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Abstract

Distillation from Weak Teacher (DWT) is
a method of transferring knowledge from a
smaller, weaker teacher model to a larger stu-
dent model to improve its performance. Previ-
ous studies have shown that DWT can be effec-
tive in the vision domain and natural language
processing (NLP) pre-training stage. Specifi-
cally, DWT shows promise in practical scenar-
ios, such as enhancing new generation or larger
models using pre-trained yet older or smaller
models and lacking a resource budget. How-
ever, the optimal conditions for using DWT
have yet to be fully investigated in NLP pre-
training. Therefore, this study examines three
key factors to optimize DWT, distinct from
those used in the vision domain or traditional
knowledge distillation. These factors are: (i)
the impact of teacher model quality on DWT
effectiveness, (ii) guidelines for adjusting the
weighting value for DWT loss, and (iii) the im-
pact of parameter remapping as a student model
initialization technique for DWT.

1 Introduction

Recently, Distillation from Weak Teacher (DWT)
(Yuan et al., 2020; Qin et al., 2022), a reversed
Knowledge Distillation (KD) technique, has gained
attention from researchers. Unlike the traditional
KD (Sanh et al., 2019; Wang et al., 2020b,a; Sun
et al., 2019; Jiao et al., 2020), which compresses a
pre-trained model by transferring its knowledge to
a smaller model, DWT distills knowledge from a
smaller (or weaker) pre-trained model to a larger
model to improve its quality during training.

DWT is well-suited for practical real-world sce-
narios such as:

• Train a larger (scaled-up) model with an ex-
isting (smaller) pre-trained model to improve
model quality using the same dataset.
∗ Work done while interning at Meta AI.

• Train a new, large-scale model with an old,
smaller model to improve performance using
the same dataset.

• It is not feasible to use a large teacher model
during KD training due to training resource
constraints.

For the above cases, DWT can utilize the existing
pre-trained models and improve the learning of new
(larger) models.

Studies (Yuan et al., 2020; Qin et al., 2022) have
shown that DWT allows a larger student model
to leverage the knowledge of a weaker, smaller
pre-trained teacher model in both the computer
vision and NLP pre-training stages. While previous
research by Qin et al. (2022) has demonstrated
the potential of DWT in the NLP domain, it did
not fully explore the key aspects of DWT such as
the impact of teacher model quality and a student
model initialization technique for DWT.

However, to truly unlock the potential of DWT
for real-world applications, we need a deeper un-
derstanding of the key conditions and factors that
contribute to its performance. For example, the
effect of DWT might differ from traditional KD
and potentially harm the student model, depending
on the quality of its teacher.

Therefore, this work conducts in-depth studies
and uncovers crucial insights to optimize DWT in
the pre-training stage of NLP as follows:

• First, we investigate the effectiveness of DWT
in relation to the quality of the teacher model.
We find that an extremely weak teacher can
negatively impact the student model’s qual-
ity, which is different from the vision domain
where even an extremely weak teacher still
improves performance (Yuan et al., 2020).

• Second, we examine the impact of distilla-
tion by adjusting the weighting value of the
soft loss. We demonstrate that adjusting the
weighting value for the DWT loss (soft loss)
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Figure 1: Illustration of DWT Framework. During the pre-training stage, the larger student model can learn from the
knowledge and expertise of the small or weak teacher model, enabling it to achieve better performance on various downstream
tasks compared to training it standalone.

can improve training speed but may lead to
suboptimal performance. To mitigate this
issue, we recommend starting with a large
weighting value and gradually decaying it dur-
ing training.

• Lastly, we study the effectiveness of Param-
eter Remapping (PR) (Chen et al., 2015; Cai
et al., 2018; Fang et al., 2020a; Lee et al.,
2022), which is a popular student parameter
initialization technique for conventional KD,
as an initialization technique for DWT. We
observe that PR leads to suboptimal solutions,
contrary to its effectiveness in conventional
KD scenarios. Random initialization is better
than PR for DWT.

We believe that these observations provide useful
guidelines to better utilize DWT techniques for
real-world applications.

2 Distillation from Weak Teacher

In this section, we formulate the Distillation from
Weak Teacher (DWT) strategy, which involves
training the target (student) model using both the
teacher’s predictions (soft labels) and the ground
truth (hard labels).

Task Given a classification task with c classes,
for each training instance x and its corresponding
ground truth label y, the ground truth distribution
over the labels is denoted as q(c|x) (abbreviated
as q(c)) where for each label c in the set {1...C},
q(y) = 1 and q(c) = 0 for all c not equal to y.

