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Abstract

Good datasets are a foundation of NLP re-
search, and form the basis for training and eval-
uating models of language use. While creating
datasets, the standard practice is to verify the
annotation consistency using a committee of
human annotators. This norm assumes that
multiple annotators are available, which is not
the case for highly specialized tasks or low-
resource languages. In this paper, we ask: Can
we evaluate the quality of a dataset constructed
by a single human annotator? To address this
question, we propose four weak verifiers to
help estimate dataset quality, and outline when
each may be employed. We instantiate these
strategies for the task of semantic analysis of ad-
positions in Gujarati, a low-resource language,
and show that our weak verifiers concur with
a double-annotation study. As an added con-
tribution, we also release the first dataset with
semantic annotations in Gujarati along with
several model baselines.

1 Introduction

Most NLP research focuses only on a few lan-
guages: a small fraction of the about 7,000 lan-
guages of the world have datasets or linguistic
tools. For example, the Universal Dependencies
project (Nivre et al., 2016), perhaps the most lin-
guistically diverse community effort in recent years,
only covers about 130 languages. Even widely spo-
ken languages like Gujarati and Hausa—both with
about 50 million native speakers (Eberhard et al.,
2022), almost equaling the population of England—
are considered low-resource in the NLP context. In
a “rich-get-richer” effect, these trends can increase
disparities across the world’s languages.

Progress in NLP for high-resource languages
like English has been powered not only by ad-
vances in modeling techniques, but also by high
quality linguistic datasets like the Penn Tree-
bank (Marcus et al., 1994), PropBank (Palmer et al.,
2005; Pradhan et al., 2022), OntoNotes (Hovy et al.,

2006), and TimeBank (Pustejovsky et al., 2003).
Making and tracking progress in low-resource lan-
guages requires building similarly large high qual-
ity datasets. But what defines a good dataset? The
standard way to measure the quality of a manu-
ally annotated dataset involves computing an inter-
annotator agreement metric such as the ubiquitous
kappa score (Artstein and Poesio, 2008).1

The very notion of inter-annotator agreement
hinges on the availability of at least two annotators.
But multiple annotators might not be available, e.g.,
for a low-resource language. In this paper, we ask:
Can we verify annotation quality when only a single
expert annotator is available? To address this open
question, we observe that evaluating the quality of
annotated data involves measuring the compatibil-
ity between labels proposed by one annotator with
a second source of information about the labels.
For inter-annotator agreement, the second source is
another human trained on the same task. We take
the position that for low-resource languages where
multiple annotators are unavailable, we can relax
the requirement that the second source needs to be
a human expert in the same language. To illustrate
this position, we propose four weak annotation ver-
ifiers and outline the scenarios in which they can
be helpful.

We evaluate the efficacy of our verifiers via a se-
mantic annotation effort in Gujarati, a low-resource
Indic language. We consider the task of supersense
disambiguation of adpositions, which are known to
be extremely polysemous. We use an inventory of
adpositional supersenses (SNACS, Schneider et al.,
2015, 2018) to construct an annotated corpus of a
Gujarati version of the book The Little Prince. Ex-
periments with this data indicate that our verifiers
can be successfully employed in scenarios where

1Annotation quality assessment is multi-faceted. Here,
we focus only on one such facet, i.e, human agreement and
subsequent references to ‘dataset or annotation quality’ refer
to this aspect alone. See §7 for a detailed discussion.
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multiple annotators are unavailable.
In summary, the contributions of this work are:

1. We introduce the notion of weak verification
of singly annotated corpora and propose four
weak verification methods.

2. We evaluate these methods with a dataset an-
notated by a single annotator in a low-resource
language—Gujarati. We show that these meth-
ods concur with a double-annotation study
performed on the dataset.

3. We release a new adposition supersense
dataset for Gujarati based on the SNACS for-
malism. Notably, this is the first instance of
semantic annotation dataset in Gujarati.2

2 The Problem of the Single Annotator

Dataset creation in NLP typically involves multi-
ple annotators (experts or crowd workers) labeling
a corpus using the task definition and annotation
guidelines, followed by a manual or heuristic ad-
judication step to construct the aggregated ground
truth. Datasets form the backbone of computational
linguistics and NLP research; ensuring their qual-
ity is of paramount importance. Their quality is
commonly measured using annotator agreement,
and metrics such as Cohen’s kappa (Cohen, 1960)
reflect consensus (Artstein and Poesio, 2008). A
good inter-annotator agreement (IAA) score—over
0.6, per Landis and Koch (1977)—implies a bet-
ter agreed-upon dataset, whereas a poor one may
indicate gaps in the task definition or annotation
guidelines. Interesting insights can be drawn by
viewing IAA scores alongside model performances.
For instance, a dataset with high human consensus
and a poor model score suggests a task seemingly
simple for humans like common sense reasoning,
but difficult for our models (Talmor et al., 2019).

However, human agreement is undefined when
we have only one annotator. This could happen
when: (1) The task requires specialized exper-
tise, like biomedical named entity tagging (Sazzed,
2022), or, (2) The language does not have readily
accessible NLP expertise (Hedderich et al., 2021),
such as the Universal Dependencies annotation for
the K’iche’ (Tyers and Henderson, 2021), and Bre-
ton (Tyers and Ravishankar, 2018) languages. In
this paper, we study the question of evaluating an-
notation quality of such singly annotated datasets.

2The dataset, and associated code, is available at: https:
//github.com/utahnlp/weak-verifiers.

