
Findings of the Association for Computational Linguistics: ACL 2023, pages 10609–10627
July 9-14, 2023 ©2023 Association for Computational Linguistics

Multi-armed bandits for resource efficient, online optimization of
language model pre-training: the use case of dynamic masking

Iñigo Urteaga
Applied Physics and Applied Mathematics

Data Science Institute, Columbia University
New York, NY, USA

inigo.urteaga@columbia.edu

Moulay-Zaïdane Draïdia
Data Science Institute
Columbia University
New York, NY, USA

mad2314@columbia.edu

Tomer Lancewicki †

Walmart Global Tech,
USA

tomer.lancewicki@walmart.com

Shahram Khadivi
eBay Inc.,

Aachen, Germany
skhadivi@ebay.com

Abstract
We design and evaluate a Bayesian optimiza-
tion framework for resource efficient pre-
training of Transformer-based language mod-
els (TLMs). TLM pre-training requires high
computational resources and introduces many
unresolved design choices, such as selecting
its pre-training hyperparameters. We propose a
multi-armed bandit framework for the sequen-
tial selection of pre-training hyperparameters,
aimed at optimizing language model perfor-
mance, in a resource efficient manner. We
design a Thompson sampling algorithm, with
a surrogate Gaussian process reward model
of the Masked Language Model (MLM) pre-
training objective, for its sequential minimiza-
tion. Instead of MLM pre-training with fixed
masking probabilities, the proposed Gaussian
process-based Thompson sampling (GP-TS) ac-
celerates pre-training by sequentially selecting
masking hyperparameters that improve perfor-
mance. We empirically demonstrate how GP-
TS pre-trains language models efficiently, i.e.,
it achieves lower MLM loss in fewer epochs,
across a variety of settings. In addition, GP-
TS pre-trained TLMs attain competitive down-
stream performance, while avoiding expensive
hyperparameter grid search. GP-TS provides
an interactive framework for efficient and opti-
mized TLM pre-training that, by circumventing
costly hyperparameter selection, enables sub-
stantial computational savings.

1 Introduction

In the field of Natural Language Processing (NLP),
models for learning unsupervised representations
from unlabeled text based on Transformer architec-
tures (Vaswani et al., 2017) are the state-of-the-art
on a variety of tasks (Kalyan et al., 2021).

†Work done while at eBay Inc. San Jose, CA.

Transformer-based language models (TLMs)
like BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), and their linage of advanced mod-
els (Amatriain, 2023), rely on the combination of
an unsupervised pre-training of the model, and a
subsequent task-specific fine-tuning procedure.

TLMs are pre-trained over large unlabeled text
data using self-supervision, to learn the relation-
ships between different sentences or words of the
input. Once the TLM is pre-trained over large vol-
umes of data, it can be used in various downstream
tasks, by fine-tuning task-specific model layers.

With pre-training, TLMs learn language repre-
sentations that are useful across downstream tasks,
minimizing the need and burden of retraining the
entire model from scratch, again, for each task.
Extensive pre-training can lead to downstream per-
formance improvements, i.e., it is worth learning
complex TLMs in huge natural language corpora
before fine-tuning them for particular tasks.

Many have replicated the pre-train-then-fine-
tune strategy in different domains, e.g., pre-training
BERT with scientific (Beltagy et al., 2019) and
biomedical corpora (Lee et al., 2020; Alsentzer
et al., 2019; Gu et al., 2021); or in-house, industry-
specific TLMs (Kalyan et al., 2021). In addition,
continual pre-training —taking a model pre-trained
with general corpora to continue pre-training it with
in-domain data— is of great value, yielding signifi-
cant downstream gains (Gururangan et al., 2020).

Even if conceptually simple and empirically
powerful, pre-training is challenging and expen-
sive. Beyond the significant resources needed to
pre-train the original BERT model by Devlin et al.
(2018), the improvements of RoBERTa (Liu et al.,
2019) relied on orders of magnitude higher compu-
tational resources (Kaplan et al., 2020).

10609

The relationship between TLM architecture,
training corpus, pre-training hyperparameters, and
evaluation metrics is complex and obscure. There-
fore, previously overlooked pre-training design
choices, e.g., pre-training hyperparameter selec-
tion, result in significant performance differences.

With this work, we aim to improve the pre-
training procedure of TLMs, by sequentially select-
ing hyperparameters that result in a more efficient
and superior pre-training performance.

We hypothesize that an interactive selection of
pre-training hyperparameters can accelerate and
improve pre-training, i.e., we can achieve a bet-
ter metric value in fewer epochs. It is critical not
only to achieve superior performance, but to reduce
the computational cost, steering clear from time-
and resource-expensive procedures. Increased ef-
ficiency in TLM pre-training is paramount amidst
concerns pertaining to the carbon footprint of
large language models (Patterson et al., 2021); and
specifically, the significant impact of hyperparam-
eter selection on resource utilization and power
consumption (Puvis de Chavannes et al., 2021).

Our TLM pre-training use-case is random dy-
namic masking of Masked Language Models
(MLMs) —in contrast to rule or task-based MLM
dynamic masking solutions proposed in the liter-
ature (Joshi et al., 2020; Sun et al., 2020). Even
though Liu et al. (2019) showed the benefits of
random dynamic masking, the search for optimal
masking hyperparameters is often carried out based
on heuristic techniques and grid-based search.

In machine learning (ML), hyperparameter se-
lection is commonly addressed as a black-box op-
timization problem, which can be solved using
evolutionary algorithms (Yu and Gen, 2010), en-
tropy search methods (Hennig and Schuler, 2012;
Hernández-Lobato et al., 2014), and Bayesian op-
timization (BO) (Frazier, 2018). In particular,
BO can tackle the problem of optimizing an un-
known objective function with possibly noisy eval-
uations (Snoek et al., 2012), and of speeding up
resource allocation to promising hyperparameter
configurations (Li et al., 2018). Aligned with the
recent successes of Turner et al. (2021) in hyperpa-
rameter selection via BO, we propose a BO frame-
work for sequential tuning of MLM pre-training
hyperparameters. Our framework is different from
BO techniques that speed up hyperparameter set
evaluations, such as Hyperband (Li et al., 2018),
which is a pure-exploration adaptive resource al-

location algorithm for allocating resources among
configurations in the non-stochastic setting.

We here cast the TLM pre-training procedure as
a sequential decision process, in which at each in-
teraction, a reinforcement learning agent selects an
action (e.g., pre-training hyperparameters) to max-
imize cumulative rewards (e.g., the pre-training
metric of interest). To accommodate the black-box
nature of the pre-training objective function, we
fit a probabilistic surrogate model to the empirical
evaluations of the pre-training metric, and propose
a bandit-based technique for its sequential opti-
mization. In the MLM dynamic masking use case,
the bandit actions are the dynamic masking proba-
bilities; and the MLM performance, the unknown
function the bandit is trying to maximize, based on
estimates computed in the validation set.

Contrary to dynamic masking techniques that de-
cide which subsets of tokens to mask via combina-
torial optimization and dynamic programming (Vu
et al., 2020); we target online, sequential selec-
tion of masking hyperparameters for accelerated
and improved pre-training. In contrast to proposals
that adapt the language model’s masking policy to a
particular task of interest (Kang et al., 2020), we de-
vise a generic online optimization framework that,
by sequential selection of MLM design choices,
provides fast and superior TLM pre-training per-
formance, when pre-training —from-scratch and
continually— across diverse corpora.

The contributions of this work are:

• To present a bandit-based framework for efficient
online optimization of TLM pre-training. We
formulate a Gaussian Process based Thompson
sampling (GP-TS) algorithm for sequential MLM
loss minimization. The novelty lays on modeling
TLM pre-training validation losses with a Gaus-
sian process reward model, and on formulating a
Thompson sampling policy that minimizes them.

• To showcase empirically how GP-TS pre-trains
TLMs better and faster: both when pre-training
from-scratch and continually, across a variety of
corpora. Besides, to show that GP-TS pre-trained
TLMs provide top fine-tuned performance across
diverse in-domain tasks, in fewer interactions.

• To demonstrate that GP-TS’s sequential selection
of how many tokens of the input to mask —and
how to mask them— results in improved and
accelerated dynamic MLM pre-training, enabling
significant resource utilization savings.

10610

To the best of our knowledge, this work is the
first to address online optimization of TLM pre-
training with bandit-based BO, and to showcase its
performance and resource efficiency benefits.

