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Abstract
While CLIP models are useful for zero-shot
vision-and-language (VL) tasks or computer
vision tasks, little attention has been paid to the
application of CLIP for language tasks. Intu-
itively, CLIP model have a rich representation
pre-trained with natural language supervision,
in which we argue that it is useful for language
tasks. Hence, this work bridge this gap by in-
vestigating a CLIP model for zero-shot text
classification. Specifically, we introduce CLIP-
TEXT, a novel paradigm for zero-shot text clas-
sification, which reformulates zero-shot text
classification into a text-image matching prob-
lem that CLIP can be applied to. In addi-
tion, we further incorporate prompt into CLIP-
TEXT (PROMPT-CLIPTEXT) to better derive
knowledge from CLIP. Experimental results on
seven publicly available zero-shot text classi-
fication datasets show that both CLIPTEXT
and PROMPT-CLIPTEXT attain promising per-
formance. Besides, extensive analysis further
verifies that knowledge from CLIP can bene-
fit zero-shot text classification task. We hope
this work can attract more breakthroughs on
applying VL pre-trained models for language
tasks.

1 Introduction

Understanding various modalities is one of the
core goals of Artificial Intelligence. To achieve
this, vision-and-language (VL) tasks such as vi-
sual question answering (Antol et al., 2015) and
image caption (Chen et al., 2015) have emerged,
aiming to test a system’s ability to understand the
semantics of both the visual world and natural lan-
guage. Recently, CLIP (Radford et al., 2021), a
cross-modality model pre-trained with 400M noisy
image-text pairs collected from the Internet, has
gained remarkable success on various VL tasks.

In addition, CLIP shows strong zero-shot trans-
fer capabilities on over 30 different existing com-
puter vision (CV) datasets (e.g., image classifica-
tion (Jia et al., 2021) and object detection (Gu et al.,
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Figure 1: Illustration of two steps in CLIPTEXT. CLIP-
TEXT consists of two steps (1) Label Mapping: aiming
to map each label into a corresponding image and con-
struct text-image pairs; (2) Inference: directly passing
the generated text-image pairs into CLIP to obtain the
final prediction results.

2021b)). In addition to success on CV tasks, vari-
ous works begin to explore transferring knowledge
of CLIP to other VL modality tasks. For example,
Shen et al. (2021) demonstrate that serving CLIP
as a strong visual encoder can benefit VL tasks
in both pre-training and fine-tuning stage. Song
et al. (2022) prove that CLIP can be considered as a
strong few-shot learner for VL tasks by providing a
comprehensive empirical study on visual question
answering and visual entailment (Xie et al., 2019).
Nevertheless, while significant recent progress has
been made in applying CLIP to other VL and CV
modality tasks, the same success has not yet been
achieved in language tasks. In this work, we argue
that CLIP was pre-trained with natural language
supervision, which should be capable of helping
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language tasks. Motivated by this, this work aims
to close this gap by studying this research question:
can CLIP benefit language task?

To this end, we provide a comprehensive inves-
tigation on zero-shot text classification task, aim-
ing to studying how to transfer CLIP’s zero-shot
ability into the language task. Specifically, this
work presents CLIPTEXT, a novel paradigm for
zero-shot text classification. The key insight is
that CLIPTEXT reformulates zero-shot text clas-
sification into a text-image matching problem, so
that directly applying CLIP to zero-shot text clas-
sification can be achieved. As shown in Fig. 1,
CLIPTEXT consists of procedure with two steps:
(i) Label Mapping and (ii) Inference. Specifi-
cally, the Label Mapping step is used for mapping
text classification label into a corresponding im-
age, so that the text-image pairs can be constructed.
Then, the inference step passes the generated text-
image pairs into CLIP model, and the label with the
highest alignment score is regarded as the predic-
tion result. In addition, inspired by recent progress
in prompt methods in natural language process-
ing (Liu et al., 2021; Zhao and Schütze, 2021; Zhu
et al., 2022; Hu et al., 2022; Qi et al., 2022), we
further present PROMPT-CLIPTEXT by adding an
additional semantic prompt word at the beginning
of the text in CLIPTEXT, enabling model to better
infer language knowledge from CLIP. Compared
with previous methods, our method has the follow-
ing advantages. First, some prior work (Yin et al.,
2019) require additional NLI dataset to further train
their zero-shot classification model. In contrast,
our framework is capable of making full use of the
powerful zero-shot capability of the CLIP without
any extra pre-training. Second, we present a in-
novate perspective for zero-shot text classification,
which can naturally leverage the additional vision
information inferred from CLIP to benefit language
tasks. Third, our framework is model-agnostic
without any specific network design, thereby it can
be easily extended to other VL pre-trained model.

