruction optimization, which
optimizes training instructions concerning gener-
alization ability. The experimental results showed
that our instruction extractor successfully extracted
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appropriate instruction, providing proof of concept.
Regarding the comparison with instruction tuning,
the instruction embedder enhanced the diversity of
instructions and improved the generalization abil-
ity than using only manually created instructions.
In contrast, the instruction extractor did not con-
tribute to the performance gain because using the
same task exemplar across instances is unexpect-
edly preferable for cross-task generalization. This
study provides a basis for exploring the optimal
instructions for instruction tuning.

Limitations

Our study used T5-base (220M) due to the capacity
of our computational resources (Tesla V100 32GB).
Thus, it is unclear whether our method is also effec-
tive for larger models, such as T5-XL/XXL. Lester
et al. (2021) argues that continuous prompts are
particularly effective for large T5 models. Follow-
ing their results, our instruction embedder is also
expected to be effective for larger models.

As shown in Figure 3, instruction optimization is
slightly unstable to converge. Some studies tackled
the unstable convergence of bilevel optimization
by L2-normalization, early stopping (Zela et al.,
2019), or perturbation of hyperparameters (Chen
and Hsieh, 2020). These methods might be effec-
tive in stabilizing the instruction optimization.

Ethics Statement

Our study complies with the ACL Ethics Policy.
We used S2ORC (Lo et al., 2020, CC BY-NC 4.0),
PyTorch (Paszke et al., 2019, BSD-style license)
and HuggingFace Transformers (Wolf et al., 2020,
Apache-2.0) as scientific artifacts. Our study was
conducted under the licenses and terms of the sci-
entific artifacts. Our model is trained on a set of
publicly available datasets (Wang et al., 2022), in
which undesirable data distribution, such as disin-
formation, bias, or offensive content, might present.
Such potential risks need to be recognized.
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A Appendix

A.1 Task Split
The task types used in the meta-train/meta-test/test
split are listed in Table 4. We prepared 16 ran-
dom splits of meta-train/test and used the one that
achieved the best validation performance.

A.2 Implementation Details
We trained model θ for three epochs using Adam
(Kingma and Ba, 2014) with a learning rate of 1.0×
10−5 with linear decay, warmup steps of 8000, and
a batch size of 2. The maximum input and output
length were set to 1024 and 128, respectively.

Learnable instructions ϕ were trained using
Adam with a batch size of 8. The learning rate
was set to 1.0×10−5 for instruction embedder (DP),
1.0×10−6 for instruction embedder (IC), 5.0×10−5

for instruction extractor (DP), 1.0×10−5 for instruc-
tion extractor (IC) with linear decay. The length
of learnable instruction was l=64, the number of
inner optimization steps was K=20 in Alg. 1, the
hyperparameters for the Neumann approximation
were M =1 and γ=1.0×10−5 in Eq. (12). The
maximum input length in Eq. (4) was 128, and
we randomly sampled N = 32 instances for the
candidates of the instruction extractor.

Our code is implemented with Python v3.8.13,
PyTorch v1.12.0 (Paszke et al., 2019), and trans-
formers v4.18.0 (Wolf et al., 2020). Our code
is based on the script published by Wang et al.
(2022)5. ROUGE-L is computed using the Python
package distributed by Google6.

A.3 Computatinal Time
Our experiments were conducted with a single
Tesla V100 (32GB). Each training run takes approx-
imately 8 hours for instruction optimization, while
it takes 5 hours for instruction tuning, without val-
idation. However, the training time of instruction
optimization depends on the number of inner train-
ing steps K. It reduces to 6 hours when K=100,
while slightly deteriorating the performance.

A.4 Experimental Results for Each Test Task
Table 5 and Table 6 shows the zero-shot and one-
shot evaluation for each test task type, respectively.
We show the average performance across 8 differ-
ent random seeds and 95% confidence intervals
w.r.t. the t-distribution.

5https://github.com/yizhongw/Tk-Instruct
6https://pypi.org/project/rouge-score/

Task types in meta-train set # of tasks

Answer Verification 3
Code to Text 4
Coherence Classification 6
Commonsense Classification 23
Dialogue Generation 11
Dialogue State Tracking 4
Discourse Connective Identification 1
Entity Generation 1
Fill in The Blank 8
Gender Classification 7
Grammar Error Detection 2
Information Extraction 17
Irony Detection 2
Linguistic Probing 9
Mathematics 4
Misc. 36
Named Entity Recognition 17
Negotiation Strategy Detection 7
Number Conversion 2
Paraphrasing 4
Poem Generation 1
Pos Tagging 9
Program Execution 90
Punctuation Error Detection 1
Question Answering 158
Question Decomposition 2
Question Generation 51
Question Understanding 13
Sentence Composition 7
Sentence Compression 1
Sentence Expansion 1
Sentence Ordering 3
Sentence Perturbation 4
Sentiment Analysis 42
Spam Classification 1
Speaker Identification 9
Speaker Relation Classification 2
Story Composition 9
Style Transfer 2
Summarization 12
Text Categorization 28
Text Completion 14
Text Quality Evaluation 7
Text Simplification 4
Text to Code 12
Toxic Language Detection 32
Translation 2
Word Relation Classification 5
Word Semantics 10
Wrong Candidate Generation 15

