
Findings of the Association for Computational Linguistics: ACL 2023, pages 10667–10679
July 9-14, 2023 ©2023 Association for Computational Linguistics

Understanding Programs by Exploiting (Fuzzing) Test Cases

Jianyu Zhao∗1, Yuyang Rong∗2, Yiwen Guo†3, Yifeng He2, Hao Chen2

1Tencent Security Big Data Lab, 2UC Davis, 3Independent Researcher
yjjyzhao@tencent.com, {PeterRong96, guoyiwen89}@gmal.com

{yfhe, chen}@ucdavis.edu

Abstract

Semantic understanding of programs has at-
tracted great attention in the community. In-
spired by recent successes of large language
models (LLMs) in natural language understand-
ing, tremendous progress has been made by
treating programming language as another sort
of natural language and training LLMs on cor-
pora of program code. However, programs are
essentially different from texts after all, in a
sense that they are normally heavily structured
and syntax-strict. In particular, programs and
their basic units (i.e., functions and subroutines)
are designed to demonstrate a variety of be-
haviors and/or provide possible outputs, given
different inputs. The relationship between in-
puts and possible outputs/behaviors represents
the functions/subroutines and profiles the pro-
gram as a whole. Therefore, we propose to
incorporate such a relationship into learning,
for achieving a deeper semantic understanding
of programs. To obtain inputs that are represen-
tative enough to trigger the execution of most
part of the code, we resort to fuzz testing and
propose fuzz tuning to boost the performance
of program understanding and code represen-
tation learning, given a pre-trained LLM. The
effectiveness of the proposed method is verified
on two program understanding tasks includ-
ing code clone detection and code classifica-
tion, and it outperforms current state-of-the-arts
by large margins. Code is available at https:
//github.com/rabbitjy/FuzzTuning.

1 Introduction

Code intelligence powered by machine learning
has attracted considerable attention in both the AI
and software engineering community. Particularly,
code representation learning, which aims to en-
code functional semantics of source code, lays the
foundation for achieving the intelligence and is of

∗Equal contribution
†Corresponding author

great interest. The learned representation can be ap-
plied to various downstream tasks, including code
classification (Mou et al., 2016), code summariza-
tion (Iyer et al., 2016), clone detection (Svajlenko
et al., 2014; Mou et al., 2016), etc.

Many efforts inspired by the developments of
natural language understanding have been devoted
to learning code representations, among which it
has been increasingly popular to adopt large lan-
guage models (LLMs) that are capable of learning
contextual information from data at scale (Feng
et al., 2020; Li et al., 2022). The LLMs can then be
fine-tuned on domain-specific code to achieve supe-
rior performance compared with tradition models.

Despite being effective, these natural language
processing methods do not fit perfectly for handling
programs. Specifically, programs are heavily struc-
tured and syntax-strict (to be understood by compil-
ers or interpreters), while natural language corpus
is not. As basic units of programs, functions and
subroutines can take a variety of argument values
to demonstrate different logical behaviors or return
different results. That being said, the relationship
between inputs and possible outputs/behaviors es-
sentially represents the functions/subroutines and
further the whole programs.

In this paper, we propose to incorporate such a re-
lationship into learning for a deeper understanding
of programs. In fact, given enough inputs to exe-
cute all pieces of the code, then the outputs would
include enough runtime information we need to
profile and understand the program. However, it is
nontrivial to generate a limited number of inputs
that are representative enough to execute every part
of the code. Without a proper strategy, we may end
up with a large number of inputs that execute simi-
lar parts of codes. To address the issue, we opt to
utilize fuzz testing (also known as fuzzing) (Sutton
et al., 2007), which is a common software testing
practice and dynamic analysis tool whose origi-
nal goal is to find software bugs by executing as

10667

https://github.com/rabbitjy/FuzzTuning
https://github.com/rabbitjy/FuzzTuning


much code as possible. More specifically, we re-
purpose fuzz testing to generate input and output
data for assisting code representation learning, and
we demonstrate how the input and output data (i.e.,
test cases) can be appropriately incorporated into
existing LLMs to achieve superior program under-
standing performance.

The contributions of this paper are three-fold.
First, by recognizing the essence code representa-
tion learning, we propose to take advantage of the
relationship between inputs and possible outputs
for achieving a deeper understanding of programs.
Second, we, for the first time, repurpose fuzz test-
ing to assist code presentation learning, marrying
these two concepts from different communities for
achieving more powerful AI. Third, we obtain state-
of-the-art results on typical program understanding
tasks including clone detection and code classifica-
tion, in comparison to prior arts.

2 Related Work

In this section, we introduce related work on code
understanding (from the natural language under-
standing community) and fuzzing (from the soft-
ware engineering community).