We first evaluate our approaches on the standard
zero-shot text classification benchmark (Yin et al.,
2019). Experimental results show that CLIPTEXT

and PROMPT-CLIPTEXT achieves superior perfor-
mance. In addition, we further evaluate CLIPTEXT

on other four publicly available zero-shot text clas-
sification datasets to verify the generalization of
CLIPTEXT and PROMPT-CLIPTEXT.

In summary, contributions of this work are:
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Figure 2: CLIP consists of a text encoder and image
encoder, and followed by a dot product operation. The
highest alignment score is predicted as the result.

• To our knowledge, this is the first work to
investigate how to transfer zero-shot capabili-
ties of CLIP into language tasks. We hope this
work will spur more researchers to rethink the
role of VL model for language tasks;

• We introduce CLIPTEXT, a novel paradigm
for zero-shot text classification by reformu-
lating it as a text-image matching problem.
In addition, we further propose PROMPT-
CLIPTEXT to better infer knowledge from
CLIP to zero-shot text classification;

• Experiments on seven text classification
datasets show the effectiveness of our frame-
work. Extensive analysis further verify the
generalization and superior of our approach.

To promote the further research, codes are
will be publicly available at https://github.com/
LightChen233/CLIPText.

2 Preliminaries

2.1 CLIP
CLIP (Contrastive Language-Image Pre-
training) (Radford et al., 2021), an efficient
and scalable approach to learn visual concepts
from natural language supervision, has obtained
surprisingly remarkable success on various of
zero-shot computer vision tasks (Gu et al., 2021b).
Instead of pre-training on traditional high-quality
annotated data, CLIP is trained on 400 million
noisy web-crawled image-text pairs, which is
much easier to collect.
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Figure 3: Illustration of CLIPTEXT (a) vs. PROMPT-CLIPTEXT (b). Topic stands for hard prompt for the text
classification task.

As shown in Fig. 2 (a), CLIP contains a vi-
sual encoder V and a text encoder T. Specifi-
cally, CLIP employs ResNet (He et al., 2016) or
ViT (Dosovitskiy et al., 2020) as visual encoder
backbone and uses transformer (Vaswani et al.,
2017) as text encoder backbone. After text encoder
and image encoder acquire text T(text) and image
V(image) representation, a dot-product function
(V(image) · T(text)) is further used for calculating
similarity between the given text and image. Specif-
ically, the normalized similarity score of matching
image i with text j can be calculated by:

score(i, j) =
exp(βV(imagei) · T(textj))∑N
k=1 exp(βV(imagei) · T(textk))

, (1)

where β is a hyperparameter; N denotes the number
of batch samples.

2.2 Zero-shot Text Classification

To provide an intuitive understanding of zero-shot
text classification, we first introduce the classic
supervised text classification and then describe the
key difference between the supervised paradigm
and zero-shot paradigm.