The manuscript is organized as follows: Sec-
tion 2 provides the background on Bayesian op-
timization, multi-armed bandits and TLM pre-
training; Section 3 describes the proposed GP-TS
method for TLM pre-training optimization; with
its empirical performance evaluated in Section 4.
Concluding remarks are provided in Section 5.

2 Background

2.1 Bayesian optimization and bandits

Bayesian optimization (BO) is a framework to ad-
dress hyperparameter optimization in ML (Snoek
et al., 2012; Klein et al., 2017; Turner et al., 2021),
and many closely related applications (Negoescu
et al., 2011; Calandra et al., 2016; Frazier and
Wang, 2016; Hernández-Lobato et al., 2017; Can-
delieri et al., 2018). BO relies on a probabilistic
surrogate model of the objective function, to tackle
the problem of simultaneously fitting and optimiz-
ing a high-dimensional, non-convex function with
unknown smoothness, and possibly noisy evalua-
tions (Shahriari et al., 2015; Frazier, 2018). Due to
the black-box nature of BO, the surrogate model
must provide a measure of uncertainty, for which
generative models, Bayesian neural networks and
Gaussian processes are used (Maddox et al., 2021).
Using this surrogate model, an acquisition function
determines the next promising candidate to eval-
uate. To address the challenge of learning about
the environment (i.e., exploration) while simulta-
neously maximizing the observed outcomes (i.e.,
exploitation), the multi-armed bandit provides a
useful framework (Lai and Robbins, 1985).

The multi-armed bandit (MAB) is an abstraction
for problems that require learning while simulta-
neously maximizing attained rewards, i.e., balanc-
ing the exploration-exploitation tradeoff (Lattimore
and Szepesvári, 2020). A MAB is a sequential de-
cision process that requires decision-making under
uncertainty (Slivkins, 2019). At each interaction
t = 1, · · · , T , a bandit agent chooses an action
at ∈ A from a (not necessarily finite) set of actions
A, and it observes stochastic reward rt drawn from
an unknown distribution of the selected arm, at,
often characterized parametrically, rt ∼ p(·|at, θ).

The MAB agent’s goal is to maximize (ex-

pected) cumulative rewards, RT =
∑T

t=1 µa,t,
with each arm’s expected reward denoted as µa =
Ep {r|a, θ}. The challenge is on the lack of
knowledge about the reward generating mechanism,
which demands learning its properties (e.g., its pa-
rameters), as it interacts with the environment.

A plethora of MAB algorithms have been pro-
posed and analyzed over the years, from computing
optimal strategies (Gittins, 1979) and greedy ap-
proaches (Auer et al., 2002), to upper confidence
interval (Lai, 1987; Kaufmann et al., 2012) and
Thompson sampling (Thompson, 1935) algorithms.
For models in the exponential family, the latter
have been empirically and theoretically proven to
perform competitively (Lai, 1987; Kaufmann et al.,
2012; Agrawal and Goyal, 2012, 2013; Korda et al.,
2013), and extensions have been proposed that
model observed rewards via ensembles of mod-
els (Lu and Roy, 2017), Gaussian mixture mod-
els (Urteaga and Wiggins, 2018), Gaussian pro-
cesses (Srinivas et al., 2010; Grünewälder et al.,
2010), and neural networks (Osband et al., 2016).

In the context of BO in general, and MABs in
particular, reward uncertainty quantification is criti-
cal. Gaussian processes (Rasmussen and Williams,
2005) provide not only adequate Bayesian uncer-
tainty estimates, but a flexible solution for surrogate
models that encode smoothness assumptions of the
payoff function (Krause and Ong, 2011; Bogunovic
et al., 2016; Nguyen et al., 2020). We resort to a
Gaussian process reward model in the proposed
bandit-based BO framework for TLM pre-training.

2.2 Language model pre-training and the
Masked Language Model

Pre-training enables learning representations that
generalize across tasks, i.e., it allows for a lan-
guage model to be better initialized for quick fine-
tuning (while avoiding overfitting) to downstream
tasks. TLMs learn language representations in pre-
training based on one (or more) self-supervised
task. Two popular pre-training objectives are
Masked Language Model (MLM) and Next Sen-
tence Prediction (NSP) (Devlin et al., 2018).

We focus on MLM pre-training as in (Devlin
et al., 2018; Liu et al., 2019); where for an input
sequence of words or tokens, a random sample of
the tokens is replaced with the [MASK] token, and
the goal is to predict them. For an input sequence d
of N tokens, with special tokens delimiting them,

d ≡ [CLS], q1, · · · , qN , [EOS] (1)

10611

MLMs select a random sample of the tokens qi, i =
{1, · · · , N}, replace them with the mask, and learn
to predict these masked tokens. For pre-training the
original BERT model (Devlin et al., 2018), a ran-
dom but static subset of the input sequence tokens
was replaced with the mask.

Liu et al. (2019) proposed a dynamic masking
procedure, which generates a new masking pat-
tern (given a fixed probability of masking) for ev-
ery input sequence. Liu et al. (2019) demonstrate
that this dynamic approach is beneficial when pre-
training for more steps or with larger datasets.

Dynamic masking relies on several hyperparam-
eters: (i) the probability ρ of replacing an input
token with the mask, (ii) the probability γ that a
masked token is left unmasked, and (iii) the proba-
bility λ of replacing a token with a random token,
instead of with the mask. Online optimization of
these hyperparameters ψ = (ρ, γ, λ) is the use-
case for our experiments in Section 4.

MLM pre-training aims at minimizing the MLM
loss: a function of the original (D) and masked (D̂)
datasets, the TLM architecture with its parameters
w ∈W , and pre-training hyperparameters ψ ∈ Ψ.
The MLM objective is the cross-entropy loss of pre-
dicting the masked tokens in the masked sequence
d̂ ∈ D̂, where we denote withmi = {0, 1} whether
tokens qi, i = {1, · · · , N}, from the original input
sequence d ∈ D have been masked in d̂:

l(d, d̂;w,ψ) = − log p(d|d̂;w,ψ) (2)

= −
N∑

i=1

mi log p(qi|q̂i;w,ψ) (3)

= −
N∑

i=1

mi log

 e(χ(q̂i;w,ψ)

⊤ξ(qi))

∑N
i′=1 e

(
χ(q̂′i;w,ψ)

⊤ξ(q′i)
)

 (4)

where χ(q̂i;w,ψ) denotes the TLM’s representa-
tion of the masked token qi, and ξ(qi) is its original
embedding. The pre-training objective is to find
the TLM that minimizes the MLM loss between
the original datasetD and its masked version D̂. In
practice, this minimization is executed via stochas-
tic gradient-descent, run for e = 1, · · · , E, epochs
with random mini-batches De ∈ D per epoch e,
ŵe = argminw∈W l(De, D̂e;w,ψ) .

The analytical form of the MLM loss, a function
of selected hyperparameters ψ and the data where
it is evaluated, is in general complex and unknown.
However, estimates of the MLM loss are available
at every pre-training epoch e. Namely, an empirical

estimate of the MLM loss can be computed in the
validation set.

For fair comparisons under different training
setups (e.g., mini-batch sizes and hyperparame-
ters), per-epoch averaged empirical MLM losses
are computed in the validation dataset Dval,

l̄(Dval;ψ) = l̄(Dval, D̂val;w,ψ)

= −
∑

d∈Dval

∑Nd
i=1mi log p(qi|q̂i;w,ψ)∑Nd

i′=1mi′
, (5)

where we drop the dependency with respect to
TLM parameters w and the masked validation
dataset D̂val to avoid notation clutter.

3 Proposed bandit-based framework

We cast TLM pre-training as a sequential deci-
sion process to be solved by a multi-armed bandit
agent that interactively optimizes the analytically
unknown pre-training loss, based on its sequen-
tially observed empirical evaluations. We define
pre-training steps, i.e., a fixed number of stochas-
tic gradient updates u in the training set, as bandit
interactions t = 1, · · · , T . The goal is to minimize
the TLM pre-training objective l(·|ψ) given tunable
hyperparameters ψ, with (stochastic) evaluations
of the loss function in the validation set.

Pre-training hyperparameters at interaction t, ψt,
are the bandit’s arms, i.e., at = ψt. For MLM
pre-training with dynamic masking, at each bandit
interaction, the agent selects hyperparameters ψ
(the proportion of tokens to mask and their mask-
ing probabilities), pre-trains the TLM for certain
stochastic updates to minimize the MLM loss, and
evaluates its performance in the validation subset,
as per Equation (5). Due to the black-box nature of
the pre-training objective, for which only stochastic
evaluations are available, we formulate a surrogate
reward function (leveraging empirical MLM vali-
dation loss estimates) for the bandit to maximize,
as it sequentially selects which arm to play.