2.1 Code Representation Learning

Inspired by the success of LLMs in natural lan-
guage processing (Raffel et al., 2020; Liu et al.,
2019; Devlin et al., 2018), LLMs trained on pro-
gramming languages have also been widely used to
drive code intelligence. For instance, Kanade et al.
(2020) proposed cuBERT to train BERT models on
a curated and deduplicated corpus of 7.4M Python
files from GitHub, and adapt the pre-trained models
to various code classification tasks and a program
repair task. Thereafter, a bunch of methods have
been developed and a variety of LLMs have been
trained on code data, including CodeBERT (Feng
et al., 2020), CodeT5 (Wang et al., 2021c), and
CodeGPT (Lu et al., 2021).

The importance of comprehending syntax and
structures for learning code representations has also
been pointed out by several prior arts, and methods
that incorporate programming-language-specified
features, including abstract syntax tree (Tipirneni
et al., 2022; Guo et al., 2022), control or data flow
graphs (Guo et al., 2020), and intermediate rep-
resentation of code (Peng et al., 2021) have been
developed. These methods only utilize information
available for static analysis. It is generally difficult

for static analysis to be both safe and sound (Taneja
et al., 2020) when analyzing the behavior of pro-
grams. For instance, a path that exists on the con-
trol flow graph may never be executed due to data-
flow limitations. Our work is the first to take dy-
namic program information (by generating and ex-
ploiting test cases with inputs and outputs) into
account for code representation learning. An input
will lead to execution of part of the program and an
output (or some behaviors if no output is required),
which would reflect the functionality of that part
of the program. We hypothesize that if we have
enough inputs to execute the code sufficiently, the
outputs would also include enough runtime infor-
mation that we need to profile the program.

2.2 Fuzzing

Fuzz testing, or fuzzing, is a process that tests the
correctness of programs. Fuzzing can be roughly
considered as a four-stage loop. First the program
is executed with a given input. Second, the behav-
ior of the program is monitored to determine if any
new behavior is triggered. Third, if a new behavior
is present, the corresponding input will be saved
into a store, otherwise, the input is discarded as
not interesting. Finally, a mutator takes a saved
input in the store, mutates it in different fashions
and sends the input for another round of execution.

American Fuzzy Lop (AFL)1 is the first fuzzer
to implement behavior monitoring using branch
coverage. It tracks which edges of the control flow
graph have been executed. Since the invention
of AFL, many innovations have been made to im-
prove the overall fuzzing performance. Wang et al.
(2021a); Gan et al. (2018) modified branch cover-
age to lower the overhead while improving track-
ing sensitivity. Böhme et al. (2019) proposed that
power scheduling is better than a first-in-first-out
queue for input store and improved the fuzzing per-
formance by a magnitude. Chen and Chen (2018)
introduced new mutation algorithms and showed
superior performance than random mutation. Many
of the changes have been incorporated into a more
modern tool called AFL++ (Fioraldi et al., 2020).

Unfortunately, current use of fuzzers only fo-
cuses on the bugs in the software (Chen et al., 2018;
Rong et al., 2020; Aschermann et al., 2019) and
did not show possibility of adopting fuzzing results
in code representation learning for AI. We identify
that these results can be used to profile programs

1https://lcamtuf.coredump.cx/afl/

10668

https://lcamtuf.coredump.cx/afl/


and improve the performance of code representa-
tion learning and program understanding.

3 Method

As mentioned in Section 1, programs show strict
syntax. To inspire deeper understanding of the syn-
tax and logical behaviors of a program or function-
s/subroutines (which are the building blocks of the
program), we attempt to exploit the relationship be-
tween their inputs and possible outputs/behaviors
for achieving improved understanding of programs
and code, akin to how engineers understands third-
party code.

However, with existing learning techniques, it
seems nontrivial to generate inputs that could lead
to execution of sufficient part of the code, thus we
resort to fuzzing to achieve this goal.

3.1 Fuzzing for Obtaining Inputs (and
Outputs)

Despite being widely adopted for testing software,
fuzzing has rarely been adopted in machine learn-
ing tasks. In general, fuzzing is a software testing
practice, whose goal is to find software bugs by ex-
ecuting as much code as possible. To achieve this,
it executes the program with different inputs and
monitors the behavior of each execution. Therefore,
as byproducts of fuzzing, a large number of inputs
may be produced by a fuzzer, each triggering a new
behavior of the program under test.

Fuzzing is programming language agnostic in
general. However, with only source code, we have
to compile the programs into executable files for
fuzzing. We mainly describe details for four main-
stream languages (C, C++, Java, and Python), and a
tool was specifically designed to build the programs
for fuzzing. This tool interacts with the compiler
or interpreter to automatically fix some problems
that prevent it from being fuzzed. Since the main
aim of this work is to assist models to better under-
stand programs, we fix problems that do not affect
the semantics and functionality of code but prevent
fuzzing.

For C and C++, we treat them as C++ files. Some
semantics-irrelevant errors in the program would
prevent the code from compiling and fuzzing. For
example, missing headers, absent return of a main
function that is defined to have one, and misuse
of reserved keyword. In order to fix these compi-
lation errors, we designed a compiler plugin that
can automatically fix these. First we run the lexer

and parser on the program to gain abstract syntax
tree, which would make code transformation much
easier. Then we designed a parser to parse error
message from the compiler. We introduce several
fixes to correct the program for different errors.