Supervised Text Classification Paradigm. In
traditional supervised text classification paradigm,
given training data Dtrain, validation data Ddev, test
data Dtest, we first leverage Dtrain and Ddev to train
a model in supervised manner, and then apply the
trained model to Dtest, which can be denoted as:

M = Train(Dtrain,Ddev), (2)

Y = Test(M,Dtest), (3)

where M denotes the model trained on Dtrain and
Ddev; Y represents the outputs of M .

Zero-shot Text Classification Paradigm. In
contrast to the supervised paradigm, following

FitzGerald et al. (2022), zero-shot text classifica-
tion model M̂ does not require any training process
(Dtrain), and can only access to the dev Ddev and
test set Dtest. Model M̂ can be directly applied to
test set without any training process (Dtrain), which
is formulated as:

Ŷ = Test(M̂,Dtest), (4)

where Ŷ represents the outputs of zero-shot text
classification.

3 Model

This section illustrates how to solve the zero-shot
text classification task with CLIP (see CLIPTEXT

(§3.1) and PROMPT-CLIPTEXT (§3.2)).

3.1 CLIPTEXT

We convert the original text-label pairs in text clas-
sification into text-image pair to keep the CLIP
original structure unchanged, To this end, CLIP-
TEXT consists of two step:

(i) Step I Label mapping (§3.1.1) converts
text label into image to build text-image pairs;

(ii) Step II Inference (§3.1.2) passes the gen-
erated text-image pairs into CLIP to obtain the
matching similarity score of each text-image
pair and obtain the final zero-shot prediction
results.

3.1.1 Step I: Label Mapping

Given test set Dtest =
{
(x(i),y(i))

}N

i=1
(N denotes

the data number of test dataset), label mapping
aims to convert the text label set VLabel into the
corresponding semantic alignment image label set
VImage to build the text-image pairs.

In our framework, for each text label y, we man-
ually apply the google search engine directly to
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Dataset Type Label Nums Labels
Yahoo! Answers Topic classification 10 Health, Sports, ..., Politics & Government
Emotion Emotion classification 10 sad, joy, love,..., none
Situation Situation classification 12 search, evac, infra,..., crim., none
AG’s News News categorization 4 World, Sports, Business, Sci/Tech.
Snips Intent detection 7 AddToPlaylist,..., SearchCreativeWork
Trec Question categorization 6 NUM, HUM,..., ENTY, DESC
Subj Opinion classification 2 objective, subjective

Table 1: Statistics of the datasets.

find the corresponding image according to the dev
performance1:

v = LabelMapping(y). (5)

Therefore, with the help of label mapping
step, the text-label pairs Dtest =

{
(x(i),y(i))

}N

i=1
can be mapped into text-image pairs Dtest ={
(x(i),v(i))

}N

i=1
where v ∈ VImage.

3.1.2 Step II: Inference
Given the generated text-image pairs Dtest ={
(x(i),v(i))

}N

i=1
, CLIP model can get a zero-shot

prediction by:

Inference(x,v)=

{
maxv∈VImage{V(x)·T(v)} if (x,v)∈Single Label Task,

{v|V (x)·T (v)>t,v∈VImage} otherwise.
(6)

where we select the label with the highest proba-
bility as the final prediction result in single label
text classification task while we choose the labels
greater than the threshold value t in multi-label
classification.

3.2 PROMPT-CLIPTEXT

Similar to CLIPTEXT, PROMPT-CLIPTEXT also
contains Label Mapping and Inference step.

3.2.1 Step I: Label Mapping
PROMPT-CLIPTEXT employ the same label
mapping step to acquire the constructed text-image
pairs Dtest =

{
(x(i),v(i))

}N

i=1
.

1Specifically, after searching for some images based on the
query, we first download the top M images returned by google
search engine for each label. Then, we calculate the similarity
between the image and the corresponding label name and
map that label to the image with the highest similarity as
an initialization. Finally, for each label, we fix the images
corresponding to the remaining N-1 labels (N denotes the
number of text label set), and then we try all M images in turn,
record the performance of the model in the validation set, and
take the image with the highest performance as the mapping
image for that label.