3.1 From MLM pre-training to Gaussian
process-based regret minimization

We transform the empirical pre-training validation
loss at each MAB interaction into a reward quan-
tity for it’s sequential minimization by the bandit
agent. Specifically, we compute bandit rewards as
the normalized difference in averaged empirical
MLM losses between bandit interactions, i.e.,

10612

rt(ψt) =
[−l̄t(Dval;ψt)]− [−l̄t−1(Dval;ψt−1)]

[−l̄t−1(Dval;ψt−1)]
.

(6)

By normalizing reward differences per-
interaction, we mitigate the potential non-stationary
effect sequentially selected hyperparameters might
have on TLM pre-training. With rewards as
(normalized) empirical MLM loss differences, we
capture how much (relative) improvement each
action provides.

Rewards in Equation (6) are based on stochas-
tic draws from an analytically unknown objective
function, i.e., only empirical estimates l̄t(·) of the
MLM objective are available. To accommodate
these noisy observations of the unknown loss func-
tion l(·|ψ) —that we aim at optimizing with respect
to its hyperparameters ψ— we model the bandit
reward function via a Gaussian process (GP) model
f(·; θ) of the pre-training objective, with observed
rewards independent and identically (i.i.d.) dis-
tributed as

rt(ψt) = f(ψt; θ) + ϵt , (7)

where ϵt denotes the stochastic nature of each of the
observed rewards —based on empirical estimates
computed in Equation (6). Hence, we overcome the
black-box nature of the pre-training objective (e.g.,
the MLM loss) by modeling observed rewards as
realizations of a noisy surrogate GP model (Ras-
mussen and Williams, 2005).

The mean µ(·) and kernel functions k(·, ·) of
a GP f(·) ∼ GP (µ(·), k(·, ·)) determine the
reward function class: i.e., the regularity and
smoothness of the pre-training loss. These are pa-
rameterized prior-functions µ(·|θµ) and k(·, ·|θk),
which can be fitted to the observed data r1:T =
(r1, · · · , rT) at inputs ψ1:T = (ψ1, · · · , ψT) (Ras-
mussen and Williams, 2005). For instance, via
Type-II maximum likelihood estimation (MLE)
of the GP parameters θ = (θµ, θk), θ̂ =
argmaxθ log p (r1:T |f(ψ1:T |θ)), where the data
likelihood p(r|f(·; θ)) is a function of the observa-
tion noise probability distribution.

Given a fitted GP, posterior inference —
computing the predictive distribution of a new dat-
apoint ψ′ after observing ψ1:T— can be performed
in closed or approximate form (Titsias, 2009; Flax-
man et al., 2015; Pleiss et al., 2018).

3.2 GP-Thompson sampling for TLM
pre-training.

Leveraging the GP reward model in Equation (7),
we devise a bandit-based interactive method that ex-
ecutes a Thompson sampling (TS) policy1 (Russo
et al., 2018) for TLM pre-training optimization.

The proposed Gaussian process-based Thomp-
son sampling (GP-TS) —with pseudo-code pro-
vided in Algorithm 1— views the TLM pre-training
objective as an unknown black-box function with
inputs at = ψt and outputs rt(ψt) as in Equa-
tion (6). GP-TS makes decisions on what bandit
arm at = ψt to play at each TLM pre-training in-
teraction t = 1, · · · , T, informed by its GP reward
model of Equation (7), to maximize its observed
cumulative rewards RT =

∑T
t=1 rt(ψt).

Algorithm 1 GP-TS for TLM pre-training

1: Input: TLM and pre-training corpus
2: Input: Pre-training hyperparameter space Ψ
3: Input: Number of pre-training interactions T ,

number of updates per-interaction u
4: Input: GP prior functions µ(·) and k(·, ·),

with initial hyperparameters θ0
5: Initialize: A = Ψ, θ̂1 = θ0, H1 = ∅
6: for t = 1, · · · , T do
7: Draw posterior sample from GP,

µ
(t)
a ∼ f(µt(a|θ̂t), kt(a, a′|θ̂t)) .

8: Select arm based on drawn posterior sample,
at = argmaxa′∈A µ

(t)
a′ .

9: Run TLM pre-training for u steps,
with hyperparameters ψt = at .

10: Compute pre-trained TLM validation loss,
l̄t(Dval;ψt) as in Equation (5) .

11: Observe bandit reward,
rt(ψt) as in Equation (6) .

12: Update bandit history
H1:t = H1:t−1 ∪ {at = ψt, rt(ψt)} .

13: Fit GP model with H1:t,
θ̂t+1 = argmaxθ log p (r1:t|f(ψ1:t; θ)) .

14: end for

GP-TS accommodates continuous arms at = ψt,
with dimensionality determined by the pre-training
hyperparameter space ψ ∈ Ψ. Any TLM can be
used within the proposed framework, as long as
the hyperparameter space ψ ∈ Ψ is identified, and

1We resort to Thompson sampling due to both its imple-
mentation flexibility and efficiency, as well as its competitive
empirical performance with theoretical guarantees in many
settings (Agrawal and Goyal, 2013; Krause and Ong, 2011;
Nguyen et al., 2020; Srinivas et al., 2010).

10613

rewards as in Equation (6) are computed for a pre-
training objective l(·|ψ) of interest.

GP-TS draws predictive function samples for
the next TLM pre-training interaction from its GP
reward model posterior, updated at every bandit
interaction as indicated in Step 7 of Algorithm 1.
As in other TS methods, these samples are used to
determine —in Step 8 of Algorithm 1— the arms
(hyperparameters ψt) to be used in the next bandit
interaction. After u pre-training steps2, the model’s
MLM validation loss is computed to evaluate the
observed bandit rewards rt(ψt) of Equation (6).
After each interaction t, new evidence is collected
in Step 12 to re-fit the GP model to the observed
input (action)-output (rewards) history H1:t. For
instance, via Type-II MLE as in Step 13 of Algo-
rithm 1, although other GP parameter optimization
procedures might be used —see Appendix A for
details on GP models and posterior inference.

4 Experiments

4.1 Evaluation set-up

We probe the ability of the proposed GP-TS to,
given a dataset, a TLM architecture, and a computa-
tional budget, efficiently pre-train well-performing
language models3. For our experiments, we incor-
porate RoBERTa (Liu et al., 2019) as implemented
by Ott et al. (2019) in our Python implementation
of GP-TS4 as in Algorithm 1 —Appendix B.1 pro-
vides implementation and configuration details.

We compare pre-training performance of
RoBERTa models based on a grid-search over
masking hyperparameters —as executed by Liu
et al. (2019)— to RoBERTa models pre-trained by
GP-TS5. We focus our evaluation on MLM valida-
tion loss and downstream per-task accuracy metrics,
and report the negligible computational overhead
of pre-training with GP-TS in Appendix B.3.

We study two variants of GP-TS, depending on
the masking hyperparameters it optimizes:
(i) GP-TS ρ, where the bandit arm is the masking
probability ρ of replacing an input token with the
mask token (other hyperparameters are fixed to de-
fault γ = 0.1 and λ = 0.1 values as suggested
by Liu et al. (2019)); and

2Note that u stochastic gradient updates might or might
not correspond to a full pre-training epoch e.

3We scrutinize pre-training performance of a specific TLM
architecture under equal experimental conditions and do not
compare performance to state-of-the-art, large-scale TLMs.

4Code available at https://github.com/iurteaga/gp_ts_nlp.
5We do not execute any other hyperparameter optimization.

(ii) GP-TS ψ = (ρ, γ, λ), where GP-TS optimizes
over all MLM dynamic masking hyperparameters:
the bandit search space is a three-dimensional hy-
percube Ψ with no previous expert guidance on
hyperparameter selection.

Pre-training datasets. We gather three distinct
datasets, two based on publicly available corpora,
and one based on private data from eBay:

• wiki-c4: We pre-process and encode publicly
available Wikitext-103 (Merity et al., 2016) and
Google’s c4 RealNews (Zellers et al., 2019)
datasets for pre-training, from scratch, each of
TLM. This corpora is similar to those originally
used by Devlin et al. (2018) and Liu et al. (2019).

• mimic: We pre-process and encode free-text clin-
ical notes available in the public MIMIC-III Clin-
ical database (Pollard and Johnson, 2016), which
contains deidentified nursing and physician notes,
ECG and imaging reports, and discharge sum-
maries for patients who stayed in intensive care
units at Beth Israel Deaconess Medical Center.