The Principle. Measuring agreement requires
two separate sources of annotation, which we will
call the primary and secondary sources. In a multi-
ple annotator setup, both are human. When annota-
tion by multiple experts is not possible, we should
consider other available resources. In this work, we
suggest several resources that can serve as the sec-
ondary annotation source. These can be in the form
of pre-trained contextualized embeddings, parallel
corpora, human expertise in a cognate language, or
native speakers of the target language who are not
linguistically inclined. In §4, we propose verifiers
that use these resources as secondary annotation
sources, and evaluate their effectiveness in §5.

3 Gujarati SNACS: A Case Study

This section introduces a new semantic annotation
dataset that will serve as a testbed for our verifiers.

3.1 Background

Adpositions (pre-, post-, and inpositions) and case
markers are ubiquitous grammatical components
that bear diverse semantic relations and are ex-
tremely polysemous (Litkowski and Hargraves,
2006; Müller et al., 2010, and others). Schneider
et al. (2015) categorized their semantic behavior
into coarse-grained categories called supersenses.

Hwang et al. (2017) argued that a single super-
sense label is insufficient to capture the semantic
nuances of adpositional usage. They theorized the
idea of construal, where adpositions are labeled for:
a) their meaning in the broader scene, i.e, scene
role, and b) the meaning coded by the adposition
alone, i.e., function. Schneider et al. (2018) de-
fined a hierarchy of fifty supersenses called SNACS
(Semantic Network of Adposition and Case Super-
senses) and annotated a corpus of English prepo-
sitions with construals. SNACS has since been
extended to multiple languages; annotated corpora
exist in Korean (Hwang et al., 2020), Hindi (Arora
et al., 2022), among other languages.

In this work, we extend the SNACS project to
Gujarati, an Indic language spoken in western India,
with about 56 million L1 speakers (Eberhard et al.,
2022). Yet, in NLP research, it remains impover-
ished. Gujarati grammars (Tisdall, 1892; Doctor,
2004) discuss the syntactic usage and diversity of
Gujarati adpositions and case markers but their se-
mantic versatility is hitherto unstudied. Gujarati
is closely related to its somewhat higher resource
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cousin Hindi, especially in adposition usage.3

3.2 Dataset and Annotation

A bilingual speaker of Gujarati and Hindi annotated
all adpositions in Nānakado Rājakumār, a Gujarati
translation of the novella Le Petit Prince (The Little
Prince, de Saint-Exupéry, 1943) following its use
for SNACS annotation in other languages. Since
Gujarati has similar adpositional usages as Hindi,
the annotator followed the Hindi-Urdu guidelines
v1.0 (Arora et al., 2021), while referring to the
English guidelines v2.5 (Schneider et al., 2017) for
definitions.

We show some examples below with the an-
notations for the adposition highlighted in bold.
In example (1-a), the ergative marker conveys the
agency of the action of giving to Sam in the phrase.
Hence, the marker gets an AGENT scene role which
is the same as the function since the ergative marker
is prototypically used to describe agency. However,
in example (1-b)., the locative adposition par is
used to convey an instrumentative relation between
the phone and the action of talking, meriting differ-
ent scene role and function annotations.

(1) a. Sam-e dīdhuṁ
Sam.ERG give.PRF
“Sam gave”
SCENE ROLE: AGENT

FUNCTION: AGENT

b. phona para vāt karī
phone LOC talk do.PRF
“Talked on the phone”
SCENE ROLE: INSTRUMENT

FUNCTION: LOCUS

Gujarati has certain unique cases which do not
exist in Hindi. We list these details and the target
selection heuristics in Appendix C.2.

Table 1 shows descriptive dataset statistics. Ap-
pendix C.1 contains additional statistics such as
the most prevalent supersenses and construals, and
adposition-wise label entropies. While model build-
ing is not the focus of this work, we present the
results of several baseline models in Appendix C.4.
Multilingual models (Indic and general) produce
F1 scores between 56-69% for scene roles, and
56-75% for functions with gold adpositions.4

3The distinction between case markers and adpositions in
Hindi (Spencer, 2005) applies to Gujarati, but is irrelevant to
this work. We refer to both collectively as ‘adpositions’.

4Note that merely obtaining high predictive accuracy does
not imply high annotation quality; the model might rely on

Chapters 27
Sentences 1488
Tokens 18516
Targets 3765

SCENE ROLE 3765 (47)
FUNCTION 3765 (39)

Construals
SCENE ROLE = FUNCTION 2555 (39)
SCENE ROLE ̸= FUNCTION 1210 (110)

Table 1: Dataset Statistics. The numbers in the paren-
theses denote the number of distinct targets/construals.

Inter-annotator agreement study. A second ex-
pert annotator, also a native Gujarati speaker, la-
beled Chapters 4 and 5 (253 targets) giving a Co-
hen’s kappa score of 0.893 for scene roles, and
0.940 for functions. Besides attesting the quality of
our new dataset, this IAA study can help validate
the verifiers introduced in §4.

4 Weak Verifiers of Annotation Quality

This section presents four weak verifiers that assess
annotation quality. We introduce each one by first
stating the prerequisite resources that are needed
to use it. We refer to the low-resource language of
interest as the target language. We note that the
verifiers are all weak: they are not meant to replace
a second annotator, but can help gauge dataset qual-
ity in the absence of multiple annotators.

4.1 Using Contextualized Representations

Prerequisites. Pre-trained contextualized repre-
sentations in the target language.

The research program of training contextualized
embeddings (e.g., Devlin et al., 2019) using mas-
sive amounts of unlabeled text now extends to mul-
tiple languages (e.g., Conneau et al., 2020). We
propose that, besides their use for model building,
these embeddings can also help verify annotations.