3.2.2 Step II: Inference
Instead of directly passing the Dtest into CLIP,
PROMPT-CLIPTEXT add an additional semantic
prompt word at the beginning of input text x to
generate a new prompt-guided text x̂ by:

x̂ = concat(Prompt,x), (7)

where Prompt denotes the task-specific hard
prompt word for different zero-shot text classifi-
cation datasets.

Given the updated prompt-guided text-image
pairs

{
(x̂(i),v(i))

}N

i=1
, PROMPT-CLIPTEXT em-

ploy CLIP to obtain the final prediction by:

Inference(x̂, v)=

{
maxv∈VImage{V(x̂)·T(v)} if (x,v)∈Single Label Task,

{v|V (x̂)·T (v)>t,v∈VImage} otherwise.
(8)

Take the input text in Fig. 3 for example, the
original input text in topic classification dataset x
is {What is an “imaginary number”...} (Fig. 3 (a)),
we insert an additional prompt word topic: to gen-
erate the prompt-guided text { topic: What is an

“imaginary number”...}) (Fig. 3 (b)). The behind
intuition is that prompt in PROMPT-CLIPTEXT

can be regarded as a inductive prior knowledge to
help the CLIP model to better understand the theme
of text classification task and thus better transfer
knowledge from CLIP to the language task.

Specifically, the prompt word for topic classifi-
cation, emotion classification, situation classifica-
tion, intent detection, news categorization, opin-
ion classification and question categorization are
topic, interest, publication, type, clarify,
caption and match, respectively.

4 Experiments

4.1 Experimental Datasets
We first evaluate our approach on three standard
zero-shot text classification benchmark, including:
(1) Topic classification: Yin et al. (2019) choose
Yahoo! Answers dataset (Zhang et al., 2015) to
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evaluate topic classification. It consists of 10
topic categories; (2) Emotion classification: The
Unify Emotion dataset was released by Bostan and
Klinger (2018). It includes 9 emotion types; (3)
Situation classification: Situation Typing dataset
released by Mayhew et al. (2019). It includes 11
situation types.

To further demonstrate the generalization of
our method, we take other four publicly avail-
able datasets, including: (1) Intent detection: We
choose a wildly used intent detection benchmark
Snips that is collected from the Snips personal
voice assistant (Coucke et al., 2018), which con-
tains seven intent labels; (2) News categoriza-
tion: AG’s news dataset (Conneau et al., 2017)
is the most popular dataset for news categorization,
which contains four news types; (3) Opinion classi-
fication: Subjectivity dataset (Subj) (Pang and Lee,
2005) from with two opinion categories; (4) Ques-
tion categorization: Question dataset (TREC) (Li
and Roth, 2002) contains six questions types. De-
tailed statistics of the datasets are summarized at
Table 1.

4.2 Experimental Baselines

We compare the performance of our approach with
the following strong zero-shot text classification
baselines:

(1) Majority: This method directly adopts the
most frequent label as output;

(2) Word2Vec (Mikolov et al., 2013): This ap-
proach first uses the average embedding to
represent input text and label, and then ap-
plies maximum cosine similarity to obtain the
final output;

(3) ESA (Chang et al., 2008): This method rep-
resents input text and label in the Wikipedia
concept vector space, and then acquires final
prediction output;

(4) RTE (Yin et al., 2019): This method is the
entailment-based approach that considers the
input text and label as entailment problem.
RTE employ train a entailment model based
on bert-base-uncased with RTE dataset;

(5) MNLI (Yin et al., 2019): Similar to RTE,
this approach is a bert-base-uncased entail-
ment model by pre-training on MNLI;

(6) FEVER (Yin et al., 2019): Similar to RTE and
MLNL, FEVER is the bert-base-uncased
model pre-trained on FEVER dataset;