• e-commerce: We pre-process and encode a ran-
dom subset of eBay marketplace inventories,
which contains different product titles and de-
scriptions provided by marketplace users, as well
as category tags associated with each item and
product reviews.

Each dataset contains text of very different linguis-
tic characteristics and sizes (see summary statistics
in Appendix B.4), which we leverage to investigate
TLM pre-training across a variety of settings.

We evaluate candidate TLMs (i) when pre-
training from-scratch, i.e., from a randomly ini-
tialized architecture; and (ii) with continual pre-
training, i.e., when continuing pre-training a TLM
architecture previously trained in other NLP cor-
pora (Kalyan et al., 2021). Continual pre-training
results we present are for the RoBERTa-base archi-
tecture as pre-trained by Facebook Research (2022)
that we continue to pre-train in our domain-specific
datasets, i.e., mimic and e-commerce.
Fine-tuning in downstream tasks. Pre-trained
language models are most useful when applied to
downstream tasks, as there is no need to retrain the
entire model again. We evaluate pre-trained TLM’s
in the following in-domain tasks6:

6We abstain from fine-tuning RoBERTa-base models,
pre-trained with wiki-c4 data only, in downstream Glue
tasks (Wang et al., 2018), as these would not match state-of-
the-art results due to both the size-limited pre-training dataset,
and the model architecture used.

10614

https://github.com/iurteaga/gp_ts_nlp

5 10 15 20 25 30 35

interactions t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ȳ t
(D

v
a
l;
ψ
t
)

ρ=0.05

ρ=0.10

ρ=0.15

ρ=0.20

ρ=0.25

ρ=0.30

ρ=0.35

ρ=0.40

ρ=0.45

ρ=0.50

GP-TS ρ

GP-TS ψ

(a) wiki-c4.

5 10 15 20 25

interactions t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ȳ t
(D

v
a
l;
ψ
t
)

ρ=0.05

ρ=0.10

ρ=0.15

ρ=0.20

ρ=0.25

ρ=0.30

ρ=0.35

ρ=0.40

ρ=0.45

ρ=0.50

GP-TS ρ

GP-TS ψ

(b) mimic.

5 10 15 20 25

interactions t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ȳ t
(D

v
a
l;
ψ
t
)

ρ=0.05

ρ=0.10

ρ=0.15

ρ=0.20

ρ=0.25

ρ=0.30

ρ=0.35

ρ=0.40

ρ=0.45

ρ=0.50

GP-TS ρ

GP-TS ψ

(c) e-commerce.

Figure 1: MLM validation loss comparison (lower is better) of grid-search and GP-TS based from-scratch pre-trained
RoBERTa models, over interactions.

• e-commerce title classification: A binary classi-
fication task to decide whether a pair of item titles
belong to the same marketplace product. Item
titles are instances of a product sold by a specific
seller, which can have different attributes like
condition or can exist as a special version (e.g., a
signed book), yet refer to the same product.

• e-commerce title similarity: A task using the
same title-pair data as above, but formulated as
a similarity task. Namely, we learn a distance
metric between item titles to help discriminate
whether they belong or not to the same product.

• e-commerce title quality: A classification task
that predicts if a title fulfills the marketplace re-
quirements for it to be a product title. Titles
must contain the product’s main relevant infor-
mation —the brand, the product name and/or
type, and all distinguishable attributes, i.e., its
key features— but should not contain conditions,
marketing terms, or any other non-product re-
lated information.

• medical MLI: A natural language inference task
annotated by doctors (Shivade, 2019), which is
grounded in the medical history of patients col-
lected in MIMIC-III (Pollard and Johnson, 2016).
It contains sentence pairs —the premise and the
hypothesis statements— with a corresponding la-
bel indicating their inferential relationship (e.g.,
entailment, contradiction, or neutral).

Summary statistics for each in-domain per-task
dataset are provided in Appendix B.6.

To elucidate how the pre-trained TLMs’ qual-
ity evolves over pre-training interactions, we fine-
tune (for ten epochs) the pre-trained RoBERTa
models at each pre-training interaction t. We re-
port the best classification accuracy of each fine-
tuned model across pre-training interactions and
fine-tuning epochs.

4.2 GP-TS pre-training of RoBERTa models

We compare from-scratch pre-training performance
of all RoBERTa models (pre-trained with fixed hy-
perparameters or by GP-TS) in Figure 1, where
we illustrate MLM validation losses of each model
over pre-training interactions: GP-TS attains the
lowest MLM loss values in fewer interactions.

Recall that when pre-training TLMs, validation
performance varies across training epochs; hence,
practitioners are interested in identifying the best
pre-trained model —as per the lowest validation
metric— instead of selecting the pre-trained TLM
available at the last training epoch.

Results for continual pre-training are provided in
Figure 2 below, where we observe that GP-TS con-
tinually pre-trains the best performing RoBERTa
models —the fastest— for both in-domain datasets.

5 10 15 20 25

interactions t

0.0

0.5

1.0

1.5

2.0

2.5

ȳ t
(D

v
a
l;
ψ
t
)

ρ=0.05

ρ=0.10

ρ=0.15

ρ=0.20

ρ=0.25

ρ=0.30

ρ=0.35

ρ=0.40

ρ=0.45

ρ=0.50

GP-TS ρ

GP-TS ψ

(a) mimic.

5 10 15 20 25

interactions t

0.0

0.5

1.0

1.5

2.0

2.5

ȳ t
(D

v
a
l;
ψ
t
)

ρ=0.05

ρ=0.10

ρ=0.15

ρ=0.20

ρ=0.25

ρ=0.30

ρ=0.35

ρ=0.40

ρ=0.45

ρ=0.50

GP-TS ρ

GP-TS ψ

(b) e-commerce.

Figure 2: MLM validation loss comparison (lower is
better) of grid-search and GP-TS based continually pre-
trained RoBERTa models over interactions.

MLM validation losses for models pre-trained
with GP-TS fluctuate across interactions, depend-
ing on the stochastic action (hyperparameter value)

10615

selected by the GP-TS agent. Practitioners are inter-
ested in using the model with the lowest validation
MLM loss, which GP-TS consistently finds across
all studied datasets and pre-training approaches, in
fewer pre-training interactions. We evaluate the
influence of different realizations of GP-TS (with
different random seeds) in Table 1, where we ob-
serve that GP-TS always pre-trains models with
the lowest MLM loss, and in less interactions (indi-
cated within parentheses).

Table 1: Best MLM loss attained before interactions 20
and 30, when pre-training RoBERTa models continually
in the medical domain corpora.

By interaction 20 By interaction 30
Best MLM loss Best MLM lossModel
(at interaction) (at interaction)

ρ=0.05 0.04 (18) 0.037 (28)
ρ=0.10 0.04 (18) 0.036 (27)
ρ=0.15 0.044 (18) 0.038 (27)
ρ=0.20 0.048 (18) 0.042 (28)
ρ=0.25 0.054 (19) 0.046 (27)
ρ=0.30 0.066 (18) 0.056 (27)
ρ=0.35 0.076 (19) 0.064 (29)
ρ=0.40 0.091 (19) 0.077 (29)
ρ=0.45 0.113 (19) 0.095 (29)
ρ=0.50 0.134 (19) 0.112 (27)

GP-TS ρ (seed 1) 0.037 (14) 0.033 (20)
GP-TS ρ (seed 2) 0.036 (19) 0.033 (28)
GP-TS ρ (seed 3) 0.038 (14) 0.032 (21)
GP-TS ρ (seed 4) 0.032 (18) 0.032 (18)
GP-TS ρ (seed 5) 0.038 (13) 0.032 (20)
GP-TS ψ (seed 1) 0.027 (8) 0.019 (21)
GP-TS ψ (seed 2) 0.02 (15) 0.02 (15)
GP-TS ψ (seed 3) 0.02 (17) 0.019 (28)
GP-TS ψ (seed 4) 0.036 (14) 0.019 (21)
GP-TS ψ (seed 5) 0.02 (16) 0.018 (28)

GP-TS not only circumvents the need for costly
grid searches, but enables improved performance:
it attains reduced MLM loss at earlier interactions
than grid-search baselines. Recall how GP-TS ψ
outperforms all the alternatives in Table 1, as it
pre-trains models with the lowest MLM, the fastest
—even when no good initial guesses for the MLM
hyperparameters ψ = (ρ, γ, λ) are available.