For this purpose, we use DIRECTPROBE (Zhou
and Srikumar, 2021), a heuristic that probes embed-
dings using their geometric properties. It clusters
labeled instances in an embedding space such that
each cluster contains examples with the same la-
bel. The number of clusters indicates the linear
separability of labels in that space: if the number
of clusters equals the number of labels, then the
labeled points are linearly separable by a classifier.

Given a singly annotated dataset, we can project
the annotation targets into an embedding space us-

dataset artifacts to achieve its performance.
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Corg Crand CRA Interpretation

Low High High Good Affinity
High High Low Poor Affinity
High Low Low Poor Affinity
Low Low Low Method Unreliable

Table 2: Trends and Interpretation for CRA.

ing a pre-trained model.5 If the model representa-
tion agrees with the annotations, it should dedicate
separate convex hulls (i.e., clusters or regions in
the space) for most labels, if not all. Conceptually,
this property characterizes a form of agreement be-
tween the representation and the human annotator.
If the representation disagrees with the human, it
would place an example within a cluster associated
with the “wrong” label, breaking the cluster into
sub-clusters. Consequently, the number of clusters
would increase as the disagreement increases.

Merely verifying a one-to-one mapping between
labels and clusters is insufficient. We need to com-
pare to how random label assignments behave. If
examples were randomly labeled, we should ob-
tain a large number of clusters—in the worst case,
almost as many as the number of examples.6

Two factors determine the affinity of an anno-
tation with an embedding: (1) each label in the
annotation should occupy a separate region (i.e., a
distinct cluster) in the embedding space, and (2) if
the labels are randomly shuffled across examples,
the number of clusters should increase. The latter
accounts for the possibility of labels being grouped
in the embedding space by chance. We define a
metric, CONTEXTUAL REPRESENTATION AFFIN-
ITY (CRA), that takes both factors into account to
assess the chance-corrected affinity (as in the kappa
score) between an annotation and an embedding:

CRA = 1− Corg

Crand
(1)

Here, Corg is the number of clusters produced
by DIRECTPROBE with an annotated dataset, and
Crand is the number of clusters obtained when its
labels are randomly shuffled while ensuring that
the label distribution is conserved.7

The design of the CRA metric is inspired by
Cohen’s kappa, and can be interpreted as quanti-
fying the regularity introduced into the embedded

5Note that there is no fine-tuning of the model for the task.
6In practice, this worst case is highly unlikely as even a

random assignment will exhibit some grouping of labels.
7In practice, Crand is averaged over multiple runs.

points beyond a random labeling. When labels are
grouped into a small number of clusters (i.e., low
Corg), but random labeling leads to a large number
of clusters (i.e., high Crand), then the CRA will be
high. This means that the representation agrees and
the annotations bear information that goes beyond
chance. However, a low CRA score does not guar-
antee disagreement. With a low CRA score, we
need to look at the Corg and Crand values. When
Corg is high, labels occupy overlapping regions
of the embedding space and the labeled data has
low affinity with the embedding. However, when
both counts are low, and close to the number of
labels, both label sets occupy distinct regions of the
embedding space. In such a case, CRA is not con-
clusive. Table 2 summarizes these four scenarios.

4.2 Using Cognate Language Annotation

Prerequisites. Annotated corpus in a cognate lan-
guage, Bilingual or multilingual expert annotator
for the target language.

Some annotation projects (e.g., our case study) in-
volve parallel annotated corpora. Existing annota-
tion in a cognate language can be used by manually
or automatically aligning sentences and comparing
annotations (manual alignments require a bilingual
annotator). We can then measure agreement of
labels assigned to the aligned components. A sim-
ilar approach had been undertaken by Daza and
Frank (2020) for semantic role labeling. They use
mBERT (Devlin et al., 2019) embeddings to align
predicate and arguments from English to various
other target languages, and project gold annotations
in English to the target languages.

Two points are worth noting. First, the cognate
language need not be a high-resource language.
Second, this approach is inapplicable when the
labels are not preserved across translations. For
example, for the task of grammatical gender classi-
fication, we can use this verification strategy only if
both languages follow the same gender classes, and
carry the same gender for translations of nouns.

4.3 Translate and Verify

Prerequisites. Bilingual or multilingual transla-
tor between the target and a cognate language,
and an expert annotator in the cognate language.

This approach, like the previous one, requires that
labels be preserved across the target-cognate trans-
lation. However, instead of relying on existing
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annotation and alignment tools, it requires an ex-
pert annotator in the cognate language. A bilingual
speaker is required to translate the text in the tar-
get language to the cognate language conserving
the intricacies of the task. The annotator can then
label the translated corpus and the labels can be
compared for agreement.

4.4 Verification Using Non-expert Annotators

Prerequisites. A pool of non-expert annotators
in the target language.

Certain tasks, by design, are not amenable for
crowd-sourcing due to their complexity. Much
work has been dedicated in making the annota-
tion easier by methods like enforcing an annota-
tion curriculum (Lee et al., 2022), and iterative
feedback (Nangia et al., 2021), to name a few.
He et al. (2015) propose querying annotators for
question-answer pairs for the Semantic Role La-
beling task which might not be straight-forward
for a non-expert. Wein and Schneider (2022) pro-
pose a worker priming approach where a proxy task
primes a crowd worker to a subsequent downstream
task for which annotated data is required.

At a high level, verifying with non-expert anno-
tators involves casting the target task into task(s)
more favorable for annotation by non-experts (who
may possibly be anonymous crowd workers). Nat-
urally, the simplification process would vary from
task to task. In §5.4, we provide a concrete instan-
tiation of this idea for our target task.

