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Abstract

While Transformer has become the de-facto
standard for speech, modeling upon the fine-
grained frame-level features remains an open
challenge of capturing long-distance depen-
dencies and distributing the attention weights.
We propose Progressive Down-Sampling (PDS)
which gradually compresses the acoustic fea-
tures into coarser-grained units containing
more complete semantic information, like text-
level representation. In addition, we develop a
representation fusion method to alleviate infor-
mation loss that occurs inevitably during high
compression. In this way, we compress the
acoustic features into 1/32 of the initial length
while achieving better or comparable perfor-
mances on the speech recognition task. And as
a bonus, it yields inference speedups ranging
from 1.20× to 1.47×. By reducing the model-
ing burden, we also achieve competitive results
when training on the more challenging speech
translation task 1.

1 Introduction

Despite the success in speech processing tasks like
automatic speech recognition (ASR) (Lu et al.,
2020; Zhang et al., 2021) and speech translation
(ST) (Anastasopoulos et al., 2022), how to encode
the speech features effectively is an open prob-
lem. Different from modeling based on discrete
tokens in natural language processing, a standard
paradigm for acoustic encoding is taking the con-
tinuous features extracted by signal processing as
input.

In this process, the framing operation generates
a lengthy sequence consisting of fine-grained fea-
tures. For example, frame-level feature sequences
are dozens of times longer than the corresponding

*Corresponding author.
1The code is available at https://github.com/xuchennlp/

S2T.
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Figure 1: The distribution of the length ratio between the
speech features (frame-level) and corresponding tran-
scriptions (subword-level) on Librispeech test-clean set.

subword-level transcriptions (see Figure 1). Such
an input leads to the difficulties of capturing long-
distance dependencies and distributing the attention
weights among semantically incomplete modeling
units (Han et al., 2019). Al-Rfou et al. (2019) also
demonstrates that the fine-grained character-level
modeling yield significantly inferior performance
compared with coarse-grained word-level counter-
parts. In addition, the long sequence also results in
prohibitive computation costs due to the quadratic
complexity of self-attention.

A popular method is to compress fine-grained
features to form coarser-grained modeling units by
stacking multiple down-sampling modules before
encoding (Dong et al., 2018; Berard et al., 2018).
Unfortunately, it does not work well when we in-
crease the down-sampling (DS) ratio like 16 and
32 to attain semantically more complete units. This
is in line with the intuition that it is difficult to
compress dozens of frames directly into a single
unit (Sayood, 2018). It is something like that a
few principal components can not preserve all the
information in the principal component analysis
method (Wold et al., 1987).

We analyze the compression process in the stack
method to shed light on the reason for the failure.
We find that the similarity of representations in
adjacent positions degrades after down-sampling,
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which leads to the non-trivial issue of information
loss and increases the difficulty of subsequent com-
pression. To address this issue, we propose Progres-
sive Down-Sampling (PDS), which gradually ag-
gregates the input frame-level representations into
semantically more complete text-level representa-
tions, like character-level or subword-level units. In
this way, the model behaves as a natural language
processing (NLP) system, which distributes the at-
tention only among a short sequence and enables
reinvesting saved computational resources into a
deeper model or a bigger batch. Nevertheless, we
find that information loss still occurs as the com-
pression ratio increases. As a remedy, we combine
the coarse-grained high-level representation at top
layers and fine-grained low-level representations at
bottom layers that may preserve information lost
during compression.

Our method outperforms the standard Trans-
former and Conformer on the ASR and ST tasks,
and has the potential for application on a wide va-
riety of acoustic modeling tasks. It also makes a
trade-off between performance and computational
speedup. With an extremely high compression ra-
tio of 32, our method achieves better or comparable
performances on the ASR task while yielding infer-
ence speedups ranging from 1.20× to 1.47×. The
lower ratio of 8 or 16 brings remarkable improve-
ment and relatively modest speedup. On the more
challenging ST task, PDS also helps convergence
and shows competitive results.

2 Related Work

Unlike text that has explicit boundaries, audio is
in general represented as continuous signals. Al-
though researchers have explored straightforward
modeling based on the raw audio signal (Schneider
et al., 2019), the popular method for segmentation
is framing with a frame size of 25ms and a frame
shift of 10ms (Oppenheim, 1999). This short frame
shift allows the continuity of the speech signal, and
the overlapping segments help to avoid information
loss between consecutive frames.

However, the fine-grained frame-level features
may not be suitable for the state-of-the-art Trans-
former architectures (Vaswani et al., 2017). The
lengthy sequences composed of semantically in-
complete units lead to the difficulties of capturing
long-distance dependencies and distributing the at-
tention weights to the most related positions. Re-
searchers (Salesky et al., 2019; Salesky and Black,

2020) investigate phoneme-level methods. For ex-
ample, one can average frame-level features within
phoneme-like units. But this needs a non-trivial
recognizer for phoneme alignment.

Motivated by the work in the efficient models
(Beltagy et al., 2020), researchers alleviate the
modeling difficulty by the improved self-attention
mechanisms (Han et al., 2019; Alastruey et al.,
2021; Papi et al., 2021). However, they ignore
the inherent problem of long sequence modeling
and the cross-attention module still suffers from
the same issue.