In summary, the benefits of interactive GP-TS
pre-training do not pertain to the attained MLM
values only, but to an accelerated, efficient proce-
dure. We emphasize the computational efficiency
of GP-TS: it adds little to no overhead —details
on the computational cost of GP-TS are provided
in Appendix B.3— while providing clear benefits
for language model pre-training. It attains best
MLM pre-training performance in less interactions,
avoiding computationally expensive hyperparame-
ter search.

To the best of our knowledge, these experiments
provide novel evidence that, instead of MLM pre-
training with fixed masking hyperparameters, se-
quentially deciding which masking values to use
is beneficial. GP-TS finds sequences of dynamic
masking hyperparameters (when optimizing over
ρ or a three-dimensional hyperparameter space
ψ ∈ Ψ) that minimize MLM loss across datasets,
when pre-training from-scratch and continually.

4.3 GP-TS pre-trained RoBERTa models for
downstream fine-tuned tasks

We scrutinize how performant in-domain GP-TS
pre-trained RoBERTa models are, when compared
to grid-search based models, after in-domain per-
task fine-tuning. The fine-tuned accuracy of contin-
ually pre-trained models7 of Figure 2 are presented
in Table 2: we showcase, per-task, best test-set
accuracy for each fine-tuned model, and at which
pre-training interaction was such value attained.
Results are computed on each per-task test-set, i.e.,
a subset of each task’s dataset (see details in Ta-
ble 11) that has not been used for fine-tuning nor
hyperparameter optimization.

Table 2: Best fine-tuned, downstream task test-set ac-
curacy (higher is better) for continually pre-trained
RoBERTa models. The first row corresponds to the
fine-tuned performance of the RoBERTa model from
which continual pre-training is started.

e-commerce e-commerce e-commerce medical
title classification title similarity title quality MLI

Accuracy Accuracy Accuracy Accuracy
Model

(at interaction) (at interaction) (at interaction) (at interaction)
RoBERTa base 97.2 (0) 97.2 (0) 75.1 (0) 67.5 (0)

ρ=0.05 97.8 (26) 97.8 (26) 77.6 (15) 72.9 (3)
ρ=0.10 97.9 (27) 97.9 (27) 77.7 (15) 71.9 (9)
ρ=0.15 97.8 (13) 97.8 (13) 77.7 (18) 72.5 (13)
ρ=0.20 97.8 (8) 97.8 (8) 77.4 (10) 73.3 (14)
ρ=0.25 97.9 (17) 97.9 (17) 77.7 (6) 72.9 (12)
ρ=0.30 97.9 (19) 97.9 (19) 77.8 (7) 73.2 (7)
ρ=0.35 97.9 (9) 97.9 (9) 77.8 (18) 72.8 (7)
ρ=0.40 97.8 (9) 97.8 (9) 78.2 (24) 72.6 (9)
ρ=0.45 97.8 (11) 97.8 (11) 78.3 (16) 72.9 (7)
ρ=0.50 97.9 (8) 97.9 (8) 77.9 (7) 72.6 (9)

GP-TS ρ 97.9 (13) 97.9 (13) 77.5 (17) 72.6 (9)
GP-TS ψ 98.0 (10) 98.0 (10) 77.8 (20) 72.3 (6)

These results exhibit how GP-TS pre-trains per-
formant language models —with top accuracy—
often at earlier interactions than when pre-training
with static hyperparameters: e.g., the continually
pre-trained GP-TS ψ model (see last row of Ta-
ble 2) provides best downstream accuracy for two
e-commerce tasks and competitive accuracy in oth-
ers, in just a few pre-training interactions.

7The downstream, fine-tuned performance of RoBERTa
models pre-trained from-scratch with in-domain data is, as
expected, lower than if continually pre-trained.

10616

This efficiency is of practical importance, due
to the significant resource savings it affords. A
pre-training hyperparameter grid-search does not
provide significant downstream performance im-
provements, yet it demands high computational re-
sources —the computational complexity of a grid-
search over hyperparameters ψ = (ρ, γ, λ) with n
candidates per hyperparameter is O(3n).

On the contrary, by letting GP-TS pre-train
TLMs, best pre-training MLM performance is
achieved, with well-performing fine-tuned model
accuracy across downstreams tasks, in fewer pre-
training interactions.

5 Conclusion

We present a multi-armed bandit-based Bayesian
optimization framework for the sequential selection
of pre-training hyperparameters towards optimized
Transformer-based language model performance.

We develop and evaluate an interactive, Gaussian
process-based Thompson sampling (GP-TS) frame-
work for accelerated language model pre-training.
We model noisy evaluations of the pre-training ob-
jective (e.g., the MLM loss) as drawn from a surro-
gate Gaussian process that the bandit agent aims to
minimize.

We provide empirical evidence of how GP-TS,
when applied to MLM dynamic masking, attains
superior and accelerated (both from-scratch and
continual) pre-training performance, along with
excellent in-domain downstream metric values.

While Liu et al. (2019) randomly select —with
fixed probability— which input tokens to mask,
we show that sequentially adapting the masking
hyperparameters with GP-TS results in enhanced
and efficient pre-training. Notably, GP-TS inter-
actively selects hyperparameters that result in top
performing models faster, enabling significant re-
source efficiency, of critical importance in practice.

Building upon our formulation and the provided
evidence, we envision follow-up work investigating
the proposed method’s ability to successfully pre-
train large-scale models in general purpose corpora,
as well as for optimizing domain-specific models.

Limitations

There are several limitations to account for in the
presented work. First, the large GPU requirements
for the execution and replication of the presented
experiments. Second, the lack of empirical results
beyond English-based text, and how morphologi-

cally and syntactically more complex corpora may
affect the presented evidence. Third, our evaluation
section compares GP-TS performance to the com-
mon hyperparameter grid-search alternative, yet
we acknowledge that other Bayesian optimization
techniques used in the machine learning commu-
nity may provide suitable and competitive alter-
natives to explore. In addition, we have not run
any hyperparameter tuning beyond MLM dynamic
masking, which might improve all studied algo-
rithms’ performance. Finally, our conclusions are
limited to RoBERTa models pre-trained via MLM
dynamic masking, and therefore, investigation of
how GP-TS generalizes to other TLM pre-training
approaches and architectures is lacking.

Ethics Statement

This work raises ethical and societal considerations
associated with the use and biases of pre-collected
natural language data, the energetic and environ-
mental impact of extensive GPU resource usage,
and the downstream applications of language mod-
els. We acknowledge the potential implicit bi-
ases within the publicly available datasets used.
E.g., mimic reports are limited to the population
attended at Beth Israel Deaconess Medical Center,
and may contain implicit biases of health practition-
ers there. We have carefully sampled data for the
e-commerce dataset to avoid biases over specific
products, users and sellers. We are also aware of
the rising concerns pertaining to the carbon foot-
print of large language models (Patterson et al.,
2021), and the significant impact hyperparameter
selection techniques have on resource utilization
and power consumption (Puvis de Chavannes et al.,
2021). Finally, we acknowledge the wide range
of established and anticipated risks that language
models pose to society (Weidinger et al., 2021).

Acknowledgements

Iñigo Urteaga and Moulay-Zaïdane Draïdia were
partially supported by funds from eBay’s Re-
search and University Partnership for Technology
(eRUPT) program. We also acknowledge comput-
ing resources from Columbia University’s Shared
Research Computing Facility project, which is sup-
ported by NIH Research Facility Improvement
Grant 1G20RR030893-01, and associated funds
from the New York State Empire State Develop-
ment, Division of Science Technology and Innova-
tion (NYSTAR) Contract C090171.

10617

References
Shipra Agrawal and Navin Goyal. 2012. Analysis of

Thompson Sampling for the multi-armed bandit prob-
lem. In Conference on Learning Theory, pages 39–1.

Shipra Agrawal and Navin Goyal. 2013. Further Op-
timal Regret Bounds for Thompson Sampling. In
Artificial Intelligence and Statistics, pages 99–107.

Emily Alsentzer, John R Murphy, Willie Boag, Wei-
Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical BERT
embeddings. arXiv preprint arXiv:1904.03323.

Xavier Amatriain. 2023. Transformer models:
an introduction and catalog. arXiv preprint
arXiv:2302.07730.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer.
2002. Finite-time Analysis of the Multiarmed Bandit
Problem. Machine Learning, 47(2-3):235–256.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher.
2016. Time-varying gaussian process bandit opti-
mization. In Artificial Intelligence and Statistics,
pages 314–323. PMLR.