5 Evaluating the Verification Strategies

In this section, we instantiate the verification strate-
gies from §4 for the Gujarati SNACS annotation
task to empirically evaluate them. We show experi-
ments on additional datasets wherever possible.

5.1 Using Contextualized Representations

We instantiated the strategy of using contextual rep-
resentations (§4.1) with six pre-trained language
models: IndicBERT (Kakwani et al., 2020), MuRIL
(base & large) (Khanuja et al., 2021), mBERT (De-
vlin et al., 2019), and XLM-R (base & large) (Con-
neau et al., 2020). We average the contextual em-
bedding of all tokens (for multi-word adpositions)
to obtain adposition embeddings.

Since the CRA score is a novel contribution of
this work, in addition to presenting the scores for
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Figure 1: DIRECTPROBE clustering results for Scene
Roles over varying randomization.

the new Gujarati dataset, we show examples illus-
trating the different regimes of the score, and also
show its high correlation with Cohen’s kappa.

Number of DIRECTPROBE clusters. We applied
Zhou and Srikumar (2021)’s implementation of
DIRECTPROBE8 to our dataset for the six embed-
dings. In all cases, and for both scene role and func-
tion, the number of clusters Corg obtained from the
singly annotated dataset is the minimum, namely
the number of labels. In other words, for both tasks,
across all embeddings, each label is allocated a
separate region of the embedding space.

Next, to confirm that the embeddings can recog-
nize bad annotations, we shuffled q% of the labels
for q = {5, 10, 25, 50, 75, 100}. (Note that the
number clusters for q = 100% is Crand.) Recall
from Table 2 that if randomized labels do not cor-
respond to an increased number of clusters, we
cannot draw any conclusions. Figure 1 shows the
trend for scene roles. We average the results over
five random runs for each value of q. We observe
that the number of clusters increases with increased
randomization of labels for all embeddings.

Gujarati CRA scores. Table 3 shows the CRA
scores for the scene role and function tasks with
the various embeddings. We see that all represen-
tations are similar in how they handle random la-
bel assignments. Consequently, their CRA scores,
which measure the affinity of the annotation be-
yond chance, are in a similar numeric ranges for
both tasks. Figure 2 shows the behavior of CRA
scores with increasing randomization of labels.

We see that the CRA scores are negatively cor-
related with the amount of randomization in the
labels. In other words, noisier annotations (via

8www.github.com/utahnlp/DirectProbe
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Figure 2: CRA scores for Scene Roles over varying
randomization in data. The Corg values are the ones as
shown in Figure 1 for various randomizations.

randomization) have lower CRA scores, thus vali-
dating the definition of the CRA as a verifier.

Appendix A.1 shows the similar behavior of the
number of clusters and CRA score across label
randomizations for the adposition functions.

CRA behavior. To better understand the numeric
ranges of the scores, and to illustrate a failure case,
we apply the approach to several existing datasets:
a 10k subsample of the SNLI dataset (Bowman
et al., 2015), the English SNACS STREUSLE cor-
pus (Schneider et al., 2018), and Estonian EWT
Universal Part of Speech (UPoS) dataset (Muis-
chnek et al., 2014). We used the XLM-Rlarge in all
cases. Table 4 shows their scores.

With SNLI, we see that Corg is more than the
number of labels, namely three, suggesting we have
a minor disagreement between the representation
and the annotation. However, we also see that the
random annotation fares much worse (thrice the
number of labels). The CRA score suggests that its
affinity to the embeddings beyond chance is slightly
less than the case of Gujarati SNACS .

On the Estonian UPoS data, Corg is equal to the
number of labels while the Crand is about seven
times more. Hence, this yields a high CRA score.

We observe low CRA scores with the English
SNACS datasets. We also see that Crand values are
small and close to their respective Corg, placing us
in the last row of Table 2. The verifier is unsuitable
for this embedding-dataset combination. We con-
jecture that this might be due to a wider spread of
the data in the embedding space which allows even
a random labeling set to show clustering behavior.

Kappa vs CRA Correlation Analysis. To show
that the CRA score behaves like the an agree-
ment score, we conduct an experiment using the
TweetNLP data (Gimpel et al., 2011) to show

Task Model Corg Crand CRA

IndicBERT 47 81 0.417
MuRILlarge 47 81 0.421
mBERT 47 80 0.415

Gujarati
SNACS
Scene Role XLM-Rlarge 47 81 0.417

IndicBERT 39 73 0.469
MuRILlarge 39 74 0.470
mBERT 39 73 0.469

Gujarati
SNACS
Function XLM-Rlarge 39 74 0.470

Table 3: CRA scores for Gujarati SNACS. We use the
entire dataset (3765 targets) for this study. Crand values
are rounded to the closest integer. Due to space con-
straints, we moved base variant results to the appendix.

Task L Corg Crand CRA

SNLI10k 3 6 10 0.375
STREUSLE SR 46 46 48 0.034
STREUSLE Fx 38 38 40 0.050
Estonian UPoS 17 17 120 0.859

Table 4: CONTEXTUAL REPRESENTATION AFFIN-
ITY scores for SNLI, English SNACS and Estonian
UPoS. Crand values are rounded off to the closest inte-
ger. SR: Scene Role, Fx: Function, L: # labels.

how Cohen’s kappa and CRA vary with different
amounts of annotation noise. Hovy et al. (2014)
supplemented the original labels by crowd sourcing
five annotations per instance. We use the majority
crowd label for this experiment, and add noise to
it by shuffling q ∈ {0, 5, 10, 25, 50, 75, 100} per-
cent of the labels. For each case, we compute
the kappa against the original gold labels and also
the CRA score using XLM-Rlarge. We compute
these scores with five random shuffles for each q.
Figure 3 shows a scatter plot between the scores.
We observe that as noise increases, both scores
decrease, and we have a high Pearson correlation
of 0.915 between the two scores. This gives addi-
tional validation to the CRA metric as a measure
of agreement.