(7) NSP (Ma et al., 2021): This method di-
rectly use next sentence prediction (NSP) pre-
training task of BERT for zero-shot text classi-
fication. Specifically, it use the input text and
text label as the sentence pair classification;

(8) NSP (Reverse) (Ma et al., 2021): Since NSP
is not predicting for a directional semantic
entailment, Ma et al. (2021) also explore a
variant with all pairs reversed and refer it to
NSP (Reverse);

(9) GPT-2 (Radford et al., 2019): We employ gen-
erative pre-trained model for zero-shot text
classification tasks by directly generating each
label output;

For these datasets without reported results, we
use the open-source released by Yin et al. (2019)
and Ma et al. (2021) to obtain results. All experi-
ments are conducted in GeForce GTX TITAN X,
2080Ti and 3080.

4.3 Experimental Results
Following Yin et al. (2019) and Ma et al. (2021),
we report label-wise weighted F1 for emotion and
situtation datasets, and accuracy for other datasets.

Experimental results are illustrated at Table 2,
we have the following interesting observations:

• Our framework obtains better performance
against all baselines. Compared with the pre-
vious NSP-base (Reverse) model, CLIP-
TEXT obtains 4.6% improvements on AVG,
which verifies our hypothesis that knowledge
transferring from CLIP can benefit language
task, even better than the knowledge from lan-
guage itself pre-trained models.

• We do not observe any improvement when we
replace BERT-base model in NSP (Reverse)
with BERT-large. Besides, CLIPTEXT beats
NSP-large (Reverse) by 9.1% while using
fewer parameters, indicating simply increas-
ing parameters of pre-trained model cannot
solve zero-shot text classification.

• We observe that PROMPT-CLIPTEXT can out-
perform CLIPTEXT on six of seven datasets,
which indicates the effectiveness of PROMPT-
CLIPTEXT and it can better infer knowledge
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Model Model Size Yahoo! Answers Emotion Situation AG’s News Snips Trec Subj AVG
Non pre-trained Language Models

Majority - 10.0 5.9 11.0 25.0 17.7 - - -
ESA (Chang et al., 2008) - 28.6 8.0 26.0 73.3 63.4 - - -
Word2Vec (Mikolov et al., 2013) - 35.7 6.9 15.6 44.1 63.6 - - -

Pre-trained Language Models
RTE (Yin et al., 2019) 110M 43.8 12.6 37.2 56.7 56.4 27.2† 55.7† 41.4
FEVER (Yin et al., 2019) 110M 40.1 24.7 21.0 78.3 69.4 31.8† 56.8† 46.0
MNLI (Yin et al., 2019) 110M 37.9 22.3 15.4 72.4 77.6 33.8† 44.8† 43.5
NSP-BERT-base (Ma et al., 2021) 110M 50.6 16.5 25.8 72.1 73.4 32.4† 48.4† 45.6
NSP-BERT-large (Ma et al., 2021) 350M 43.2† 18.4† 25.7† 70.5† 68.4† 44.8† 42.1† 44.7
NSP-BERT-base (Reverse) (Ma et al., 2021) 110M 53.1 16.1 19.9 78.3 81.3 38.0† 61.8† 49.8
NSP-BERT-large (Reverse) (Ma et al., 2021) 350M 49.7† 19.1† 22.7† 74.4† 63.7† 28.4† 59.1† 45.3
GPT-2 (Radford et al., 2019) 124M 18.7† 12.5† 11.8† 62.3† 18.9† 15.2† 51.4† 27.3
CLIP Text Encoder (Radford et al., 2021) 38M 40.0† 12.5† 30.6† 65.6† 60.8† 37.8† 53.7† 43.0

Pre-trained VL Models - Single Model
CLIPTEXT 151M 53.6 22.0 37.4 77.0 81.0 41.6 68.0 54.4
PROMPT-CLIPTEXT 151M 53.7 21.3 38.8 78.4 81.8 48.4 68.5 55.8