Task types in meta-test set # of tasks

Discourse Relation Classification 1
Entity Relation Classification 1
Explanation 5
Fact Verification 3
Intent Identification 4
Preposition Prediction 1
Spelling Error Detection 1
Stance Detection 2
Stereotype Detection 7
Text Matching 17

Task types in test set # of tasks

Answerability Classification 13
Cause Effect Classification 7
Coreference Resolution 14
Data to Text 9
Dialogue Act Recognition 7
Grammar Error Correction 1
Keyword Tagging 5
Overlap Extraction 2
Question Rewriting 11
Textual Entailment 24
Title Generation 18
Word Analogy 8

Table 4: Task types used in each split.
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Training Instruction Def. Inst. Emb.
(DP)

Inst. Emb.
(IC)

Def. + Inst.
Emb. (DP)

Def. + Inst.
Emb. (IC)

Answerability Classification 41.20 ± 0.66 8.67 ± 0.79 9.84 ± 0.52 41.21 ± 0.47 41.13 ± 0.56
Cause Effect Classification 49.77 ± 0.42 15.80 ± 1.84 16.35 ± 2.03 50.47 ± 0.62 50.36 ± 0.74
Coreference Resolution 32.30 ± 2.16 12.09 ± 0.75 11.14 ± 0.56 34.03 ± 0.91 33.79 ± 0.54
Data To Text 27.51 ± 0.49 13.61 ± 0.91 13.43 ± 0.70 29.45 ± 0.46 29.35 ± 0.55
Dialogue Act Recognition 35.95 ± 3.76 8.23 ± 1.08 8.61 ± 0.98 36.58 ± 2.63 35.73 ± 4.05
Grammar Error Correction 85.20 ± 0.28 79.27 ± 1.92 76.20 ± 3.48 85.13 ± 0.21 85.09 ± 0.08
Keyword Tagging 49.52 ± 1.36 19.94 ± 1.71 19.69 ± 1.04 50.62 ± 1.64 50.96 ± 1.14
Overlap Extraction 20.94 ± 0.41 18.13 ± 0.48 17.49 ± 1.25 20.64 ± 0.45 21.27 ± 0.69
Question Rewriting 43.28 ± 1.52 14.95 ± 1.21 15.90 ± 0.78 45.49 ± 1.72 45.76 ± 1.98
Textual Entailment 34.68 ± 2.21 7.46 ± 0.83 8.03 ± 0.55 36.36 ± 0.83 37.37 ± 0.94
Title Generation 21.55 ± 0.29 13.02 ± 0.86 12.94 ± 0.35 21.50 ± 0.36 21.55 ± 0.30
Word Analogy 14.01 ± 1.21 4.88 ± 0.84 4.88 ± 0.63 13.46 ± 1.00 13.70 ± 0.31

Average 33.82 ± 0.47 11.79 ± 0.27 11.99 ± 0.22 34.79 ± 0.33 34.97 ± 0.46

Table 5: Zero-shot evaluation where task definition is used as testing instruction, while training instruction is varied
as above. Def.: task definition; Inst. Emb.: Instruction Embedder. DP and IC represents direct parameterization and
instance conversion, respectively.

Training Instruction Random Exemplar
(each task)

Random Exemplar
(each instance)

Instruction
Extractor (DP)

Instruction
Extractor (IC)

Answerability Classification 52.79 ± 0.43 53.27 ± 0.55 53.18 ± 0.59 53.24 ± 0.68
Cause Effect Classification 53.22 ± 0.26 53.16 ± 0.37 52.63 ± 0.37 52.21 ± 0.49
Coreference Resolution 41.59 ± 0.55 37.70 ± 0.62 37.27 ± 0.95 36.63 ± 0.54
Data To Text 37.29 ± 0.19 37.04 ± 0.22 37.31 ± 0.40 37.15 ± 0.20
Dialogue Act Recognition 36.24 ± 0.43 33.56 ± 0.73 35.47 ± 1.06 36.33 ± 0.69
Grammar Error Correction 85.35 ± 0.14 85.21 ± 0.06 85.13 ± 0.18 84.86 ± 0.26
Keyword Tagging 52.96 ± 0.57 49.70 ± 1.47 50.63 ± 1.36 50.62 ± 2.18
Overlap Extraction 33.45 ± 1.14 29.63 ± 2.17 32.64 ± 2.23 30.34 ± 1.55
Question Rewriting 63.70 ± 0.59 64.66 ± 0.19 63.39 ± 1.31 63.24 ± 0.56
Textual Entailment 31.70 ± 0.36 24.81 ± 1.05 27.07 ± 3.46 24.15 ± 1.89
Title Generation 26.06 ± 0.27 24.25 ± 0.47 25.44 ± 0.31 25.29 ± 0.29
Word Analogy 16.11 ± 0.34 15.84 ± 0.56 16.03 ± 0.78 16.43 ± 0.33

Average 39.59 ± 0.14 37.19 ± 0.25 37.85 ± 0.67 37.15 ± 0.52

Table 6: One-shot evaluation where a task exemplar is used as testing instruction, while training instruction is varied
as above. Random Exemplar denotes exemplars randomly selected for each task or each instance (n=1).
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