5.2 Using Cognate Language Annotation

To instantiate the verifier in §4.2, we compared our
Gujarati annotation with the adjudicated Hindi an-
notation of The Little Prince of Arora et al. (2022)
by aligning sentences between the translations. A
target is aligned if, in the parallel sentence, the
object of the adposition and its governor match.
We used chapters 4, 5, 6, 17, and 21 for this task.
A bilingual Hindi-Gujarati speaker performed the
manual alignment.

Of the 757 adpositions annotated in the selected

10946



0.0 0.2 0.4 0.6 0.8 1.0
CRA Score

0.0

0.2

0.4

0.6

0.8

1.0

Co
he

n'
s k

ap
pa

CRA Score vs Cohen's kappa over Random Shuffles
Randomization (%)

0
5
10
25
50
75
100

Figure 3: Correlation plot between CRA and Cohen’s
kappa on TweetNLP dataset. The Pearson correlation
between CRA and kappa is 0.915.

Gujarati corpus, 526 tokens could not be aligned
to the Hindi corpus as semantically equivalent sen-
tences can be written using a different adposition
(i.e. that is not a direct translation), or even without
using one. For the remaining 231 aligned tokens,
we computed the Cohen’s kappa to obtain the agree-
ment between the Hindi and Gujarati annotations.
We observe high agreement scores of 0.781 and
0.886 for scene roles and functions respectively.

To verify if the alignment introduced any bias,
we compare the kappa scores from the double anno-
tated study for the aligned and the unaligned tokens
for chapters 4 and 5. The IAA for the aligned to-
kens were 0.932 for the scene roles and 0.959 for
the functions, while for the unaligned ones they
were 0.875 and 0.930 respectively. This suggests
negligible bias due to alignment, if any. On the
aligned tokens of the same chapters (i.e., chapters
4 and 5), the kappa score between the Hindi and
Gujarati aligned annotations is 0.824 and 0.876 for
scene roles and functions respectively. We observe
that the Hindi alignment recovers over 90% of the
kappa scores from the relevant subset of the double
annotation study.

As a second evaluation of this verifier, we as-
sessed the Portuguese part-of-speech annotations
with respect to Spanish annotations using a 181-
token subset of PUD datasets (McDonald et al.,
2013) and found a high kappa score of 0.881.

5.3 Translate and Verify
A bilingual Hindi-Gujarati annotator translated
chapters 4 and 5 of the Gujarati version of The
Little Prince into Hindi. The translations were gen-
erated such that adpositions were conserved and
mapped to their respective counterparts in Hindi.
(This is unlike the setting of §5.2 that used an exist-

ing translation, and due to which many adpositions
were lost in translation.) The translated sentences
were subsequently annotated by a Hindi SNACS
expert annotator. We ask the Hindi expert to flag
any ungrammatical translations, which are avoided.
We observe that the targets selected by the Gujarati
and Hindi annotators matched 83.0% of the times.
That is, the two annotators largely assigned labels
to the same tokens (up to translation). We observe
a kappa score of 0.802 and 0.837 for scene roles
and functions respectively for the tokens identified
both in Gujarati and Hindi annotations as targets.

5.4 Verification Using Non-expert Annotators
Our experiments for this strategy (§4.4) focus on
the scene role identification task.9 Our goal is to
set up an annotation task that a native speaker of
the target language (Gujarati) can perform with-
out having to read the annotation guidelines. To
do so, we provide the annotator with an instance
of a sentence with a highlighted adposition, and
ask two questions: (1) Given four sentence choices
that use the same adposition, which sentence em-
ploys the adposition to convey the relation that is
most similar to the one conveyed by the highlighted
adposition? (Task 1). (2) Given four supersense
definitions for the adposition (attested in the anno-
tated corpus), which one most closely resembles
the sense in which the highlighted adposition is
used? (Task 2). Appendix B shows the task in-
structions and example questions. We consider the
answers provided to the first question (Task 1) as
the priming task for scene role selection (Task 2).

We emphasize that this setup is different from
crowd-sourcing of labels: the singly annotated data
dictates the choice of the four sentence options and
definition choices. The task is closer to annotation
verification rather than a fresh round of annotation.

A non-expert native Gujarati speaker performed
these annotations. As mentioned earlier, one anno-
tation instance consists of a sentence with a high-
lighted adposition which serves as the query sen-
tence for the Task 1 and Task 2 questions. To con-
struct the data for this task, we choose one represen-
tative sentence from every adposition-supersense
pair to act as query sentences.10 Adpositions that

9We consider only scene roles as they are prone to ambigu-
ity and hence more interesting. Functions are more rule-based,
and take some amount of orientation with guidelines.

10This implies that rare instances are equally weighted as
the more frequent ones. This is done for comparison against
a diverse set of examples. Consequently, this task would be
harder and a lower score would be expected.
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have at least four different supersense annotations
were considered. We measured agreement between
the original annotations and the annotation from
the non-expert speaker. We found that the exact
agreement for Task 1 and kappa score for Task 2
were 51.4% and 0.547 respectively.11

We repeat this experiment with the original Gu-
jarati expert to verify intra-annotator agreement.
This shows the internal consistency of an annotator
with the same task. To emulate non-expert con-
ditions, no external resources were referred. We
observe an accuracy score of 87.2% on Task 1 and
a kappa score of 0.867 for Task 2 which shows
reasonable consistency of the expert on a harder
split and under stricter conditions.