Pre-trained VL Models - Ensemble Model
CLIPTEXT (Ensemble Model) 151M 55.9 24.7 37.9 77.5 82.9 46.2 69.0 56.3
PROMPT-CLIPTEXT(Ensemble Model) 151M 56.1 23.4 39.6 79.4 84.7 51.6 74.1 58.4

Table 2: Zero-shot Main Results. AVG denotes the average score on all datasets. Results with † are obtained by
re-implemented and other results are taken from the corresponding published paper (Chang et al., 2008; Mikolov
et al., 2013; Yin et al., 2019; Ma et al., 2021). Results with BERT-base denotes that models use BERT-base as
backbone and with BERT-large represents that models use BERT-large as backbone. Results with - denotes the
missing results from the corresponding published work.

from CLIP to enhance zero-shot text classifi-
cation.

4.4 Analysis
To better understand our model, we provide com-
prehensive analysis to answer the following ques-
tions:

(1) Whether the vision knowledge from CLIP ben-
efits the language task?

(2) Whether it be better to convert a label to mul-
tiple images and then ensemble them?

(3) Why our approach can successfully perform
zero-shot text classification?

(4) What is the intuition behind of our ap-
proaches?

(5) What is the impact of image selection?

4.4.1 Answer 1: Vision Knowledge inferred
from CLIP can Benefit Zero-shot Text
Classification

In this section, we investigate whether the vision
knowledge inferred from CLIP can benefit zero-
shot text classification. To this end, we conduct
experiments by directly encoding both text and
label by CLIP Text Encoder and calculating the
similarity score to predict the final results. We refer
it to the CLIP Text Encoder.

Table 2 (CLIP Text Encoder) illustrates the re-
sults. We observe that our framework surpasses
CLIP Text Encoder by a large margin (54.4%
vs. 43.0%), indicating that the image knowl-
edge learned from CLIP text-image matching pre-
training benefits zero-shot text classification tasks.

4.4.2 Answer 2: Ensemble Model Boosts
Performance

This section investigates the effectiveness of en-
semble approach. Specifically, each text label x
is converted into two corresponding images and
we sum the two text-image alignment scores as the
final prediction score.

Table 2 (ensemble) shows the results. We ob-
serve that ensemble mode can consistently out-
perform the single model on the CLIPTEXT and
PROMPT-CLIPTEXT, which suggests different im-
ages can provide different knowledge and views
for text, thereby promoting the performance.

4.4.3 Answer 3: Why CLIPTEXTC Works
To analyze why our approaches work, we provide
an intuitive visualization analysis on CLIPTEXT.
We choose representations of each text from CLIP
text encoder T and the corresponding image label
from CLIP vision encoder V for visualization.

Fig. 4 shows the t-SNE visualization output,
where we observe that the image representation
and the corresponding text representation are close
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to each other, which demonstrates that the powerful
cross-alignment capabilities of CLIP, enabling the
model to perform zero-shot text classification.

4.4.4 Answer 4: Qualitative analysis

To intuitively understand our approach, we con-
duct qualitative analysis by providing a case study
in emotion classification task produced by CLIP-
TEXT and NSP (Reverse).

Fig. 5 illustrates the vase study. Given the input
text “I felt frustrated , angry , utterly dejected.”,
NSP Reverse model predicts the label angry in-
correctly. We suspect that the spurious cues word
angry in the text confuse the NSP Reverse model
to predict angry. In contrast, our approach CLIP-
TEXT predicts the label sadness correctly. This
further demonstrates that the rich information in the
image can help our model to make a correct predic-
tion compared with single text label in traditional
zero-shot text classification model.

4.4.5 Answer 5: Impact of Image Selection
An interesting question arise is what is the impact
of image selection in label mapping stage. To an-
swer this question, for each text label, after obtain-
ing M images returned from google search engine,
we randomly choose one image from M images as
the mapping image. Finally, we try 30 different
experiments and obtain the standard deviation.