Fairseq by Facebook Research. 2022. RoBERTa: A
Robustly Optimized BERT Pretraining Approach,
pre-trained model using the BERT-base architecture.
Available online at https://dl.fbaipublicfiles.
com/fairseq/models/roberta.base.tar.gz.

Roberto Calandra, André Seyfarth, Jan Peters, and
Marc Peter Deisenroth. 2016. Bayesian optimiza-
tion for learning gaits under uncertainty. Annals of
Mathematics and Artificial Intelligence, 76(1):5–23.

Antonio Candelieri, Raffaele Perego, and Francesco
Archetti. 2018. Bayesian optimization of pump op-
erations in water distribution systems. Journal of
Global Optimization, 71(1):213–235.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Seth Flaxman, Andrew Wilson, Daniel Neill, Hannes
Nickisch, and Alex Smola. 2015. Fast Kronecker
Inference in Gaussian Processes with non-Gaussian
Likelihoods. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
607–616, Lille, France. PMLR.

Peter I. Frazier. 2018. A tutorial on Bayesian optimiza-
tion. arXiv preprint arXiv:1807.02811.

Peter I. Frazier and Jialei Wang. 2016. Bayesian op-
timization for materials design. In Information sci-
ence for materials discovery and design, pages 45–75.
Springer.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q
Weinberger, and Andrew Gordon Wilson. 2018. GPy-
Torch: Blackbox Matrix-Matrix Gaussian Process
Inference with GPU Acceleration. In Advances in
Neural Information Processing Systems.

J. C. Gittins. 1979. Bandit Processes and Dynamic
Allocation Indices. Journal of the Royal Statistical
Society. Series B (Methodological), 41(2):148–177.

Steffen Grünewälder, Jean-Yves Audibert, Manfred Op-
per, and John Shawe-Taylor. 2010. Regret Bounds
for Gaussian Process Bandit Problems. In Proceed-
ings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Pro-
ceedings of Machine Learning Research, pages 273–
280, Chia Laguna Resort, Sardinia, Italy. PMLR.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t Stop Pretraining:
Adapt Language Models to Domains and Tasks.
arXiv preprint.

Philipp Hennig and Christian J. Schuler. 2012. En-
tropy Search for Information-Efficient Global Opti-
mization. Journal of Machine Learning Research,
13(57):1809–1837.

José Miguel Hernández-Lobato, Matthew W Hoffman,
and Zoubin Ghahramani. 2014. Predictive Entropy
Search for Efficient Global Optimization of Black-
box Functions. In Advances in Neural Information
Processing Systems, volume 27. Curran Associates,
Inc.

José Miguel Hernández-Lobato, James Requeima, Ed-
ward O Pyzer-Knapp, and Alán Aspuru-Guzik. 2017.
Parallel and distributed Thompson sampling for large-
scale accelerated exploration of chemical space. In
International conference on machine learning, pages
1470–1479. PMLR.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. Ammus: A survey
of transformer-based pretrained models in natural lan-
guage processing. arXiv preprint arXiv:2108.05542.

Minki Kang, Moonsu Han, and Sung Ju Hwang. 2020.
Neural mask generator: Learning to generate adap-
tive word maskings for language model adaptation.
arXiv preprint arXiv:2010.02705.

10618

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://proceedings.mlr.press/v37/flaxman15.html
https://proceedings.mlr.press/v37/flaxman15.html
https://proceedings.mlr.press/v37/flaxman15.html
http://proceedings.mlr.press/v9/grunewalder10a.html
http://proceedings.mlr.press/v9/grunewalder10a.html
http://arxiv.org/abs/2004.10964
http://arxiv.org/abs/2004.10964
http://jmlr.org/papers/v13/hennig12a.html
http://jmlr.org/papers/v13/hennig12a.html
http://jmlr.org/papers/v13/hennig12a.html
https://proceedings.neurips.cc/paper/2014/file/069d3bb002acd8d7dd095917f9efe4cb-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/069d3bb002acd8d7dd095917f9efe4cb-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/069d3bb002acd8d7dd095917f9efe4cb-Paper.pdf
https://arxiv.org/abs/2010.02705
https://arxiv.org/abs/2010.02705

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier.
2012. On Bayesian Upper Confidence Bounds for
Bandit Problems. In Proceedings of the Fifteenth
International Conference on Artificial Intelligence
and Statistics, volume 22 of Proceedings of Machine
Learning Research, pages 592–600, La Palma, Ca-
nary Islands. PMLR.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp
Hennig, and Frank Hutter. 2017. Fast Bayesian Opti-
mization of Machine Learning Hyperparameters on
Large Datasets. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 54 of Proceedings of Machine Learning
Research, pages 528–536, Fort Lauderdale, FL, USA.
PMLR.

Nathaniel Korda, Emilie Kaufmann, and Rémi Munos.
2013. Thompson Sampling for 1-Dimensional Expo-
nential Family Bandits. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26, pages 1448–1456. Curran Associates,
Inc.

Andreas Krause and Cheng Ong. 2011. Contextual
Gaussian Process Bandit Optimization. In Ad-
vances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc.

Tze Leung Lai. 1987. Adaptive Treatment Allocation
and the Multi-Armed Bandit Problem. The Annals of
Statistics, 15(3):1091–1114.

Tze Leung Lai and Herbert Robbins. 1985. Asymptoti-
cally Efficient Adaptive Allocation Rules. Advances
in Applied Mathematics, 6(1):4–22.

Tor Lattimore and Csaba Szepesvári. 2020. Bandit
algorithms. Cambridge University Press.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. 2018. Hyperband:
A Novel Bandit-Based Approach to Hyperparame-
ter Optimization. Journal of Machine Learning Re-
search, 18(185):1–52.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xiuyuan Lu and Benjamin Van Roy. 2017. Ensemble
sampling. In Advances in Neural Information Pro-
cessing Systems, pages 3258–3266.

Wesley J Maddox, Maximilian Balandat, Andrew Gor-
don Wilson, and Eytan Bakshy. 2021. Bayesian Op-
timization with High-Dimensional Outputs. arXiv
preprint arXiv:2106.12997.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Diana M. Negoescu, Peter I. Frazier, and Warren B.
Powell. 2011. The knowledge-gradient algorithm
for sequencing experiments in drug discovery. IN-
FORMS Journal on Computing, 23(3):346–363.

Vu Nguyen, Vaden Masrani, Rob Brekelmans, Michael
Osborne, and Frank Wood. 2020. Gaussian Process
Bandit Optimization of the Thermodynamic Varia-
tional Objective. In Advances in Neural Information
Processing Systems, volume 33, pages 5764–5775.
Curran Associates, Inc.

Ian Osband, Charles Blundell, Alexander Pritzel, and
Benjamin Van Roy. 2016. Deep Exploration via
Bootstrapped DQN. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 29,
pages 4026–4034. Curran Associates, Inc.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A Fast, Extensible Toolkit for
Sequence Modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Carbon
emissions and large neural network training. arXiv
preprint arXiv:2104.10350.

Geoff Pleiss, Jacob Gardner, Kilian Weinberger, and
Andrew Gordon Wilson. 2018. Constant-Time Pre-
dictive Distributions for Gaussian Processes. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4114–4123. PMLR.

Tom J Pollard and Alistair EW Johnson. 2016. The
MIMIC-III clinical database (version 1.4). The
MIMIC-III Clinical Database. PhysioNet.

Lucas Høyberg Puvis de Chavannes, Mads Guld-
borg Kjeldgaard Kongsbak, Timmie Rantzau, and
Leon Derczynski. 2021. Hyperparameter power im-
pact in transformer language model training. In Pro-
ceedings of the Second Workshop on Simple and Effi-
cient Natural Language Processing, pages 96–118,
Virtual. Association for Computational Linguistics.

Carl Edward Rasmussen and Christopher K. I. Williams.
2005. Gaussian Processes for Machine Learning.
The MIT Press.

10619

http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html
https://proceedings.neurips.cc/paper/2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1016/0196-8858(85)90002-8
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://proceedings.neurips.cc/paper/2020/file/3f2dff7862a70f97a59a1fa02c3ec110-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f2dff7862a70f97a59a1fa02c3ec110-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f2dff7862a70f97a59a1fa02c3ec110-Paper.pdf
https://proceedings.mlr.press/v80/pleiss18a.html
https://proceedings.mlr.press/v80/pleiss18a.html
https://doi.org/10.13026/C2XW26
https://doi.org/10.13026/C2XW26
https://doi.org/10.18653/v1/2021.sustainlp-1.12
https://doi.org/10.18653/v1/2021.sustainlp-1.12

Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni,
Ian Osband, and Zheng Wen. 2018. A Tutorial on
Thompson Sampling. Foundations and Trends® in
Machine Learning, 11(1):1–96.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P
Adams, and Nando De Freitas. 2015. Taking the
human out of the loop: A review of bayesian opti-
mization. Proceedings of the IEEE, 104(1):148–175.