Another line of research is to down-sample the
fine-grained features for shorter sequences (Chan
et al., 2015; Bahdanau et al., 2016). A popular
approach is to pass the features through a stack
of strided convolutional layers before encoding
(Dong et al., 2018; Berard et al., 2018). But the
stack method does not work well in practice due
to the loss of information due to consecutive con-
volutional operations. As a way to address this,
several research groups use the progressive method
to down-sample the acoustic sequence (Peddinti
et al., 2018; Huang et al., 2020; Han et al., 2020;
Burchi and Vielzeuf, 2021). The key difference is
that the previous studies motivate efficient compu-
tation and only explore a modest compression ratio
of 8. Recently, Andrusenko et al. (2022) reduce
the lengths by 16 times at the intermediate layers.
Our work aims to develop a model that takes audio
as input but behaves as an NLP style to ease the
modeling burden, which requires extremely high
compression. Although there is no special design
for efficiency, our method still yields a remarkable
speedup.

Another related open problem for acoustic en-
coding is the variable information caused by silence
or noise. Researchers develop adaptive selection
(Zhang et al., 2020a) or dynamic down-sampling
methods (Na et al., 2019; Zhang et al., 2019) for
avoiding useless features. However, the granularity
of the filtered representation is still far from ideal.
These two methods are complementary and we will
explore their combination in future work.

3 The Method

3.1 Why Is Information Lost?

Down-sampling increases the granularity of mod-
eling units while reducing the sequence length by
aggregating the adjacent features. Following previ-
ous work (Dong et al., 2018; Berard et al., 2018),
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Figure 2: Comparison of the Stack and PDS methods.
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Figure 3: Left: the similarity after each down-sampling.
Right: the similarity at each Layer in a standard
Transformer-based ASR model. Win-d represents the
window size of d.

input speech features are fed into a stack of 2 con-
volutions with a stride of 2, followed by a number
of encoder layers (see Figure 2 (a)). For generating
text-level representations, it is natural to stack more
down-sampling layers for a high down-sampling
ratio. But it fails in our preliminary experiments
(see Table 5).

This motivates us to investigate the changes in
representation during down-sampling. We define
the similarity of representation as the average co-
sine similarity of each unit to the surrounding units
within a small window (Kim et al., 2022). High
similarity indicates that the representation is easier
for compression.

Firstly, we train a Transformer-based (Vaswani
et al., 2017) ASR model with a down-sampling
ratio of 16 by 4 stacked compression operations
on the 960h LibriSpeech dataset, then show the
similarity on the test-clean set. As shown in Fig-
ure 3 (Left), the input speech features have an
extremely high similarity due to the overlapping
framing. However, the similarity degrades dras-
tically after each down-sampling. This indicates

that the subsequent down-sampling processes are
difficult to compress the dissimilar representation
while fully preserving the information. We refer
to this issue as information loss caused by stacked
down-sampling.

Now a new question arises: how to increase the
representation similarity and alleviate the informa-
tion loss? An intuitive conjecture is that the context
modeling increases the similarity due to the strong
preference for short-distance dependency (Sperber
et al., 2018; Xu et al., 2021). Figure 3 (Right)
shows the similarity at each layer of the encoder
in a standard Transformer with a down-sampling
ratio of 4. As we expected, the similarity gradu-
ally increases from bottom to top. This inspires
us to develop a progressive method that encodes
context information sufficiently before each down-
sampling.

3.2 Progressive Down-Sampling

We propose a Progressive Down-Sampling (PDS)
method to compress the fine-grained frame-level
features into semantically more complete units, like
text-level representations. See Figure 2 (b) for an
overview of PDS.

The encoding is divided into representation
down-sampling and context interaction processes.
Given the input speech features H0, a down-
sampling module compresses it by a single 1-D
convolution layer. To address varying lengths, po-
sition encoding is introduced into the normalized
representation. Following the finding in Section
3.1, we use several encoder layers to capture the
contextual dependencies for high similarity.

We define each run of down-sampling and inter-
action processes as a stage. The model runs for M
stages and gradually obtains coarser-grained repre-
sentations {H1, H2, · · · , HM}. Note that the stack
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method can be seen as a specific case of PDS: it
consists of two stages, where the first stage does
not include the context interaction process.

Our method also draws inspirations from the
field of computer vision (He et al., 2016; Wang
et al., 2021) and NLP (Dai et al., 2020). While they
employ a similar design concept, i.e., gradually
reducing the sequence length of the representation,
it remains an open problem how to compress the
fine-grained and lengthy speech features into text-
level representations that are easier for modeling.

3.3 Representation Fusion

As the inherent nature of compression, information
loss still occurs inevitably, especially as the down-
sampling ratio increases. Motivated by previous
methods to make full use of the multi-level repre-
sentations (Wang et al., 2019), one way to further
alleviate this problem is to fuse the coarse-grained
representation and the finer-grained representations
(Zhao et al., 2017; Zhang et al., 2020b; Dai et al.,
2020). Then the final output representation Ho can
be defined as:

Ho = F(H1, · · · , HM ) (1)

where F(·) is the fusion function2.
Now the key challenge is how to combine the

representations with different lengths. The premise
is to align them to the length of the coarsest-grained
representation at the top of the encoder HM . We
resort to multiple simple but effective convolution
modules to transform the finer-grained representa-
tions outputted in the bottom stages to the shape
of HM . Concretely, the stride and kernel size of
convolution for the representation Hm are set to
the LHm/LHM

, where LH represents the sequence
length of the representation H .