1. Missing headers. We included most com-
monly used headers in the C++ library at the
head of each program.

2. Incorrect return type and/or arguments.
For instance, if a main function is defined
as “int main()” but provides no return, we
fixed it by added “return 0;” to the end of
the program.

3. Misuse of keywords in the standard library.
Reserved keywords might be misused as vari-
ables and we added a “fixed_” prefix to each
of such variables to avoid keyword violation.

4. Incorrect struct definition. Many struc-
tures were defined without a semicolon after
it, we will append that semicolon.

5. Undeclared identifier. We notice that many
programs use static values as a constant value,
yet the value is sometimes missing. We would
analyze the usage of the constants and insert
definitions for them.

For Java programs, we compiled them into byte-
codes using Kelinci (Kersten et al., 2017) to instru-
ment them for fuzzing. Not all programs we tested
were named Main.java but they all defined a Main
class. In order to compile them, we changed the
Main class to its file name in order to compile it.
For each program, a TCP server was added to com-
municate with a fork server which then sends data
to the fuzzer.

Python is the most difficult language. First many
lexical errors are not as easy to fix as C/C++ and
Java. For example, if the program mixed tabs and
spaces, it is hard to infer what is the intended
indention. To solve this, we used autopep82 to
transform the program. The next challenge is that
Python2 and Python3 can’t be easily distinguished,
therefore, it is unclear which interpreter should be
used for fuzzing. To detect the version, also to
verify the correctness of the transformation, we
treated all code as Python3 in the first place and
try to compile python program to bytecode using

2https://pypi.org/project/autopep8/

10669

https://pypi.org/project/autopep8/


py_compile. If the compilation failed, then it was
probably a Python2 implementation and we tried
to convert it to Python3 using 2to33. Finally, we
had to instrument the behavior monitoring and re-
porting to communicate with the fuzzer. We used
py-afl-fuzz4 to achieve this.

We want to point out that all the changes made
in this section are for fuzzing only. When training
models in the following sections, the programs
remain unchanged.

We selected AFL++ (Fioraldi et al., 2020) as our
fuzzer and fuzzed all experimental data on a server
with 2 20-core 40-thread x86_64 CPUs and 692GB
of memory. Each fuzzer only has one thread and
ran until it exhausts all paths or a K-minute timeout
is triggered. The stored inputs that are of interest
to AFL++ can then be utilized to execute the pro-
gram and obtain outputs, and they constitute the
fuzzing test cases. The test cases (i.e., pairs of in-
puts and outputs) were produced in bytes and we
may decode it into human readable strings.

3.2 Model
Although it is possible to train representation learn-
ing models from scratch using the obtained fuzzing
test cases, it can be more effective to take advan-
tage of previous pre-training effort. In particular,
given a pre-trained LLM, we attempt to take these
test cases as model inputs somehow. Considering
that the LLM was mostly trained on programming
language and natural language corpus (Feng et al.,
2020; Wang et al., 2021c; Guo et al., 2022), the
source code of the program is fed into the model
together with fuzzing test cases, by concatenating
the two parts.

3.3 Prompting
The fuzzing test cases in their raw format are a
series of bytes, and, by decoding, we can obtain a
series of Unicode strings which are unorganized.
To help LLMs better understand these test cases,
we introduce cloze prompts (Petroni et al., 2019).
Prompt have shown significant power in natural
language processing since the invention of LLMs.
Considering that LLMs can be pre-trained on both
natural language corpora and programming lan-
guage corpora, we design both natural-language-
based prompts and programming-language-based
prompts for each pair of input (denoted by [INPUT
]) and output (denoted by [OUTPUT]) as follows:

3https://docs.python.org/3/library/2to3.html
4https://pypi.org/project/python-afl/

Dataset # of problems # of programs

POJ104 104 52K
C++1000 1000 500K
Python800 800 240K
Java250 250 75K

Table 1: Dataset statistics.

1. Natural-language-based prompt:

(a) [SEP] + “input: ” + [INPUT] + “,” + “out-
put: ” + [OUTPUT];

(b) [SEP] + “input is ” + [INPUT] + “and” +
“output is ” + [OUTPUT];

2. Programming-language-based prompt:

(a) [SEP] + "cin>>" + [INPUT] + ";" + "cout
<<" + [OUTPUT]; (For C/C++)

(b) [SEP] + “System.in ” + [INPUT] + “;” +
“System.out” + [OUTPUT]; (For Java)

(c) [SEP] + “input()” + [INPUT] + “\n” +
“print” + [OUTPUT]; (For Python)

In experiments, we found that the programming-
language-based prompts are more effective and we
will stick with it in the sequel of this paper, if not
specified. This is unsurprising since the fuzzing
test cases can stay in harmony with the source code
with such a prompt.

Each prompted pair of input and output can be
concatenated together before being further concate-
nated with the source code. Pre-trained LLMs can
be tuned on downstream datasets with their inputs
being modified to consider both the source code
and fuzzing test cases. We call this method fuzz
tuning in the paper.