Model The teacher model, with learnable param-
eters ω, and the student model, with learnable pa-
rameters θ, are utilized to predict the probability of
each label c for a given instance x. The probability
predicted by the teacher model, denoted as pτω(c|x),

and the probability predicted by the student model,
denoted as pτθ(c|x), are expressed as follows:

pτω(c|x) = softmax(zω) =
exp(zωc /τ)∑
C
i=1 exp(z

ω
i /τ)

pτθ(c|x) = softmax(zθ) =
exp(zθc /τ)∑
C
i=1 exp(z

θ
i /τ)

where zω = {zωi }Ci=1 is the output logit of the
teacher model, zθ = {zθi }Ci=1 is the output logit of
the student model, and τ is the temperature used to
soften the probabilities pω(c) and pθ(c).

Weak (Small) Teacher We assume that the pa-
rameter of the teacher model is pre-trained as ω∗.
While conventional KD typically assumes that the
size of the teacher model is larger than or equal to
the size of the student model, i.e., |ω∗| ≥ |θ|, DWT
considers the case where the size of the teacher
model is smaller than the size of the student model,
i.e., |ω∗| < |θ|, or the quality of the pre-trained
teacher model with parameters ω∗ is inferior to the
quality of the pre-trained student model with pa-
rameters θ∗ obtained through stand-alone training.

Hard Loss is the cross-entropy loss H(q, pθ) be-
tween the ground truth q and student’s prediction
pθ, used to train the student model:

H(q, pθ) = −
C∑

c=1

q(c) log(pθ(c)) (1)

Following BERT (Devlin et al., 2019), H(q, pθ) is
the Masked Language Modeling loss (MLM loss).

Soft Loss is the Kullback-Leibler divergence (KL
divergence) S(pτω, p

τ
θ) between the predictions of

the student and the teacher models, and is given by:

S(pτω, p
τ
θ) =

C∑

c=1

pτω(c) · log
pτω(c)

pτθ(c)
, (2)
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Figure 2: Impact of Teacher Quality [Red Box] The Weak
teacher model significantly improves the performance of the
student model by 1.44, increasing from 79.89 to 81.33. How-
ever, distillation from Very Weak or Extremely Weak teachers
has a negative impact on the performance of the student.

Final Objective The objective function L(θ)
aims to train the student model by minimizing a
weighted sum of the hard loss and the soft loss:

L(θ) = αh ·H(q, pθ) + αs · S(pτω, pτθ) (3)

where the weighting hyperparameters for the hard
loss and the soft loss are denoted by αh and αs,
respectively.

3 Experiment

We conducted a study to analyze the efficacy of
the DWT method and present key observations for
optimizing its impact in three core elements: (i) the
quality of the teacher model, (ii) the degree of soft
knowledge transfer, and (iii) the initialization type
(parameter remapping) of the student model.

Training setting we use a default loss weight
ratio of αh : αs = 1:1 for the hard loss and soft
loss during distillation. The learning rate is set to
5e − 4, and the models are trained for 20 epochs
with the application of quantization, linear warm-
up (5%), the Adam optimizer (Kingma and Ba,
2014), 16 batch sizes per GPU, and 8 A100 GPUs
per run. In the pre-training stage, we utilize a re-
duced dataset of 30 million sentences generated by
uniformly selecting one sentence out of every four
sentences from the original dataset, which consists
of a combination of BookCorpus (Zhu et al., 2015)
and Wikipedia (Foundation). The performance of
the distilled models is evaluated on the dev sets of
the GLUE benchmark (Wang et al., 2019), compris-
ing nine sentence-level classification tasks (Please
see the supplementary file for more details.).

3.1 Impact of Teacher Model Quality
In Figure 2, we examine the performance of dis-
tilled student models based on the quality of the
teacher model. We conduct a distillation from a
teacher model during the pre-training stage and
fine-tune the distilled student models on the dev
sets of the GLUE benchmark. We report the av-
erage performance and the performance gap be-
tween the distilled student and a student trained
standalone. We categorize the weak teacher quality
into three levels compared to the standalone stu-
dent model, which has a model size of 67M and
achieves an average performance of 79.89 on the
GLUE benchmark dev sets.

1) Weak: 0.78× smaller size, -2.23 lower per-
formance

2) Very Weak: 0.57× smaller size, -13.44 lower
performance

3) Extremely Weak: 0.46× smaller size, -26.02
lower performance.