2We omit the input feature because it is extracted by signal
processing rather than encoding by the model.

Setting Stride Layer

Stack-4 2-2 0-12
PDS-Base-8 2-2-1-2 3-3-3-3
PDS-Base-16 2-2-2-2 2-2-6-2
PDS-Base-32 2-2-2-2-2 2-2-3-3-2

Stack-4 2-2 0-30
PDS-Deep-8 2-2-1-2 7-7-7-9
PDS-Deep-16 2-2-2-2 5-5-12-8
PDS-Deep-32 2-2-2-2-2 5-5-7-7-6

Table 1: Settings of PDS. "Stack-4" represents the
standard method. "PDS-Base-R" and "PDS-Deep-R"
denote an encoder of 12 layers and 30 layers with a
down-sampling ratio of R, respectively. "Stride" and
"Layer" separated by "-" represent the stride of the down-
sampling module and the number of layers in each stage
from bottom to top.

Drawing on the design of the convolution mod-
ule in Conformer, the representation fusion method
is shown in Figure 4. After alignment operation
A(·), we employ a simple linear combination for
fusion:

F(H1, · · · , HM ) =
M∑

m=1

Wk · LN(A(Hm)) (2)

where LN(·) is the layer normalization function.
Wm ∈ R is a learnable scalar to weight the aligned
representations. The weights are initialized to the
same values, then learned together with other pa-
rameters during training.

3.4 PDS Settings
In this work, we construct 8 settings under differ-
ent encoder depths and down-sampling ratios (see
Table 1) with the following design philosophy3:

• During down-sampling, a bigger window size
involves more context information while in-
creasing the difficulty of down-sampling due
to the lower similarity. Referring to framing,
we use an empirical setting of kernel size = 5
and stride = 2.

• Different from the design in the field of com-
puter vision (He et al., 2016), we keep the
same hidden dimensions in the whole encod-
ing process. The detailed comparisons and
analyses are shown in Appendix B.1.

3The sophisticated down-sampling designs, fusion ap-
proaches, and optimized settings could potentially perform
better, but these are beyond the scope of this paper. We briefly
opt for the simple design and expect to bring insights for future
studies.
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Group Setting L dh dff h #Params dev test Avg. Speedup
clean other clean other

Transformer

(A)

Stack-4∗

12 256 2048 4

30M 3.80 8.90 4.40 9.00 - -
Stack-4 30M 3.88 9.26 4.49 9.42 6.80 1.00×
PDS-Base-8 30M 3.57 8.63 3.85 8.58 6.11 (-0.69) 0.99×
PDS-Base-16 30M 3.71 8.73 3.74 9.02 6.26 (-0.54) 1.14×
PDS-Base-32 31M 4.13 9.31 4.21 9.31 6.69 (-0.11) 1.20×

(B)

Stack-4∗

12 512 2048 8

71M 3.20 8.00 3.40 7.90 - -
Stack-4 71M 3.53 8.15 3.67 7.96 5.78 1.00×
PDS-Base-8 75M 3.17 7.46 3.47 7.47 5.35 (-0.43) 1.08×
PDS-Base-16 76M 3.34 7.73 3.37 7.85 5.53 (-0.25) 1.34×
PDS-Base-32 82M 3.32 7.94 3.64 7.85 5.65 (-0.13) 1.47×

(C)

Stack-4

30 256 2048 4

53M 3.80 8.51 4.33 8.61 6.25 1.00×
PDS-Deep-8 53M 3.34 7.90 3.50 7.79 5.59 (-0.66) 1.03×
PDS-Deep-16 54M 3.15 7.83 3.38 7.79 5.50 (-0.75) 1.19×
PDS-Deep-32 55M 3.26 7.77 3.33 7.88 5.52 (-0.73) 1.27×

Conformer

(D)

Stack-4†

12 256 2048 4

50M - - 3.05 8.36 - -
Stack-4 45M 3.02 7.23 3.21 7.29 5.15 1.00×
PDS-Base-8 46M 2.87 7.07 3.01 7.20 4.98 (-0.17) 0.97×
PDS-Base-16 46M 2.93 6.97 2.99 7.03 4.93 (-0.22) 1.14×
PDS-Base-32 47M 2.95 7.15 3.04 7.12 5.02 (-0.13) 1.20×

(E)

Stack-4‡

12 512 2048 8

109M 2.90 6.60 3.00 6.70 - -
Stack-4 113M 2.77 6.47 2.82 6.72 4.66 1.00×
PDS-Base-8 113M 2.72 6.54 3.03 6.38 4.65 (-0.01) 0.97×
PDS-Base-16 114M 2.73 6.31 2.72 6.40 4.52 (-0.14) 1.23×
PDS-Base-32 119M 2.70 6.67 2.95 6.81 4.75 (+0.09) 1.25×

Table 2: WER on the 960h LibriSpeech ASR corpus. L: the number of encoder layers. dh: the hidden dimension.
dff : the feed-forward dimension. h: the number of attention heads. #Params: the number of parameters. The
speedup is computed during inference on the test-clean set with a beam size of 5 and batch size of 100k (except 50k
for a bigger Conformer due to the GPU limitation). ∗, †, and ‡ stand for the results reported in fairseq4, wenet5, and
espnet6 respectively.