4 Experimental Results

In this section, we report experimental results to
verify the effectiveness of our fuzz tuning. We con-
sider popular tasks (i.e., clone detection and code
classification) and datasets involving mainstream
languages including C, C++, Java, and Python. Ex-
periments were performed on NVIDIA V100 GPUs
using PyTorch 1.7.0 (Paszke et al., 2019) imple-
mentations.

Datasets. Our experiments were performed
mainly on two datasets, i.e., POJ104 (Mou et al.,
2016) and CodeNet (Puri et al., 2021). POJ104
has been incorporated into CodeXGlue (Lu et al.,
2021) and is widely used. It consists of 104 prob-
lems, each containing 500 C/C++ implementations.
CodeNet is a recently proposed large-scale dataset

10670

https://docs.python.org/3/library/2to3.html
https://pypi.org/project/python-afl/


Method Java250 Python800 C++1000∗

Rule-based w/SPT(AROMA) (Puri et al., 2021) 19.00 19.00 -
GNN w/SPT(MISIM) (Puri et al., 2021) 64.00 65.00 -
CodeBERT+FineT (Feng et al., 2020) 81.47 83.23 44.94
UniXcoder+FineT (Guo et al., 2022) 84.35 85.00 49.75

CodeBERT+FuzzT (ours) 83.39 85.64 54.92
UniXcoder+FuzzT (ours) 86.74 86.01 60.21

Table 2: Clone detection results on CodeNet. Compared with normal fine-tuning (FineT), our fuzz tuning (FuzzT)
leads to significant improvements and new state-of-the-arts. C++1000∗ contains 16% of all problems, which is a
roughly 6.3x downsample of the original dataset (see Table 8 for results on other scales). Bold stats are better.

Method MAP@R

CodeBERT+FineT (Feng et al., 2020) 84.29
GraphCodeBERT+FineT (Guo et al., 2020) 85.16
PLBART+FineT (Ahmad et al., 2021) 86.27
SYNCOBERT+FineT (Wang et al., 2021b) 88.24
CodeT5+FineT (Wang et al., 2021c) 88.65
ContraBERT+FineT (Liu et al., 2023) 90.46
UniXcoder+FineT (Guo et al., 2022) 90.52

CodeBERT+FuzzT (ours) 92.01
UniXcoder+FuzzT (ours) 93.40

Table 3: Clone detection results on POJ104. Our fuzz
tuning (FuzzT) leads to state-of-the-art results. Bold
stats are better.

for AI for code applications, and it contains pro-
grams written in C++, Java, and Python. In par-
ticular, it has four subsets for these languages:
Java250, Python800, C++1000, and C++1400. We
chose Java250, Python800, and C++1000 for ex-
periments, which cover all the three languages in
CodeNet. Java250 consists of 250 problems where
each includes 300 Java programs, and Python800
consists of 800 problems where each includes 300
Python programs. C++1000 consists of 1000 prob-
lems where each includes 500 C++ programs, and
it is mainly used to verify the effectiveness of our
method over various training scales (i.e., our fuzz
tuning will be performed on various subsampling
ratios of the set) in this paper. See Table 1 for a
summarization of key information of all datasets.

Pre-trained LLMs. To make our experiments
more comprehensive, our fuzz tuning (FuzzT) was
tested on two different LLMs: CodeBERT (Feng
et al., 2020) and UniXcoder (Guo et al., 2022) that
were pre-trained on both natural languages and
programming languages.

Obtaining test cases. We set K = 5 for the
fuzzer. In POJ104, 90.3% of all fuzzed programs
quits before timeout, which justifies our decision.
Taking advantage of our effort in Section 3.1, all
datasets have more than 95% of the programs com-

piled / validated, and all of them have more than
90% of programs fuzzed.

4.1 Clone Detection Results
The clone detection task aims to measure the simi-
larity between two code snippets or two programs,
which can help reduce bugs and prevent the loss of
intellectual property.

Given a code snippet or the source code of a pro-
gram as a query, models should detect semantically
similar implementations on the test set. POJ104 is
adopted as the default dataset for code clone detec-
tion on CodeXGlue, thus we did experiment on it
first. We followed previous work (Lu et al., 2021)
and used a 64/16/24 split. That said, training was
performed on 64 problems while validation and
test were performed on other 16 and 24 problems,
respectively. Besides, We further experimented on
CodeNet which shows a larger data scale and vari-
ety. Java250, Python800, and C++1000 were used,
and we followed Puri et al. (2021) which used a
50%/25%/25% split for training/validation/test for
all these concerned sets. C++1000 is mainly used
to test our method over various training scales in
Section 4.4 with the full test set, and we will only
discuss results on the smallest subsampling ratio
(which is roughly 6.3x, achieving by randomly se-
lecting 16% of the problems for experiments) in
this subsection. We denoted such a subsampled set
as C++1000∗. All models tested here were tuned
on a single V100, for no longer than 8 GPU hours.