Results are illustrated in Fig.6, which shows a
slightly high standard deviation on each dataset.
Therefore, future work can focus on how to auto-
matically select label mapping, which is an inter-
esting and important topic to investigate.

4.4.6 Potential Impact
Recently, CLIP (a powerful vision-and-language
(VL) model) has shown remarkable success on var-
ious zero-shot VL and compute vision tasks. In-
spired by this, our work make the first attempt to
investigate how to transfer knowledge of CLIP to
language task. To achieve this, we introduce CLIP-
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TEXT and PROMPT-CLIPTEXT, a novel paradigm
for zero-shot text classification by reformulating
it into a text-image matching problem. Our work
demonstrates CLIP can be a good zero-shot learner
in language task and we hope this work will attract
more researchers to explore how to better leverage
knowledge of VL model to help language tasks.

5 Related Work

In this sectin, we discuss the related work of zero-
shot text classification task and application of CLIP.

5.1 Zero-shot Text Classification Task

Zero-shot text classification allows model directly
to make prediction without any training process,
which gains increasing attention since it can greatly
reduce human annotation efforts. Yin et al. (2019)
introduce three zero-shot text classification bench-
marks and propose some strong entailment-based
baselines to facilitate this line of research. Puri and
Catanzaro (2019) introduce a generative language
model (e.g., GPT-2) for zero-shot text classification.
Ma et al. (2021) explore the powerful zero-shot
ability of BERT for zero-shot text classification,
which achieves promising performance. Compared
with their work, our approaches explore the zero-
shot capacities of VL model (CLIP) for zero-shot
text classification while their model focus on the
natural language understanding models.

5.2 Application of CLIP

CLIP (Radford et al., 2021), a powerful text-image
cross-modality pre-trained model, has shown
strong zero-shot capability on various downstream
tasks. Gu et al. (2021a) apply CLIP to perform

open-vocabulary object detection by detecting ob-
jects described by arbitrary text inputs rather than
in the pre-defined categories. Portillo-Quintero
et al. (2021) use CLIP for zero-shot video retrieval.
Song et al. (2022) provide a comprehensive in-
vestigation on applying CLIP to zero-shot visual
question answering and visual entailment. Sub-
ramanian et al. (2022) present a strong zero-shot
baseline for referring expression comprehension.
Su et al. (2022) combine CLIP and off-the-shelf
language model for image-grounded text genera-
tion, which achieves promising performance. In
contrast, our work investigate CLIP into zero-shot
text classification and show knowledge from CLIP
can benefit language task while their work mainly
focusing on zero-shot computer vision or vision-
and-language tasks. To the best of our knowledge,
we are the first to explore CLIP for zero-shot text
classification task.

6 Conclusion

In this work, we studied how to transfer knowledge
from CLIP into zero-shot text classification. To this
end, we introduced a novel paradigm, CLIPTEXT

and PROMPT-CLIPTEXT, for zero-shot text classi-
fication by reformulating it as a text-image match-
ing problem. Experimental results demonstrated
that CLIP can be a good zero-shot learner for text
classification. To the best of our knowledge, this
is the first work to apply CLIP for zero-shot text
classification task. We hope that our work will mo-
tivate further research on transferring knowledge
from VL model (e.g., CLIP) to language tasks.

Limitations

We present some limitations of our approach,
which can be investigated in the future: (1) Cur-
rently, our approaches need to manually choose im-
age for each text label, which may cause the model
to be sensitive to the images selected. Though
the ensemble method can alleviate this problem
to some extent, how to automatically map the text
label into the corresponding image is an interesting
research question to investigate. (2) Since CLIP
was pre-trained on noisy web-crawled data on the
Internet, our approaches are limited by pre-training
data distribution of CLIP. Therefore, a potential fu-
ture direction is to further pre-train CLIP on more
general downstream task datasets.
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