• We allocate fewer layers at the bottom stage
for efficient computation due to the longer se-
quence. The major computations are concen-
trated in the intermediate stages. This leads to
sufficient encoding and computation accelera-
tion, as shown in Table 6.

4 Experiments

We evaluate our method on the LibriSpeech and
AISHELL-1 ASR datasets, and the MuST-C En-
De ST dataset. Details about the data and model
settings are described in Appendix A.

4.1 Results of ASR

LibriSpeech Table 2 shows the results on the 960h
LibriSpeech corpus. We compare methods on the

4https://github.com/pytorch/fairseq/blob/main/examples/
speech_to_text/docs/librispeech_example.md

5https://github.com/wenet-e2e/wenet/blob/main/example
s/librispeech/s0/README.md

6https://github.com/espnet/espnet/blob/master/egs/
librispeech/asr1/RESULTS.md

Transformer and Conformer with different encoder
layers and hidden dimensions. We use Stack-4 as
the baseline model (see Table 1 for the setting). For
a fair comparison, the number of model parameters
in each group is similar.

For a popular setting of 12 encoder layers with
256 hidden dimensions in group (A), PDS achieves
a very high down-sampling ratio of 32 with a slight
improvement. As a bonus, it yields a speedup of
1.20×. In real scenarios, the saved computational
resource can be reinvested in a bigger batch or
improved model capacity. As the down-sampling
ratio decreases, the performance improves signif-
icantly. Similar phenomena are observed on the
wider Transformer with 512 hidden dimensions
in group (B), where our method benefits more in
terms of speedup.

Interestingly, we find that the deep models with
30 encoder layers in group (C) eliminate the perfor-
mance gap under different down-sampling ratios.
PDS compresses the representation to 1/32 of the
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Setting w/o CTC w/ CTC

dev test dev test

Stack-4 5.42 5.80 4.96 5.55

PDS-Base-8 5.09 5.59 4.72 5.24
PDS-Base-16 5.30 5.78 4.76 5.28
PDS-Base-32 5.43 5.85 5.17 5.63

Table 3: WER on the AISHELL-1 ASR corpus.

initial length while achieving a considerable rela-
tive reduction of 0.73 WER points. We conjecture
that the deep model allows more sufficient mod-
eling in each stage and preserves the information
even in an extreme case of down-sampling. This
also has practical advantages in industrial scenarios
where deep models are preferred.

We observe two interesting phenomena in the
experiments on Conformer architecture in groups
(D) and (E). Firstly, Conformer bridges the perfor-
mance gap between the stack and PDS method. We
speculate that the Conformer integrates the relative
position encoding (RPE) to improve the generaliza-
tion to the variant length, which may be helpful for
the long sequence encoding and reduces the benefit
of our method. Secondly, PDS with a ratio of 16
outperforms its counterpart with a lower ratio of
8. Conformer enhances local interaction among
neighbor contexts by convolution module, which
leads to a higher similarity, as shown in Figure 6.

We also notice that PDS works better on clean
subsets than other subsets, especially under a
high down-sampling ratio. This demonstrates that
down-sampling is more challenging on noisy audio,
where it is difficult to distinguish the meaningful
information. We will explore more robust methods
in future work.
AISHELL-1 We observe that our method with a
down-sampling ratio of 32 slightly under-performs
the baseline on the AISHELL-1 corpus, as shown
in Table 3. As we employ a character vocabulary,
the length of the compressed sequence may be less
than transcription, making excessive compression
and invalid connectionist temporal classification
(CTC) computation. This inspires us to explore
better solutions, e.g., a self-adaptive compression
method that dynamically treats each sample. We
further discuss it in Section Limitations.

4.2 Results of ST

End-to-end ST has become popular recently (Be-
rard et al., 2016). However, unlike ASR, annotated

Setting CTC #Params w/o PT w/ PT

Transformer

Stack-4 30M 20.2 23.2
✓ 32M 24.0 24.5

PDS-Base-8 29M 23.2 24.5
✓ 32M 24.2 24.8

SATE - Transformer

Stack-4 ✓ 40M 24.8 25.3
PDS-Base-8 ✓ 40M 25.5 25.6

SATE - Conformer

Stack-4 ✓ 55M 25.5 25.9
PDS-Base-8 ✓ 55M 25.8 26.4

SATE - Conformer - Unrestricted

Stack-4 ✓ 130M - 27.9
PDS-Base-8 ✓ 134M - 28.7

Table 4: SacreBLEU on the MuST-C En-De ST corpus.
"PT" represents the ST models are initialized with the
pre-trained ASR and MT models.

speech-to-translation data is scarce, making it chal-
lenging for well-trained ST models. Therefore,
CTC and pre-training methods are used for suf-
ficient training (Bahar et al., 2019; Zhang et al.,
2022). According to the results of ASR, we select
PDS-Base-8 to investigate the effects of PDS on
both performance and model convergence.