Results were evaluated using the mean aver-
age precision@R (MAP@R) (Musgrave et al.,
2020). To train our models, we followed previous
work (Lu et al., 2021) and directly set the learning
rate, batch size, and maximal sequence length (for
code tokens) to 2e-5, 8, and 400, respectively. We
used the Adam optimizer (Kingma and Ba, 2014)
to fine-tune each pre-trained model for 2 epochs.
The best model on the validation set is selected to
test. We adopted the same hyper-parameters on

10671



Method Java250 Python800 C++1000†

GIN (Puri et al., 2021) 6.74% 5.83% -
CodeGraph+GCN (Puri et al., 2021) 5.90% 12.2% -
C-BERT+FineT (Puri et al., 2021) 2.60% 2.91% -
CodeBERT+FineT (Feng et al., 2020) 2.37% 2.19% 16.34%
UniXcoder+FineT (Guo et al., 2022) 2.02% 1.95% 14.57%

CodeBERT+FuzzT (ours) 1.77% 1.61% 7.63%
UniXcoder+FuzzT (ours) 1.56% 1.28% 6.18%

Table 4: Code classification results on CodeNet. Our fuzz tuning (FuzzT) leads to new state-of-the-arts. C++1000†

contains 40% of all problems, which is a 2.5x downsample of the original dataset (see Table 9 for results on other
data scales). Bold stats are better.

Method Error Rate

TBCNN (Mou et al., 2016) 6.00%
ProGraML (Cummins et al., 2020) 3.38%
OSCAR (Peng et al., 2021) 1.92%
CodeBERT+FineT (Feng et al., 2020) 1.61%
UniXcoder+FineT (Guo et al., 2022) 1.61%

CodeBERT+FuzzT (ours) 1.40%
UniXcoder+FuzzT (ours) 1.38%

Table 5: Code classification results on POJ104. Our
fuzz tuning (FuzzT) leads to new state-of-the-arts. Bold
stats are better.

both POJ104 and CodeNet.

Table 3 provides the results on POJ104. It is
obvious that, when the proposed fuzz tuning is ap-
plied, we obtain significant performance gains with
both CodeBERT and UniXcoder. More specifically,
comparing with the normal fine-turning (FineT)
method, we obtained +7.72% and +2.88% abso-
lute gains in MAP@R with CodeBERT and UniX-
coder, respectively. Such practical improvements
clearly demonstrate the benefits of incorporating
fuzzing test cases into program understanding. In
addition, fuzz tuning obtained models (i.e., Code-
BERT+FuzzT and UniXcoder+FuzzT) outperform
all other state-of-the-art models significantly, lead-
ing to obvious empirical superiority (i.e., +2.94%)
comparing even with a very recent winning solution
on the CodeXGLUE benchmark 5 called Contra-
BERT.

Table 2 demonstrates the results on CodeNet.
Apparently, on CodeNet, our fuzz tuning also leads
to significant performance gains on CodeBERT and
UniXcoder, when compared with FineT.

5https://microsoft.github.io/CodeXGLUE/

4.2 Code Classification Results

The concerned code classification task (Mou et al.,
2016) requires that we assign the same label to
programs that were implemented to solve the same
problem and achieve the same goal. The exper-
iments were also performed on POJ104 and Co-
deNet, where each unique problem is considered
as a single class. For POJ104, we adopted the same
dataset split as in Peng et al. (2021)’s work, and,
for CodeNet, we kept the official data split (Puri
et al., 2021). As previously mentioned, C++1000
in CodeNet is mainly used to test our method over
various training scales in Section 4.4, and we will
only discuss results on the smallest subsampling ra-
tio (which is 2.5x, achieving by randomly selecting
40% of the programs for experiments) here. We
denoted such a subsampled tuning set as C++1000†.
We followed the hyper-parameter setting of Code-
BERT in defect detection to set a learning rate of
2e-5, a training batch size of 32, and a maximal
sequence length (for code tokens) of 400. We tuned
pre-trained LLMs for 10 epochs and selected the
models that performed the best on the validation set
and report their results on the test sets. Error rate
of different methods are reported for comparison.
All our code classification models were were tuned
on two V100, for no longer than 8 hours.

Table 5 and Table 4 summarize the results. Sim-
ilarly, We observe that our fuzz tuning bring sig-
nificant improvement, comparing with the normal
fine-tuning (FineT) method, it leads to +0.21% and
+0.23% absolute performance gain in reducing the
error rate with CodeBERT and UniXcoder, respec-
tively, on POJ104. Fuzz tuning obtained models
(i.e, CodeBERT+FuzzT and UniXcoder+FuzzT)
also outperform all previous models on this task
on POJ104, leading to new state-of-the-arts. The
same conclusion can also be drawn on CodeNet,

10672

https://microsoft.github.io/CodeXGLUE/


Decoding CD CC

CodeBERT+FineT 84.29 1.61%
CodeBERT+FuzzT

-in bytes 84.21 1.55%
-in UTF-8 string 92.01 1.40%

Table 6: Comparing using raw and decoded fuzzing test
cases in tuning clone detection (CD) and code classifi-
cation (CC) models on POJ104. MAP@R and the error
rate are evaluated for the two tasks, respectively. Bold
stats are better.