6 Commentary on Results

In this section, we compare our double annotation
study with the results from the verifiers.

Using Contextual Representations. As dis-
cussed in §5.1, we find favorable number of clusters
in the original and random settings for the Gujarati
SNACS experiment. Subsequently, we get good
CRA scores across all representations indicating
high agreement. We argue that obtaining high (and
identical) affinity with one representation may be
a statistical accident, but obtaining high affinity
over multiple representations is unlikely to be a
mere coincidence (subject, of course, to the caveat
that many representations are pretrained on similar
datasets). This lends credence to the hypothesis
that the annotations are linguistically meaningful.

In CRA, we propose a new verification score.
Note that this score is not intended to replace met-
rics like Cohen’s kappa, nor is it a panacea for the
difficulties of single-annotator settings. Instead, it
provides a new dimension for annotation verifica-
tion. To validate the metric itself, we show results
on several datasets and present an additional study
between kappa and CRA. Admittedly, it requires
monolingual or multilingual embedding. If a lan-
guage is not yet represented in such embeddings,
one can augment existing pre-trained embeddings
via continued pre-training with a small amount of
unlabeled text (Ebrahimi and Kann, 2021).

Using Cognate Language Annotation & Trans-
late and Verify. Both methods rely on two sets
of expert annotations, albeit, across two cognate

11Non-expert who did not see the SNACS guidelines at-
tempted these tasks. A relatively lower score is to be expected.

languages. We see high kappa scores on both these
experiments, comparable to the double-annotation
scores. These methods can be useful for high
resource-low resource language pairs.

Verification Using Non-expert Annotators.
Our results suggest that this method underperforms
with respect to double annotation. This is expected
because we use non-experts. The method also re-
lies on the ability to simplify a task for non-experts,
which might not be straightforward. However, we
note that our observed kappa scores still fall in the
higher end of the ‘moderate category’ agreement
according to Landis and Koch (1977).

7 Discussion and Related Work

Dataset quality. Datasets have been be evalu-
ated along various dimensions, e.g., annotation ar-
tifacts (e.g., Gururangan et al., 2018) and demo-
graphic biases (Bordia and Bowman, 2019; Barik-
eri et al., 2021). These efforts often use exter-
nal resources to define evaluation techniques. We
can draw parallels between such work and ours
in that we use external resources to validate a di-
mension of dataset quality, i.e., human agreement.
Swayamdipta et al. (2020) offer a relevant view-
point by using training dynamics to analyze the dif-
ficulty of learning individual examples in a dataset.

Verifiers for Prescriptive Annotation. Rottger
et al. (2022) point out two annotation paradigms:
(i) prescriptive: where annotators adhere to a
prescribed set of guidelines, and (ii) descriptive:
which encourages annotators to follow their sub-
jective opinions for annotation. Both IAA and our
verifiers are applicable only in the ‘prescriptive’
scenario.

Labels in a Low-Resource Scenario. The prob-
lem of data collection in low-resource settings is
not new. Recently, Hedderich et al. (2021) pre-
sented a survey on low-resource data collection
and discuss a range of methods ranging from data
augmentation (Feng et al., 2021), distant super-
vision (Mintz et al., 2009; Ratner et al., 2017),
to cross-lingual annotation projection (Plank and
Agić, 2018). Active learning (Settles, 2009) can
also be useful for efficient annotation. Such meth-
ods are meant to facilitate annotation. While these
methods are important, we seek to answer the ques-
tion: How does one measure annotation quality
when you have exactly one expert annotator?
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Gujarati Adpositions. Only a small body of
work exists on Gujarati postpositions. Tessitori
(1913) trace the origins of the dative and geni-
tive markers in Gujarati to Old Western Rajasthani.
They also attempt to explain the use of prototypical
dative markers in agentive roles. Turner (1914) ar-
gues against the theory. Tisdall (1892) and Doctor
(2004) provide an extensive list of postpositions
along with conditions for valid syntactic usage.

Our methods should not be seen as replacing
multi-annotator efforts, although in such setups,
our methods can act as supplementary verifiers.

8 Conclusions

An inter-annotator agreement study is an essential
checklist item before the release of human curated
datasets. But inter-annotator agreement cannot be
computed when we only have one annotator. We
address the open question of verifying singly anno-
tated datasets with a new paradigm of exploiting
ancillary resources that can serve as weak surro-
gates for other annotators. The intuition is that
each such verifier provides hints about the dataset
quality, and their cumulative success is more likely
to point to a good dataset.

We presented four verification strategies that
operate in this paradigm, and a new agreement
metric (CONTEXTUAL REPRESENTATION AFFIN-
ITY). We also created the first semantically fo-
cused dataset of adpositions in Gujarati, a low-
resource language, in the single-annotator setting.
We showed that our verification strategies, when
instantiated to the new dataset, are promising and
concur with a traditional double-annotation study.

9 Limitations

We do not propose a solution for extremely low-
resource languages, where neither unlabeled text
for building language models, nor native speakers
are readily available. Examples of such languages
include Muscogee, with about 4500 native speak-
ers, and 325 articles in the Muscogee language
Wikipedia, and Arapaho with about 1000 speakers
and no Wikipedia articles. In such cases, finding
even a single expert annotator might be difficult.
The development of resources in such languages,
however, do not necessarily rest purely on techno-
logical factors.