Table 4 shows a substantial performance gap of
3.0 BLEU points between the stack and PDS meth-
ods when the auxiliary CTC and pre-training meth-
ods are not used. This indicates that bridging the
granularity gap helps convergence and improves
ST when transcription is not available. With CTC
and pre-training, better performance is achieved by
strong supervision and better initialization. Also,
PDS outperforms the stack method significantly.

Better architecture of SATE (Xu et al., 2021)
brings consistent improvements. The encoder of
SATE is composed of an acoustic encoder and a
textual encoder. We only employ PDS in the acous-
tic encoder. Although an adaptor is introduced for
adaptive representation, the length inconsistency
issue is not solved in the original implementation.
As a popular method, the shrink mechanism fil-
ters the acoustic representation based on the CTC
prediction (Dong et al., 2021). However, it also
poses the risk of information loss due to inaccurate
predictions. PDS provides another approach by
generating a length-matched sequence in founda-
tional acoustic encoding.

Combing the CTC and pre-training methods,
PDS achieves a competitive performance of 26.4
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Group F Ratio Stride Layer Avg.

Stack

(A) /

2 2 12 7.06
4 2-2 0-12 6.80
8 2-2-2 0-0-12 7.43

16 2-2-2-2 0-0-0-12 9.17

PDS

(B) 4 2-2-1-1 3-3-3-3 6.01
✓ 4 2-2-1-1 3-3-3-3 5.99

(C) 8 2-2-1-2 3-3-3-3 6.53
✓ 8 2-2-1-2 3-3-3-3 6.11

(D)

8 2-2-2-1 2-2-6-2 6.55
16 2-2-2-2 2-2-6-2 6.77

✓ 8 2-2-2-1 2-2-6-2 6.28
✓ 16 2-2-2-2 2-2-6-2 6.26

(E) 32 2-2-2-2-2 2-2-3-3-2 7.21
✓ 32 2-2-2-2-2 2-2-3-3-2 6.69

Table 5: Impact of representation fusion. "F" represents
the representation fusion method. We report the average
WER of all 4 sets of LibriSpeech.

BLEU scores without additional training data. Un-
der the more challenging unrestricted setting, PDS
provides a better acoustic representation and yields
a remarkable improvement of 0.8 BLEU points
over the stack method.

5 Analysis

Next, we study a number of interesting problems
on LibriSpeech. We present the comparisons with
previous work and more analyses in Appendix B.

5.1 Impact of Representation Fusion

To investigate the impact of information loss and
the importance of representation fusion, we com-
pare the results under different down-sampling ra-
tios (see Table 5).

The standard setting for the stack method is to
down-sample the input with a lower ratio of 4. This
setting also achieves the best performance in group
(A). A lower ratio of 2 leads to inferior WER be-
cause long but fine-grained features face the mod-
eling challenges. As the ratio of down-sampling
increases, the performance drops drastically. This
supports the point that information loss is severe in
the stack method.

The PDS method outperforms the stack method
under the same setting of ratio = 4. However,
we find that the fusion method does not obtain
significant improvement. This may be because
the lightweight compression is lossless and cannot
benefit from the fusion of representations.

Layer dev test Avg.
clean other clean other

2-2-2-6 3.91 9.29 4.09 9.38 6.63
2-2-4-4 3.83 9.11 4.05 9.13 6.49
2-2-6-2 3.71 8.73 3.74 9.02 6.26

5-5-10-10 3.19 7.79 3.57 7.69 5.52
5-5-12-8 3.15 7.83 3.38 7.79 5.50
5-5-15-5 3.27 7.59 3.60 7.83 5.53

Table 6: Impact of the number of layers in each stage.
We report the results of Transformer with PDS-Base-16
and PDS-Deep-16 settings.

1 2 3 4
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Figure 5: The fusion weights of the output represen-
tation in each stage. We consider three settings of the
number of layers under PDS-Base-16.

Interestingly, the fusion method achieves con-
sistent improvements when higher down-sampling
ratios are employed. To study it further, we design
another set of experiments with a special setting
in group (D): the down-sampling ratio decreases
from 16 to 8 by setting the stride of the final stage
to 1. Then, we achieve a better performance of
6.55 WER points, which indicates less information
loss under a slighter compression. With the help
of the fusion method, two settings achieve similar
performances.

5.2 Impact of Model Depth
We compare the performance of the different num-
ber of layers in each stage. Table 6 shows the
results on base and deep models.

For the model of 12 encoder layers, we assign 2
layers in the bottom 2 stages for less computation
cost. As described in Section 3.4, PDS achieves bet-
ter performance as the number of layers increases
in the intermediate stages. There are two reasons.
Firstly, the information loss in the intermediate
stages is less compared with the top stage, and
thus the increased encoding layers are helpful. Sec-
ondly, sufficient encoding provides high similarity
and helps the down-sampling for the next stage, but
it is not the case for the top stage. This is consistent
with the previous conclusion (Huang et al., 2020).
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Figure 6: Similarities of window size of 2 in each layer of Transformer, Conformer, and deep Transformer. The
marked points represent the similarity before each down-sampling.