Prompt Type CD CC

CodeBERT+FineT 84.29 1.61%
CodeBERT+FuzzT

-w/o prompt 89.36 1.51%
-NL prompt, type (a) 91.14 1.54%
-NL prompt, type (b) 91.59 1.58%
-PL prompt, for C/C++ 92.01 1.40%

Table 7: Comparing different prompts for our fuzz tun-
ing on the clone detection (CD) and code classification
(CC) tasks on POJ104. Bold stats are better.

showing that the effectiveness of our method hold
on various programming languages.

The results on both clone detection and code
classification demonstrate the effectiveness of our
fuzz tuning. Both tasks requires the model to under-
stand not only the structure of the code, but further
the semantics, which is hard to acquire by simply
looking at the code. Yet, provided with inputs and
outputs, the model can excel. We contribute this ac-
curacy gain to program profiling provided through
fuzzing. These profiles include essential dynamic
information that isn’t used by any other models.

4.3 Ablation Study

In this subsection, we investigate impacting factors
in our method: including the quality of test cases,
decoding, and prompting.

Random cases vs fuzzing cases. Given the
success of fuzz tuning in clone detection and code
classification, the effectiveness of incorporating
test cases can be recognized. One may expect that
random input generator can work to some extent,
for providing test cases. Unfortunately, our evalua-
tion shows otherwise. We tried following this idea
and crafted around 2000 inputs for each program,
yet none of them is valid and understandable to the
program. This result is expected, since the chance
of a byte being a digit is only 10/256, there is less
than 1% change of generating a 3-digit number.
Thus, it is reasonable to conclude that random in-

Method 4% (↓25x) 8% (↓12.5x) 16% (↓∼6.3x)

CodeBERT+FineT 26.92 36.79 44.94
CodeBERT+FuzzT 30.66 40.57 54.92
UniXcoder+FineT 34.71 43.06 49.75
UniXcoder+FuzzT 42.53 51.83 60.21

Table 8: How different methods scale with the size of
training/tuning dataset on the C++1000 clone detection
task. Bold stats are better.

put generator is prone to generating invalid inputs,
which lead to crash and hang of the program and
cannot be used to profile it. By contrast, our fuzzer
provides behavior monitoring, all these ineffective
inputs are filtered and not reported in the first place.

Decoding. As mentioned in Section 3.1, the
fuzzer processes obtained inputs as a series of bytes.
We argue that reading test cases as bytes will cause
severe performance degradation, since LLMs are
pre-trained using human-readable codes and natu-
ral languages, which explains why we decode the
obtained bytes before feeding them to LLMs. To
verify the effectiveness of decoding, we compare
using human-readable UTF-8 strings and those raw
bytes, both with cloze prompts, for program under-
standing. The experiment was conducted on the
POJ104 clone detection task and the POJ104 code
classification task. Table 6 shows the results. Ap-
parently, human-readable test cases perform much
better than bytes-format ones on both two tasks.

Prompting. We then compare the performance
of fuzz tuning with and without prompting. Table 7
demonstrates the results. For prompting, two types
of natural-language-based (NL-based) prompts and
the advocated programming-language-based (PL-
based) prompt are tested. Apparently, prompting is
beneficial. As has been mentioned in Section 3, the
PL-based prompt outperforms the two types of NL-
based prompts. It shows a +2.65% absolute gain
on the POJ104 clone detection task and a +0.11%
absolute gain on code classification, compared with
an implementation of fuzz tuning without prompts.
For clone detection, prompting is always effective,
no matter it is NL-based or PL-based, while, for
code classification, the NL-based prompts fail.

4.4 Data Scale

We then investigate whether our fuzz tuning is ef-
fective on various training data scales. To achieve
this, we subsampled from C++1000 in CodeNet
to construct data sets of various scales to perform
fuzz tuning. The official split of C++1000 was con-
sidered to construct test sets (Puri et al., 2021), and

10673



Method 10% (↓10x) 20% (↓5x) 40% (↓2.5x)

CodeBERT+FineT 34.38% 19.15% 16.34%
CodeBERT+FuzzT 30.90% 12.53% 7.63%
UniXcoder+FineT 21.66% 16.24% 14.57%
UniXcoder+FuzzT 14.48% 8.39% 6.18%

Table 9: How different methods scale with the size of
training/tuning dataset on the C++1000 code classifica-
tion task. Bold stats are better.

the same test sets were adopted for testing mod-
els obtained on all these training scales. For clone
detection, we sampled 4%, 8%, and 16% of the
training and validation problems (i.e., subsampled
the training and validation set by 25x, 12.5x, and
roughly 6.3x). For the code classification task, we
sampled 10%, 20% and 40% (i.e., subsampled by
10x, 5x, and 2.5x) of the training and validation
and keep the sample ratio between the two sets as
4:1. We adopted the same experimental settings as
in Section 4.1 and Section 4.2.