On the technical side, DIRECTPROBE relies on
the fact that a representation can be generated for
the instance to be annotated. However, obtaining an

effective representation for structured annotations
(e.g., frames, dialogue states, tables, etc) is non-
trivial. While this is a problem, this is orthogonal
to our contributions.
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A Additional Verifier Experiments

A.1 CRA Scores across Randomization

In Figure 4, we show the change in the number of
clusters with increasing randomization. Further-
more, we show that the CRA scores decrease with
an increasing amount of noise in Gujarati function
annotations in Figure 5.

A.2 Complete CRA Results on Gujarati
SNACS

The complete set of results on all models and their
variants are given in Table 5.

B Native Speaker Verification
Instructions and Examples

We show the screenshots of the instructions in Fig-
ure 6 and an example question in Figure 7.
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Figure 4: DIRECTPROBE clustering results for Func-
tions over varying randomization.
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Figure 5: CRA scores for Functions over varying ran-
domization.

Task Model Corg Crand CRA

IndicBERT 47 81 0.417
MuRILbase 47 81 0.418
MuRILlarge 47 81 0.421
mBERT 47 80 0.415
XLM-Rbase 47 80 0.414

Gujarati
SNACS
Scene Role

XLM-Rlarge 47 81 0.417

IndicBERT 39 73 0.469
MuRILbase 39 74 0.470
MuRILlarge 39 74 0.470
mBERT 39 73 0.469
XLM-Rbase 39 74 0.470

Gujarati
SNACS
Function

XLM-Rlarge 39 74 0.470

Table 5: CRA scores for Gujarati SNACS. We use the
entire dataset (3765 targets) for this study. Crand values
are rounded to the closest integer.

C Gujarati SNACS Statistics, Examples,
Assumptions and Baseline Models

C.1 Dataset Statistics

We show the most frequent supersense assignments
and the most frequently occurring construals in
Table 6. Table 7 shows label entropies of frequently
occurring adpositions.

C.2 Notable Examples and Target
Assumptions

Here, we discuss certain examples which are
present in Gujarati but are not seen in Hindi. Also,
we would point to some linguistic issues and their
consequent assumptions.

New Prototypical Adpositions. Gujarati houses
certain specialized adpositions that are used pro-
totypically for certain semantic relations. Take
for instance the adpositions vade and kartāṁ,
which are prototypically used for INSTRUMENT

and COMPARISONREF respectively. See exam-
ple (2). They can optionally be preceeded by the
genitive marker/adposition which, in turn, attaches
to a non-pronoun complement. See corresponding
examples in (3).

(2) a. cāvī vade darvājo kholyo
key INS door open.PRF
“Opened door with the key”

b. Sam kartāṁ ūṁco Mark
Sam COMP tall Mark
“Mark taller than Sam”

(3) a. cāvī-nī vade darvājo kholyo
key.GEN INS door open.PRF
“Opened door with the key”

b. Sam-nā kartāṁ ūṁco Mark
Sam.GEN COMP tall Mark
“Mark taller than Sam”

Hindi, in such cases, uses the se adposition which
is fairly polysemous and can be used in an Ablative,
Comitative, or Instrumentative case (Arora et al.,
2022). Corresponding Hindi translations would
be “chābī se darvāzā kholnā” ((2-a) and (3-a)) and

“Sam se ūṁcā Mark” ((2-b) and (3-b)).

Target Selection Assumptions.

1. Certain tokens like vīshe (about) and
kāran. e (due_to) are used to convey TOPIC

and EXPLANATION relation. However, ety-
mologically, these can be broken down into

10953



Figure 6: Native Speaker Verification Task Instructions. Rough translations of sentences A: “The pen is in the box.”,
B: “I am interested in languages.”, and C: “The duck is swimming in the lake.”

Figure 7: Native Speaker Verification Task Practice Question. Rough translations of query sentence: “The pen is in
the box.”, Option 1: “I am interested in languages.”, Option 2: “The duck is swimming in the lake.”, Option 3: “I
will reach in ten minutes”, and Option 4: “Ramesh left for home in a hurry.”

Scene Role %

FOCUS 17.13
ORIG. 9.75
EXP. 8.84
THEME 7.20
LOCUS 5.23
AGENT 4.14
TOPIC 3.96
GESTALT 3.67

(a)

Function %

FOCUS 17.13
AGENT 13.39
RECIPIENT 10.46
THEME 8.15
LOCUS 7.89
GESTALT 7.65
TOPIC 4.01
SOURCE 3.27

(b)

SR = Fx %

FOCUS 17.13
THEME 6.16
LOCUS 4.54
TOPIC 3.88
AGENT 3.61
GESTALT 3.61
WHOLE 2.87
RECIPIENT 2.84

(c)

SR ̸= Fx %

ORIG.;AGENT 8.23
EXP.;RECIPIENT 6.67
STIMULUS;THEME 1.73
EXP.;AGENT 1.49
ORIG.;GESTALT 1.46
GOAL;LOCUS 1.33
SOC.REL;GESTALT 1.22
CHAR.;IDENTITY 0.98

(d)

Table 6: Supersense statistics. Each subfigure shows the most prevalent - (a) scene role supersenses, (b) function
supersenses , (c) non-construals, and (d) construals in the data. EXP.-EXPERIENCER, ORIG.-ORIGINATOR,
SOC.REL-SOCIALREL. CHAR.-CHARACTERISTIC
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Adposition Entropy Counts

nā/nī/nuṁ/nā/nāṁ (GEN) 3.80 856
thī (ABL/INS/COM) 3.34 212
maṁ (LOC-in) 3.11 200
ne (DAT/ACC) 2.37 616
(nī) sāthe (“with”) 2.42 35
(nī / ne) māt.e (“for”) 2.33 82
e (ERG) 1.96 552
(nā) par (LOC-on) 1.73 121
(nā) vis. he / vishe (“about”) 0.53 33
ja (EMP) 0 332
to (EMP) 0 167
pan. (EMP) 0 78
ya (EMP) 0 66

Table 7: Entropy of labels by adpositions. Adpositions
with a minimum count of 30 were considered

vīs. he = vīs. hay(subject) + -e, and kāran. e =
kāran. (reason) + -e. This presents a dilemma
about annotating the entire token or just the -e.
We choose to annotate the entire token given
that they exist on the list of postpositions men-
tioned in Tisdall (1892).