We also show the fusion weights in Figure 5. The
weight increases as the number of layers increases,
and vice versa.

Furthermore, we compare the results of deep
Transformer models with a 30-layer encoder. Due
to the sufficient encoding in each stage, the deep
model is robust in the design of the number of
layers. There is no obvious performance gap across
the three different settings. It is very meaningful to
combine PDS with the popular deep models (Pham
et al., 2019) in the follow-up work.

5.3 Impact on Similarity

Unlike the stack method, PDS performs the context
interaction process after each down-sampling pro-
cess. Figure 6 shows the similarity across different
model architectures.

In Transformer, high similarity (about 60% ∼
80%) alleviates the information loss under the set-
ting of PDS-Base-8. As the down-sampling ratio
increases, fewer layers in each stage cannot capture
the context information sufficiently and thus make
the degraded similarity and worse performance.

Despite the limited layers in each stage, Con-
former always shows high similarities due to ex-
plicit local modeling. This also demonstrates the
effectiveness of Conformer. The deep Transformer
alleviates the issue directly by stacking more en-
coder layers.

One interesting finding is that the similarity of
top layers is very high (> 90%) across all architec-
tures, which may be due to the effect of the direct
supervision from the decoder. This inspires us to
explore multi-task learning methods by injecting
explicit training objectives into intermediate stages.

5.4 Distribution of Attention Weights

Our method bridges the granularity gap and gener-
ates semantically more complete units, e.g., text-
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Figure 7: Distribution of summed cross-attention
weights for each encoder representation on LibriSpeech
test-clean set.

level representations. We suppose that this informa-
tive representation has a greater effect on text gen-
eration. Referring to Zhang et al. (2020a), Figure 7
shows the distribution of summed cross-attention
weights for each encoder representation.

The fine-grained representations in the stack
method have a remarkable granularity gap with the
text representations. Therefore, the smaller atten-
tion weights must spread across multiple relevant
representations in cross-attention operation, which
makes it hard to capture complete information for
text generation. In our method, each representation
receives greater weights as the down-sampling ratio
increases. This indicates that each unit has a more
meaningful contribution to the generation, and it is
easier to capture the relevant source information.

6 Conclusion

In this paper, we explore how to compress the
fine-grained frame-level acoustic features to the se-
mantically complete text-level units, like character-
level and subword-level representations. To alle-
viate this granularity gap, we first investigate the
down-sampling process and reveal the risk of in-
formation loss in the popular stack method. This
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inspires us to propose Progressive Down-Sampling,
which gradually attains the coarser-grained repre-
sentation during encoding. Furthermore, we de-
velop a representation fusion method to combine
the high-level and low-level information, which is
important for high down-sampling ratios. By this,
we are the first to compress the acoustic features
with a ratio of 32 on the ASR task while achiev-
ing comparable or even better performances. The
more challenging ST task demonstrates that the
alleviated granularity gap facilitates convergence
effectively.

7 Limitations

Many challenges remain in the follow-up of our
work. Here are some limitations that we intend to
resolve in the future:

• We need a more robust method for compres-
sion. Although our method achieves consis-
tent improvements in most experiments, we
notice that the benefit is limited in the noisy
sets, especially under a high down-sampling
ratio. This drives us to develop a more ro-
bust down-sampling method for preserving
meaningful information even with high com-
pression.

• Our method compresses all the input acous-
tic features with the same ratio, where the
ratio is determined according to the whole
dataset. However, the speed of each audio is
different, which results in obstacles to unified
down-sampling. Ideally, each sample should
be compressed with a self-adaptive ratio.
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A Experimental Details

A.1 Datasets and Pre-processing

The datasets are from three benchmarks:

• LibriSpeech is a publicly available read En-
glish ASR corpus, which consists of 960-hour
training data (Panayotov et al., 2015). The de-
velopment and test data are divided into clean
and other subsets according to the speech qual-
ity. We select the model on the dev-clean set
and report results on all four subsets, includ-
ing dev-clean, dev-other, test-clean, and test-
other. The average WER is computed on the
concatenation of all four subsets.

• AISHELL-1 is a publicly available Chinese
Mandarin speech corpus, which consists of
170-hour training data (Bu et al., 2017). We
select the model on the dev set and report
results WER on the dev and test sets.

• MuST-C is a multilingual speech translation
corpus extracted from the TED talks (Gangi
et al., 2019). We train our systems on the
English-German speech translation dataset of
400-hour speech. We select (and tune) the
model on the dev set and report results on the
tst-COMMON set.

For pre-processing, we follow the common
recipes in fairseq toolkit7, which removes the ut-
terances of more than 3,000 frames or fewer than
5 frames. We only use the speed perturbation in
the experiments built on the AISHELL-1. The 80-
channel Mel filter bank features are extracted by
a 25ms window with a stride of 10ms. We learn
SentencePiece8 segmentation with a size of 10,000
for the LibriSpeech and MuST-C datasets, and use
4231 characters for the AISHELL-1 dataset. For
the MuST-C ST dataset, we use a shared vocabulary
for the source and target languages.