Chaitanya Shivade. 2019. MedNLI - A Natural Lan-
guage Inference Dataset For The Clinical Domain
(version 1.0.0). PhysioNet. https://doi.org/10.
13026/C2RS98.

Aleksandrs Slivkins. 2019. Introduction to Multi-
Armed Bandits. Foundations and Trends in Machine
Learning, 12(1-2):1–286.

Edward Snelson and Zoubin Ghahramani. 2006. Sparse
Gaussian Processes using Pseudo-inputs. In Y. Weiss,
B. Schölkopf, and J. C. Platt, editors, Advances in
Neural Information Processing Systems 18, pages
1257–1264. MIT Press.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical Bayesian Optimization of Machine
Learning Algorithms. In Advances in Neural In-
formation Processing Systems, volume 25. Curran
Associates, Inc.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and
Matthias Seeger. 2010. Gaussian Process Optimiza-
tion in the Bandit Setting: No Regret and Experimen-
tal Design. In Proceedings of the 27th International
Conference on International Conference on Machine
Learning, ICML’10, pages 1015–1022, USA. Omni-
press.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A
continual pre-training framework for language under-
standing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8968–8975.

William R. Thompson. 1935. On the Theory of Ap-
portionment. American Journal of Mathematics,
57(2):450–456.

Michalis Titsias. 2009. Variational Learning of Induc-
ing Variables in Sparse Gaussian Processes. In Pro-
ceedings of the Twelth International Conference on
Artificial Intelligence and Statistics, volume 5 of Pro-
ceedings of Machine Learning Research, pages 567–
574, Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA. PMLR.

Ryan Turner, David Eriksson, Michael McCourt, Juha
Kiili, Eero Laaksonen, Zhen Xu, and Isabelle Guyon.
2021. Bayesian optimization is superior to random
search for machine learning hyperparameter tuning:
Analysis of the black-box optimization challenge
2020. arXiv preprint arXiv:2104.10201.

Iñigo Urteaga and Chris Wiggins. 2018. Variational
inference for the multi-armed contextual bandit. In
Proceedings of the Twenty-First International Con-
ference on Artificial Intelligence and Statistics, vol-
ume 84 of Proceedings of Machine Learning Re-
search, pages 698–706, Playa Blanca, Lanzarote, Ca-
nary Islands. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Thuy-Trang Vu, Dinh Phung, and Gholamreza Haf-
fari. 2020. Effective unsupervised domain adaptation
with adversarially trained language models. arXiv
preprint arXiv:2010.01739.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv
preprint arXiv:1804.07461.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Andrew Wilson and Hannes Nickisch. 2015. Kernel
Interpolation for Scalable Structured Gaussian Pro-
cesses (KISS-GP). In Proceedings of the 32nd In-
ternational Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Re-
search, pages 1775–1784, Lille, France. PMLR.

Xinjie Yu and Mitsuo Gen. 2010. Introduction to evo-
lutionary algorithms. Springer Science & Business
Media.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending Against Neural Fake
News. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.

10620

https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070
https://doi.org/10.13026/C2RS98
https://doi.org/10.13026/C2RS98
https://doi.org/10.1561/2200000068
https://doi.org/10.1561/2200000068
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://arxiv.org/abs/2010.01739
https://arxiv.org/abs/2010.01739
https://proceedings.mlr.press/v37/wilson15.html
https://proceedings.mlr.press/v37/wilson15.html
https://proceedings.mlr.press/v37/wilson15.html
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf

A Appendix: Gaussian process details

Gaussian processes. A GP is a stochastic process,
f(ψ) : ψ ∈ Ψ, such that for any finite set of ele-
ments ψ1, · · · , ψk ∈ Ψ, the associated finite col-
lection of random variables f(ψ1), · · · , f(ψk), has
a multivariate Gaussian distribution (Rasmussen
and Williams, 2005).

A GP f(ψ) ∼ GP (µ(·), k(·, ·)) can be un-
derstood as a probability distribution over arbi-
trary functions, with µ(ψ) = E[f(ψ)] its mean
function, and k(·, ·) the covariance kernel, i.e.,
k(ψ,ψ′) = E[(f(ψ)− µ(ψ))⊤(f(ψ′)− µ(ψ′))].

The mean and kernel functions determine the
GP function class: i.e., the regularity and smooth-
ness assumptions of the modeled data. These
are parameterized prior-functions µ(·|θµ) and
k(·, ·|θk), which can be fitted to the observed
data r1:T = (r1, · · · , rT) at inputs ψ1:T =
(ψ1, · · · , ψT). For instance, via Type-II max-
imum likelihood estimation (MLE) of the GP
model’s hyperparameters θ = (θµ, θk), θ̂ =
argmaxθ log p (r1:T |f(ψ1:T |θ)), where the data
likelihood p(r|f(·; θ)) is a function of the observa-
tion noise’s probability distribution. Bayesian ap-
proaches to hyperparameter selection for GP model
training can also be implemented (Rasmussen and
Williams, 2005).

Gaussian process posteriors. Given a fitted GP,
posterior inference —computing the predictive dis-
tribution of a new datapoint ψ′ after observing
ψ1:T— can be performed in closed form for the
Gaussian observation noise case. For example,
when the noise in Equation (7) is i.i.d. drawn from
ϵt ∼ N

(
ϵ|0, σ2ϵ

)
.

Formally, given a set of observations r1:T at in-
puts ψ1:T , the posterior distribution of f is a GP
with the following mean and covariance functions:

µT (ψ) = kT (ψ)
⊤(KT + σ2ϵ I)

−1r1:T ,

kT (ψ,ψ
′) = k(ψ,ψ′) (8)

− kT (ψ)
⊤(KT + σ2ϵ I)

−1kT (ψ
′) ,

with

{
kT (ψ) = (k(ψ1, ψ), · · · , k(ψT , ψ))⊤ ,

KT = (k(ψ,ψ′))∀ψ,ψ′∈ψ1:T
.

(9)

These closed-form posterior inference expressions
can be efficiently computed, both in exact and ap-
proximate ways (Rasmussen and Williams, 2005;
Pleiss et al., 2018).

Posterior inference with observation noise be-
yond the Gaussian assumption is an active research
area, with many approximate techniques available
for practitioners (Snelson and Ghahramani, 2006;
Titsias, 2009; Wilson and Nickisch, 2015; Flaxman
et al., 2015).

B Appendix: Implementation and
experimentation details

B.1 Gaussian process

We implement Gaussian process modules based
on MIT Licensed GPyTorch (Gardner et al., 2018),
and execute all experiments with a GP process prior
and GP fitting details as described in Table 3.

Table 3: Gaussian Process prior and hyperparameters.

Hyperparameter Initial Value
GP Model

Mean Function Constant
Prior constant 0

Kernel Function Scaled RBF Kernel
Prior output-scale 1
Prior length-scale 0.25

Observation Model
Likelihood function Gaussian

Noise variance 1
Training details

Loss function ExactMarginalLogLikelihood
train max iters 100

loss epsilon 0.01
Optimizer

optimizer adam
lr 0.1

We take the most conservative approach on GP-
TS prior and hyperparameter selection: we utilize
an uninformative prior, with no preference for any
hyperparameter configuration. This is the less as-
suming yet more challenging experimental set-up,
where we evaluate whether GP-TS can success-
fully learn —without any prior knowledge— to
find good hyperparameters.

Based on bandit theory and practice, informa-
tive priors can accelerate convergence if properly
specified (i.e., when more mass is put into favor-
able regions of the hyperparameter space); while
slowing down convergence, if incorrectly specified
(i.e., when mass is put in unfavorable regions of
the space). Evaluating how different priors affect
GP-TS are experiments left as future work.

10621

B.2 RoBERTa pre-training

We pre-train all MIT-licensed RoBERTa models as
provided by Ott et al. (2019), with the BERT-base
architecture of 125M parameters, by minimizing
the MLM loss with dynamic masking in a server
with 8 Tesla V100-SXM2-32GB GPUs.

We execute the RoBERTa pre-training procedure
as described in Fairseq’s RoBERTa pre-training tu-
torial8, with specific hyperparameters as described
in Table 4.