2. Gujarati is also notorious for compound adpo-
sition constructions. In certain cases, it is pos-
sible to separate out the semantic contribution
of the constituent adpositions. Take the in-
stance in example (4). The bolded adposition
taraph-thī contains two adpositions taraph
and the ablative thī. Hence, a DIRECTION

and SOURCE annotation would be appropriate
for the respective adpositions. On the other
hand, take the sentence in example (5). Here,
the compound postposition -nī_bājumāṁthī
contains three component adpositions - the
locatives -nī_bāju and māṁ, and the ablative
thī. However, making distinctions between
the semantic contributions of each of these ad-
positions is not staright-forward. Hence, we
avoid the complexities of breaking compound
postpositions and assign a single set of labels
for the entire expression.

(4) darīyā taraph-thī āyo
sea towards.ABL come.PRF
“came from the sea”

(5) darīyā-nī bāju-māṁ-thī gayo
sea.GEN beside.LOC.ABL go.PRF
“went alongside the sea”

C.3 Double Annotation Disagreements

In this section, we highlight a few examples on
which the experts disagreed. Of the 254 adpositions
annotated for the double annotation study, only 33
of them had disagreements on either or both scene
role and function.

(6) vārtā parīkathānī māfaq sharū qarvānuṁ
story fairytale.GEN COMP start
“start the story like/as a fairytale”

In (6), the annotators disagreed on the scene role
between COMPARISONREF and MANNER. One
can make an argument that the former is appropri-
ate as the fairytale acts as a reference point. On the
other hand, it can be seen as describing a particular
way the story has been started and hence MANNER.

(7) ghetāne laine chālyo
sheep.ACC take.CONJ walk.PRF “took the
sheep and walked”

In (7), the annotators differ with THEME and
ANCILLARY annotated for scene roles. If the sheep
is seen as the accompanier in the action of walking,
it qualifies as an ANCILLARY. If not, the sheep can
be seen as the undergoer of the action and hence a
THEME.

C.4 Baseline Models

As done for Hindi (Arora et al., 2022), we frame
the task as a sequence tagging problem with the
supersenses decorated by the BIO scheme. All
adpositions are pre-tokenized (separated from the
objects) using an existing list of adpositions curated
from Gujarati grammar books.12 This is to ensure
that object embeddings are not utilized during clas-
sification. The models are trained in an end-to-end
fashion without gold adpositions being provided;
that is, they have to both identify and label adposi-
tions. All models use token representations from
pre-trained contextualized embeddings as inputs to
a linear layer followed by a CRF layer that predicts
the BIO labels. Additionally, we trained a classi-
fier to predict supersenses given gold adpositions.
This linear classifier uses the mean-pooled target
adposition embeddings to predict a probability dis-
tribution over the label set. Appendix C.5 gives
additional details about the experimental setup.

We conduct experiments using six multilingual
models, three of which focus on Indic languages.

12This list will be released on publication
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Scene Role Function

Model F1 F1gold F1 F1gold

Majority - 18.74 - 23.37
IndicBERT 52.09 56.34 63.37 67.58
MuRILbase 57.27 62.02 69.14 69.68
MuRILlarge 66.23 68.66 73.17 74.80
mBERT 53.79 56.60 63.05 68.02
XLM-Rbase 57.08 60.22 69.63 69.53
XLM-Rlarge 62.03 64.05 70.32 73.54

Table 8: Baseline model performance (in %) for Scene
Roles and Functions. The column F1 indicates the
macro-F1 score for the end-to-end BIO tagger system
while the column F1gold is the F1 score for the token
classifier when the gold adpositions are provided. The
majority baseline assigns the most frequent label for a
target in the training data. If a target is not in the training
data, the most frequent label of the corpus is assigned.
The models considered are mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), IndicBERT (Kakwani
et al., 2020), and MuRIL (Khanuja et al., 2021).

Table 8 shows performance of the CRF models
(column F1) and token classifiers (column F1gold).
For the former, a correct prediction requires both
the span and the label to be correct. All results are
averaged across five random seeds.

We observe that MuRILlarge performs the best
across all categories. The performances improve by
about two points when gold adpositions are known.
We also find that the models are near-perfect at
identifying adposition spans, with the F1 scores in
the 96-97% range for all the models.

C.5 Experimental Setup and Resources for
Baseline Models

We use PyTorch v1.10 for the implementation
of our baseline models. We use HuggingFace’s
transformers library for the pre-trained language
models. We use the CRF implementation from the
pytorchcrf library (https://pytorch-crf.
readthedocs.io/en/stable/). We
choose the best learning rate from {0.0005, 0.0001,
0.00005, 0.00001} based on a small development
set. All models are trained till 100 epochs with
an early stopping of 5 epochs. The random seeds
which we use for our experiments are 11, 20, 42,
1984, and 1996. All computations were conducted
on an Nvidia Titan RTX 24 GB GPU.
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