7https://github.com/pytorch/fairseq
8https://github.com/google/sentencepiece

A.2 Model Settings

We use the encoder-decoder framework and im-
plement the method based on the fairseq toolkit.
We use the Adam optimizer and adopt the default
learning schedule in fairseq. We apply dropout
with a rate of 0.1 and label smoothing ϵls = 0.1 for
regularization. SpecAugment (Park et al., 2019)
is applied in the input speech features for better
generalization and robustness.

For the LibriSpeech ASR task, we evaluate our
method on Transformer (Vaswani et al., 2017) and
Conformer (Gulati et al., 2020). The settings of the
encoder for ASR models are shown in Table 2. The
decoder consists of 6 Transformer layers and the
settings are the same as the encoder. CTC (Graves
et al., 2006) multi-task learning is not used due to
the very modest improvement in our preliminary
experiments.

For the AISHELL-1 ASR task, we evaluate our
method on Transformer (Vaswani et al., 2017). The
encoder consists of 12 layers and the decoder con-
sists of 6 layers. Each layer comprises 256 hidden
units, 4 attention heads, and 2,048 feed-forward
hidden units. The weight for CTC multi-task learn-
ing is set to 0.3.

For the ST task, we evaluate our method on
Transformer and SATE (Xu et al., 2021). Except
that the knowledge distillation method is not used
for simplicity, we follow the settings of SATE.
The encoder consists of 12 layers for Transformer.
SATE has an acoustic encoder of 12 layers and a
textual encoder of 6 layers. Each layer comprises
256 hidden units, 4 attention heads, and 2,048 feed-
forward hidden units. CTC is employed with a
weight of 0.3 for better convergence. Similar to
Xu et al. (2021), we also consider both restricted
and unrestricted scenarios. Under the restricted set-
ting, the ASR and MT models are pre-trained with
the MuST-C En-De data. Under the unrestricted
setting, we use the additional LibriSpeech ASR
corpus and Opensubtitle En-De MT corpus for pre-
training. We also use Conformer as the acoustic
encoder and widen the model by increasing the
hidden size to 512 and attention heads to 8.

All the models are trained for 100 epochs. We
early stop training when there is no performance
improvement on the development set for 10 consec-
utive checkpoints. We use beam search decoding
with a beam size of 5 for all models on 1 NVIDIA
TITAN RTX GPU. The CTC and language model
re-scoring methods are not used. We report WER
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Group Arch Ratio Layer Hidden Size #Params. dev test Avg.
clean other clean other

Stack-4

(A) CTC 4 12 256 20M 5.63 13.53 5.73 13.39 9.50
Enc-Dec 30M 3.88 9.26 4.49 9.42 6.80

PDS-8

(B) CTC 2-2-1-2
3-3-3-3 256-256-256-256

20M
5.06 11.97 5.26 11.90 8.49

3-3-3-3 192-256-256-320 5.16 12.12 5.29 12.00 8.58
5-3-3-5 192-224-224-256 4.97 11.89 5.14 11.83 8.40

(C) Enc-Dec 2-2-1-2
3-3-3-3 256-256-256-256

30M
3.57 8.63 3.85 8.58 6.11

3-3-3-3 192-256-256-320 3.43 8.38 3.71 8.48 5.95
5-3-3-5 192-224-224-256 3.43 8.30 3.97 8.60 6.03

PDS-16

(D) CTC 2-2-2-2
2-2-6-2 256-256-256-256

20M
5.66 12.75 5.89 12.72 9.19

2-2-6-2 192-224-256-320 5.56 12.50 5.69 12.77 9.07
3-3-9-3 160-192-224-256 5.23 11.80 5.27 11.81 8.47

(E) Enc-Dec 2-2-2-2
2-2-6-2 256-256-256-256

30M
3.71 8.73 3.74 9.02 6.26

2-2-6-2 192-224-256-320 3.92 9.18 4.13 9.00 6.51
3-3-9-3 160-192-224-256 3.79 8.78 4.19 8.83 6.35

Table 7: Comparison of the settings of hidden dimension. Attention heads are set to 4 and the feed-forward
dimension is 4 times the hidden dimension.

and case-sensitive SacreBLEU for ASR and ST
tasks, respectively.

B Additional Analyses

B.1 Comparison of Dimension Settings
Researchers explore similar pyramid architectures
in the field of computer vision (He et al., 2016;
Wang et al., 2021) and acoustic encoding (Burchi
and Vielzeuf, 2021). A typical setting is that the
hidden dimension increases from bottom to top,
while the sequence length decreases accordingly.
Although this is reasonable to keep the same com-
plexity, the detailed design needs more tuning ef-
forts.

We make a preliminary exploration of the di-
mension design on the ASR task. The final output
dimension is defined as d, and we consider three
settings:

• Same. This is the basic setting, and the hidden
dimensions across the whole encoder are d.

• Width-growth. The hidden dimensions in-
crease from bottom to top, and the middle
dimension is set to d. This makes a wider
model on the topmost stage under the same
model parameters.

• Depth-growth. The hidden dimensions in-
crease from bottom to top, and the dimension
of the topmost stage is set to d. This makes a

deeper model under the same model parame-
ters.