The interactions for wiki-c4 and e-commerce
contain 1000 updates each (i.e., u = 1000), while
we reduce the number of updates per-interaction to
u = 500 when pre-training with mimic notes.

Table 4: RoBERTa pre-training hyperparameters.

Hyperparameter Value
Architecture RoBERTa base

Task masked lm
Criterion masked lm

Model details
dropout 0.1

attention-dropout 0.1
weight-decay 0.01

Training details
batch-size 32

update-freq 16
sample-break-mode complete
tokens-per-sample 512

Optimizer
optimizer adam

adam-betas (0.9,0.98)
adam-eps 1e-6
clip-norm 1.0

Learning rate
lr 0.0005

lr-scheduler polynomial decay
linear-warmup-updates 1000

Dynamic masking
mask-prob ρ

leave-unmasked-prob 0.1
random-token-prob 0.1

8Available at https://github.com/pytorch/fairseq/
blob/main/examples/roberta/README.pretraining.md

B.3 Summary statistics of the computational
cost

We describe in Table 5 summary statistics on the
execution time of GP-TS pre-training in our ex-
periments, as per details in Section B.2. The per-
interaction, average execution time of pre-training
is: 33,316 seconds for the wiki-c4 dataset; 37,392
seconds for the e-commerce data; and 1,489 sec-
onds for MIMIC notes. It only takes about 20 sec-
onds on average to execute GP-TS per-interaction.
Hence, the overhead is of 0.05% for the biggest
dataset, and 1% for the smallest one. We note that
the TLM pre-training implementation of Ott et al.
(2019) leverages GPU computations, while GP-TS
is executed within a single CPU —with no GPU
acceleration.

Table 5: Per-interaction execution time of TLM pre-
training and GP-TS: average time in seconds, plus-
minus the standard deviation.

Execution time in seconds
Dataset

TLM Pre-training GP-TS ρ GP-TS ψ
wiki-c4 33, 316± 395 s 19± 6 s 21± 6 s

mimic 1489± 46 s 16± 5 s 17± 5 s

e-commerce 37, 392± 494 s 21± 3 s 23± 10 s

B.4 Summary statistics of the pre-training
datasets

We split each pre-training dataset into 80%-10%-
10% training, validation and test sets for our experi-
ments, with summary statistics of each set provided
in Table 6.

10622

https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.pretraining.md
https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.pretraining.md

Table 6: Summary statistics of the pre-training datasets.

Dataset Total word count Average words per sentence
Training 4,517,625,794 35.9

Validation 735,950,955 35.6wiki-c4
Test 735,571,833 35.6

Training 402,720,632 216.7
Validation 82,340,235 658.7mimic

Test 18,735,884 187.3
Training 3,935,845,017 5.6

Validation 494,802,278 5.5e-commerce
Test 482,733,197 5.5

B.5 RoBERTa fine-tuning

The specific RoBERTa hyperparameters used for
the in-domain fine-tuning downstream tasks are
described in Tables 7–10.

Table 7: RoBERTa fine-tuning hyperparameters for the
e-commerce title classification downstream task.

Hyperparameter Value
Architecture RoBERTa base

Task
Task sentence prediction

Criterion sentence prediction
num-classes 2

max-positions 512
init-token 0

separator-token 2
Model details

dropout 0.1
attention-dropout 0.1

Dataset
batch-size 32

update-freq 1
required-batch-size-multiple 1

max-tokens 4400
skip-invalid-size-inputs-valid-test True

Optimizer
optimizer adam

weight-decay 0.1
adam-betas (0.9,0.98)
adam-eps 1e-6

Learning rate
lr-scheduler polynomial decay

lr 1e-5
linear-warmup-updates 1000

max-updates 100000
max-epoch 10
clip-norm 0.0

Table 8: RoBERTa fine-tuning hyperparameters for the
e-commerce title similarity downstream task.

Hyperparameter Value
Architecture RoBERTa base

Task
Task sentence prediction

Criterion sentence prediction
num-classes 2

max-positions 512
init-token 0

separator-token 2
Model details

dropout 0.1
attention-dropout 0.1

Dataset
batch-size 32

update-freq 1
required-batch-size-multiple 1

max-tokens 4400
skip-invalid-size-inputs-valid-test True

Optimizer
optimizer adam

weight-decay 0.1
adam-betas (0.9,0.98)
adam-eps 1e-6

Learning rate
lr-scheduler polynomial decay

lr 1e-5
linear-warmup-updates 1000

max-updates 100000
max-epoch 10
clip-norm 0.0

B.6 Summary statistics of the fine-tuning
datasets

We split each per-task fine-tuning dataset into train-
ing, development and test sets for our experiments,
with summary statistics of each set provided in
Table 11.

10623

Table 9: RoBERTa fine-tuning hyperparameters for the
e-commerce title quality downstream task.

Hyperparameter Value
Architecture RoBERTa base

Task
Task sentence prediction

Criterion sentence prediction
num-classes 2

max-positions 512
init-token 0

separator-token 2
Model details

dropout 0.1
attention-dropout 0.1

Dataset
batch-size 32

update-freq 1
required-batch-size-multiple 1

max-tokens 4400
skip-invalid-size-inputs-valid-test True

Optimizer
optimizer adam

weight-decay 0.1
adam-betas (0.9,0.98)
adam-eps 1e-6

Learning rate
lr-scheduler polynomial decay

lr 1e-5
linear-warmup-updates 1000

max-updates 100000
max-epoch 10
clip-norm 0.0

Table 10: RoBERTa fine-tuning hyperparameters for the
medical MLI downstream task.

Hyperparameter Value
Architecture RoBERTa base

Task
Task sentence prediction

Criterion sentence prediction
num-classes 3

max-positions 512
init-token 0

separator-token 2
Model details

dropout 0.1
attention-dropout 0.1

Dataset
batch-size 32

update-freq 1
required-batch-size-multiple 1

max-tokens 4400
skip-invalid-size-inputs-valid-test True

Optimizer
optimizer adam

weight-decay 0.1
adam-betas (0.9,0.98)
adam-eps 1e-6

Learning rate
lr-scheduler polynomial decay

lr 1e-5
linear-warmup-updates 1000

max-updates 100000
max-epoch 10
clip-norm 0.0

10624

Table 11: Summary statistics of the fine-tuning task datasets.

Dataset Total sentence count
Average words per sentence

Input0 – Input1
Training 224,745 10.9 – 10.9

Dev 6,035 10.9 – 10.8e-commerce title
classification & similarity

Test 12,311 10.9 – 10.8
Training 49,420 10.6 – NA

Dev 2,629 9.8 – NAe-commerce title quality
Test 5,174 9.8 – NA

Training 11,232 15.9 – 5.5
Dev 1,395 16.9 – 5.4medical MLI
Test 1,422 15.4 – 5.4

10625

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

We provide a dedicated section named "Limitations" in page 9, right after Conclusions.

�3 A2. Did you discuss any potential risks of your work?
We have discussed ethical and societal considerations in the section entitled "Ethics Statement" right
after the "Limitations" section in page 9.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
The abstract succinctly summarizes our work, with specific contributions highlighted at the end of
the introduction section.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Our work uses and creates scientific artifacts:

- We design GP-TS in Section 3, and provide its implementation details in Appendix B.
- We use RoBERTa models for our experiments of Section 4, with implementation and configuration details
provided in Appendix B.

�3 B1. Did you cite the creators of artifacts you used?
- We use (and cite) the GPyTorch package used in our GP-TS implementation, as explained in Section
4, with explicit configuration details provided in Appendix B.
- We use RoBERTa language models (with citations to the original article and a reference to the
codebase we implement included in the manuscript) for our experiments in Section 4, with all
configuration details provided in Appendix B.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Used artifacts are MIT licensed, as explained in Appendix B.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Our use of the artifacts is consistent with their intended use, as per licensed detailed in Appendix B.

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
All used datasets were previously anonymized, as explained in the provided citations of each dataset.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
We provide a description of the datasets in Section 4, with details in Appendix B.
No demographic information is available for the used datasets (they have been previously anonymized).

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Detailed relevant statistics are provided in Appendix B.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10626

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C �3 Did you run computational experiments?
Computational experiments are described in Section 4, with further implementation and configuration

details provided in Appendix B.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B contains all the implementation and configuration details of the computational experi-
ments.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 describes the MLM hyperparameter search executed.
Appendix B contains all other hyperparameter configuration details, for which no search was
executed.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4 contains all the statistics that support our findings: we clearly indicate results in Figures
shown are for a single realization, and describe results for multiple seeds in Table 1.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix B describes our implementation and the packages used.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10627