Results of different fuzz tuning scales are pro-
vided in Table 8 and Table 9. Apparently, our fuzz
tuning is effective on all these training scales. In
particular, for clone detection, when only 4% of
the data is used for training, normal fine-tuning of
CodeBERT and UniXcoder shows an MAP@R of
only 26.92 and 34.71, respectively, while, by in-
troducing fuzz tuning, we can achieve 30.66 and
42.53, respectively, showing even more obvious
superiority than with 16% of the data. It is also pos-
sible for both fine-tuning and fuzz tuning to scale to
more than 16% of the data, yet it requires more than
10 epochs to reach their performance plateaus and
weaken the necessity of pre-training, thus we will
leave it to future work for exploration. The same
conclusion can be drawn for code classification.

4.5 Case Study
In this section, we extract some real cases in the
concerned dataset (i.e., POJ104) to show how our
fuzz tuning works. Figure 1 reports the achieved
per-program MAP@R and the performance gap
between FuzzT and FineT on the POJ104 test set,
with CodeBERT. We see that FuzzT outperforms
FineT on 17 out of the 24 test problems.

Figure 1 demonstrates that using the normal fine-
tuning leads to very low MAP@R on Problem 103
of POJ104 6, yet our fuzz tuning more than doubled
the score. Although POJ104 does not describe each
problem in detail, we did some investigations and

6Note that Problem 1-80 are training and validation prob-
lems, and Problem 81-104 are test problems.

Figure 1: Per-problem clone detection performance on
the POJ104 test set, using CoderBERT+FineT or Coder-
BERT+FuzzT. The horizontal axis shows the ID of the
POJ104 problems, and the vertical axis is the MAP@R.

conjecture that this particular problem is asking
how many identical consecutive letters are there in
a given string, if letter case is ignored. Our inves-
tigations show that many programmers all unifies
the letter case in the string first, but they disagree
on whether to use uppercase letters or lowercase
letter sand disagree on how to achieve this, lead-
ing to different implementations including utilizing
standard library calls (i.e., to convert each charac-
ter “c” using “toupper(c)”), calculating offset by
casting (i.e., implementing something like c-'A'+'
a'), and static mapping (i.e., using “caseMap[c]”).
This will pose challenges to models for understand-
ing their functionality, if fine-tuning on source code
only. One may expect this particular problem to
be addressed by pre-training on relevant data or by
taking more advantage of static information of pro-
grams. This is possible, since for other pre-trained
LLMs, Problem 103 may not be the most challeng-
ing one. However, other issues similarly exist, e.g.,
UniXcoder+FineT shows its worst performance on
Problem 88, as can be seen in Figure 2.

Figure 2: Per-problem clone detection performance on
the POJ104 test set, using UniXcoder+FineT or UniX-
coder+FuzzT. The horizontal axis shows the ID of the
POJ104 problems, and the vertical axis is the MAP@R.

By contrast, since the programs achieve the same
goal, the test cases can help convey that information
to the model. This further demonstrates our idea
and explains the effectiveness of our fuzz tuning.

10674



5 Conclusion

In this paper, we have pointed out that exploiting
informative test cases helps to understanding of
programs. We have developed fuzz tuning, a novel
method which takes advantage of fuzzing together
with prior large-scale pre-training effort to achieve
this goal. Our fuzz tuning repurposes traditional
fuzzers to generate informative test cases that well-
represent the functionality of programs and it in-
troduces appropriate cloze prompts to incorporate
the test cases into being processed. By performing
comprehensive experiments on two datasets and
two program understanding tasks, we have verified
the effectiveness of the method and achieved new
state-of-the-arts.

Limitations

Fuzzers are designed to reach deep and complex
control flow in large software. Many programs for
current AI for code datasets do not have complex
control flow. As a result, AFL++ can quickly cover
all program branches before generating many in-
puts for us to feed to the model. We plan to try
data-flow coverage as a more accurate coverage
metric in the future.

AFL++ uses branch coverage to track fuzzing
progress. Although it works well on C/C++ pro-
grams, it may be ineffective on languages with
exceptions, which are implicit control flow. For ex-
ample, AFL++ cannot distinguish different excep-
tions thrown in the same block, which sometimes
leads to low coverage in Python programs. To over-
come this issue, one possible way is to change from
branch coverage to line coverage.

Although our current implementation requires a
fuzzer, our approach can also work on tasks with
only functions or code snippets as long as we can
acquire adequate input/output pairs of the functions
or code snippets, which may have some engineer-
ing challenges but is not infeasible. For example,
in recent years, the software engineering commu-
nity has proposed various ways to fuzz bare func-
tions (Serebryany, 2016; Ispoglou et al., 2020).

Ethical Consideration

Our method exploits fuzzing test cases for program
understanding. Improved semantic understanding
of programs facilitates various tasks, e.g., code gen-
eration and code completion, which might further
be used to patch vulnerabilities or fix defects of

softwares and systems. Nevertheless, considerable
effort has to be further devoted to apply the method
to these applications, for which we encourage to
take special care in advance. In addition, a number
of crashes and hangs have been observed on pro-
grams in the adopted datasets, since fuzz testing is
utilized. We do not demonstrate test cases that lead
to these crashes and hangs to avoid misuse of this
information.