In Table 7, we evaluate results of two popu-
lar ASR architectures: CTC-based and encoder-
decoder models. CTC limits that the input length
must be longer than the corresponding label, so we
do not build the experiments with a down-sampling
ratio of 32. For each group of experiments, we
list the results of same, width-growth, and depth-
growth in turn. In the CTC-based model in group
(B) and group (D), the depth-growth setting is su-
perior under both two down-sampling ratios, where
the parameters are more efficient than other settings.
Especially under a high down-sampling ratio of
16, the improvement is more significant due to the
more sufficient encoding before down-sampling, as
shown in Section 5.3. The wider-growth setting
only achieves the comparable performance with
the same setting. This also demonstrates that the
deeper models have more potential than the wider
models under the same parameters (Wang et al.,
2019).

However, different results appear in the encoder-
decoder models. As shown in group (C) and group
(E), the width-growth and depth-growth settings
can not bring consistent improvements. We conjec-
ture that the CTC-based model suffers from a heavy
encoding burden due to the encoder-only model-
ing. Therefore, the parameter-efficient designs of
the growth settings improve the model capacity re-
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Model Ratio Layer Hidden Size #Params. dev test Avg. Speedupclean other clean other
Conformer† 4 16 174 13.0M 5.31 13.60 5.41 13.24 9.33 -
Conformer 4.76 12.07 4.72 12.19 8.36 1.00×
Eff Conformer† 2-2-2 5-5-5 120-168-240 13.3M 4.46 11.36 4.61 11.29 7.88 -
Eff Conformer 4.25 11.14 4.35 10.99 7.56 1.12×
PDS

2-2-2 5-5-5
174-174-174 13.0M 4.35 11.66 4.39 11.61 7.93 1.26×

PDS 120-168-240 12.8M 4.04 10.87 4.16 10.71 7.37 1.34×
-Fusion 120-168-240 12.5M 4.29 11.02 4.29 11.18 7.65 1.36×

Table 8: Comparison with effective Conformer (Burchi and Vielzeuf, 2021). Note that † represents that the results
are reproduced by released code. We run other experiments based on our codebase.

markably. The decoder alleviates the generation
burden, which leads to the modest improvement
of the growth settings. There are similar results
in Burchi and Vielzeuf (2021), where the improve-
ments in RNN-T models reduce compared with the
CTC-based models.

According to the above results, we use the same
setting in our experiments for simplification. We
will explore parameter-efficient designs in the fu-
ture.

B.2 Comparison with Previous Work
Burchi and Vielzeuf (2021) propose the efficient
Conformer, which implements the progressive
down-sampling by the modified convolutional mod-
ule or the strided self-attention module. Com-
pared with the efficient Conformer, our method
does not rely on the specific architecture. We
use a lightweight and pluggable module for down-
sampling, which allows flexible integration with
other methods.

To demonstrate the effectiveness of our method,
we construct the comparison of our method and
efficient Conformer on the ASR task. Following
Burchi and Vielzeuf (2021), we learn Sentence-
Piece segmentation with a size of 256. The grouped
multi-head attention is a general method and is not
used for a fair comparison. Except that the models
are trained for 100 epochs rather than 450 epochs
for fast comparison, we use the same hyperparame-
ters.

As shown in Table 8, our method achieves a
reduction of 0.19 WER points compared with effi-
cient Conformer. We also show the result of PDS
with the same settings. In this more challenging
CTC-based Conformer model, the width-growth
setting is more parameter-efficient. Without the rep-
resentation fusion method, we only achieve com-
parable performance with the efficient Conformer.
This proves the importance of the fusion method

100 460 960

5

10

15

Size of training data (Hours)

W
E

R

Stack-4 PDS-8 PDS-16 PDS-32

Figure 8: Comparison of varying amounts of training
data. We report the WER on the test-clean set.

that alleviates information loss by combining multi-
level representations.

In terms of speedup, our method encodes with
more efficient computation due to the simplicity of
design. It also shows that the representation fusion
is lightweight but brings significant improvements.
Most efficient attention variants can be integrated
into our method, which has enormous potential for
fast inference. But we focus on the design of the
basic architecture and leave the exploration to the
future.

B.3 Low Resource Setting

Results on ST show that our method helps conver-
gence significantly. To further verify it, we com-
pare the results of varying amounts of training data.
We train the base Transformer of 12 encoder layers
on the LibriSpeech with common subsets of 100h,
460h, and all 960h training data. We select the
appropriate hyperparameter for each model, includ-
ing learning rate, batch size, and CTC multi-task
learning. The WER on the test-clean set is reported
in Figure 8.

Under the more challenging setting where only
100 hours are available, the lower down-sampling
ratio of 8 yields a remarkable improvement of 2.91
WER. Our method compresses the representations
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into coarser-grained units, which eases the burden
of attention calculation. But excessive compres-
sion leads to degraded performance due to infe-
rior CTC computation. One precondition for CTC
loss is that the length of the input must be longer
than the length of the corresponding label, which
leads to invalid CTC learning for some samples.
This is consistent with our previous conclusion: we
need to develop a self-adaptive method that down-
samples each sample with moderate compression.
Increasing the training data also brings consistent
improvements across different compression ratios.
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