Acknowledgment

This material is partially based upon work sup-
ported by the National Science Foundation under
Grant No. 1801751 and 1956364.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Cornelius Aschermann, Tommaso Frassetto, Thorsten
Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Daniel Teuchert. 2019. Nautilus: Fishing for deep
bugs with grammars. In NDSS.

M. Böhme, V. Pham, and A. Roychoudhury.
2019. Coverage-based greybox fuzzing as markov
chain. IEEE Transactions on Software Engineering,
45(5):489–506.

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun
Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong
Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. Iotfuzzer: Discovering memory cor-
ruptions in iot through app-based fuzzing. In NDSS.

Peng Chen and Hao Chen. 2018. Angora: Efficient
fuzzing by principled search. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pages 711–725.

Chris Cummins, Zacharias V Fisches, Tal Ben-Nun,
Torsten Hoefler, and Hugh Leather. 2020. Programl:
Graph-based deep learning for program optimization
and analysis. arXiv preprint arXiv:2003.10536.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. 2020. AFL++ : Combining incremental
steps of fuzzing research. In 14th USENIX Workshop

10675

https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi


on Offensive Technologies (WOOT 20). USENIX As-
sociation.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. 2018.
Collafl: Path sensitive fuzzing. In 2018 IEEE Sympo-
sium on Security and Privacy (SP), pages 679–696.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan,
and Mathias Payer. 2020. {FuzzGen}: Automatic
fuzzer generation. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2271–2287.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073–2083.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In International
Conference on Machine Learning, pages 5110–5121.
PMLR.

Rody Kersten, Kasper Luckow, and Corina S. Păsăre-
anu. 2017. Poster: Afl-based fuzzing for java with
kelinci. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Se-
curity, CCS ’17, page 2511–2513, New York, NY,
USA. Association for Computing Machinery.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng,
and Yang Liu. 2023. Contrabert: Enhancing code
pre-trained models via contrastive learning. arXiv
preprint arXiv:2301.09072.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Thirtieth
AAAI conference on artificial intelligence.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim.
2020. A metric learning reality check. In Euro-
pean Conference on Computer Vision, pages 681–
699. Springer.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Dinglan Peng, Shuxin Zheng, Yatao Li, Guolin Ke,
Di He, and Tie-Yan Liu. 2021. How could neural
networks understand programs? In International
Conference on Machine Learning, pages 8476–8486.
PMLR.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Ruchir Puri, David S Kung, Geert Janssen, Wei
Zhang, Giacomo Domeniconi, Vladmir Zolotov, Ju-
lian Dolby, Jie Chen, Mihir Choudhury, Lindsey
Decker, et al. 2021. Project codenet: A large-scale
ai for code dataset for learning a diversity of coding
tasks. arXiv preprint arXiv:2105.12655, 1035.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Yuyang Rong, Peng Chen, and Hao Chen. 2020. In-
tegrity: Finding integer errors by targeted fuzzing. In
International Conference on Security and Privacy in
Communication Systems, pages 360–380. Springer.

Kosta Serebryany. 2016. Continuous fuzzing with lib-
fuzzer and addresssanitizer. In 2016 IEEE Cyberse-
curity Development (SecDev), pages 157–157. IEEE.

Michael Sutton, Adam Greene, and Pedram Amini.
2007. Fuzzing: brute force vulnerability discovery.
Pearson Education.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo,
Chanchal K Roy, and Mohammad Mamun Mia. 2014.
Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference

10676

https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1145/3133956.3138820


on Software Maintenance and Evolution, pages 476–
480. IEEE.

Jubi Taneja, Zhengyang Liu, and John Regehr. 2020.
Testing static analyses for precision and soundness.
In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization,
CGO 2020, page 81–93, New York, NY, USA. Asso-
ciation for Computing Machinery.

Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy.
2022. Structcoder: Structure-aware transformer for
code generation. arXiv preprint arXiv:2206.05239.

Jinghan Wang, Chengyu Song, and Heng Yin. 2021a.
Reinforcement learning-based hierarchical seed
scheduling for greybox fuzzing. In Network and
Distributed System Security Symposium.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang.
2021b. Syncobert: Syntax-guided multi-modal con-
trastive pre-training for code representation. arXiv
preprint arXiv:2108.04556.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021c. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

10677

https://doi.org/10.1145/3368826.3377927
https://doi.org/10.14722/ndss.2021.24486
https://doi.org/10.14722/ndss.2021.24486


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

section Limitations

�3 A2. Did you discuss any potential risks of your work?
section Ethical consideration

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section abstract and section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

10678

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 4

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
The benchmark has detailed instructions about experimental settings and even random seeds, thus,
in order to compare fairly with previous methods, we strictly followed its setting and performed a
single run to evaluate each model numerically.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

10679