While distillation from weak teachers, even ex-
tremely weak ones, consistently improves the per-
formance of the student model in the vision field
due to the regularization effect (Yuan et al., 2020),
we found that in language model pre-training, the
effectiveness of DWT on the student model heav-
ily depends on the quality of the teacher model.
The student model (the red mark) clearly benefits
from the Weak teacher model (score is 77.66), rep-
resented by the blue mark in the red box, as it
shows an improvement of 1.44 points, from 79.89
to 81.33. However, when the performance gap be-
tween the teacher and student is too large, such as
in the cases of Very Weak and Extremely Weak
teachers, distillation from these teachers may neg-
atively impact the student’s performance by -1.37
and -2.76, respectively. Our observations provide
valuable guidance for researchers aiming to utilize
existing pre-trained models in training new models.

3.2 The Impact of Soft Loss
In Figure 3, we investigate the impact of the soft
loss in DWT during the pre-training stage by ad-
justing the weights in the following two versions:
(1) Strong: We fix the weight for the hard loss at
1 and multiply the weight for the soft loss by 4 to
increase the intensity of distillation. (2) Normal:
The ratio between the hard loss and soft loss is
equal, with the soft loss weight set to 1. Finally,
we fine-tune the models pre-trained with different
soft loss weights on the GLUE benchmark tasks.
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Figure 3: Adjusting Soft Loss Weight Unlike conventional KD, where using large weights for the soft loss improves training
convergence speed and performance, DWT requires careful tuning of the loss weight. Using a large weight leads to faster
convergence, but a small weight leads to better fine-tuning performance.

Figure 4: Impact of Parameter Remapping Unlike in conventional KD training, where parameter remapping (PR) (PR(O)) is
effective, we found that PR hinders DWT training, leading to local optima. Even with continued pre-training, the fine-tuning
performance does not improve. Therefore, random initialization (PR(X)) appears to be more beneficial for DWT.

Conventional KD has shown that using large
weights for the soft loss can improve both training
convergence and model performance (Sanh et al.,
2019). However, we reveal that DWT requires
careful tuning of the soft weights. Our observa-
tions show that using a large weight for the soft
loss (Strong) leads to faster convergence in most
downstream tasks (e.g., MNLI (Williams et al.,
2018), COLA (Warstadt et al., 2019), QQP (Iyer
et al., 2017), SST2 (Socher et al., 2013)) compared
to using a small weight (Normal). However, as
training continues, using a small weight for the soft
loss (Normal) leads to better fine-tuning perfor-
mance than using a large weight (Strong). There-
fore, we believe that gradually decreasing the soft
loss weights (e.g., from 4 to 1) during training
would benefit both convergence and performance.

3.3 Impact of Parameter Remapping
Parameter remapping (PR) (Chen et al., 2015; Cai
et al., 2018; Fang et al., 2020a,b) is a popular tech-
nique used in conventional KD methods. It involves
copying the parameters of a pre-trained teacher
model and initializing the student model with these
parameters before starting KD training (See the
supplementary file for more details.). PR can ac-
celerate convergence speed and improve the final
performance of the distilled model. For example,
DistilBERT (Sanh et al., 2019) uniformly samples
six layers out of twelve from the BERT model
(teacher) and initializes the corresponding layers in
DistilBERT (student) with the copied parameters.

In Figure 4, we investigate the effectiveness of

PR for knowledge transfer from a smaller model
to a larger model. Before DWT training, we copy
parameters from the first four layers of the teacher
model and paste them into the corresponding lay-
ers of the student model. Following the approach
of Fang et al. (2020a,b), we also use the parameters
of the last layer in the teacher model for the remain-
ing fifth and sixth layers of the student model.

We initialize student models with PR (PR(O))
or randomly (PR(X)), train them with distillation
on a large text corpus, and fine-tune the distilled
student models on various downstream tasks. Ex-
perimental results show that, unlike in conventional
KD training, PR (PR(O)) hinders DWT training,
leading to local optima. With PR, the performance
of the fine-tuned models does not improve even
with continued pre-training. Therefore, random ini-
tialization (PR(X)) is more beneficial for DWT.

4 Conclusion

Distillation from Weak Teacher (DWT) is a tech-
nique that improves the performance of a larger
student model by transferring knowledge from a
weaker, smaller teacher model. Despite the po-
tential of DWT, the optimal conditions to use
DWT have yet to be fully investigated in NLP
pre-training. This study investigated three crucial
factors for optimizing DWT in NLP pre-training,
which differ from those in vision or traditional KD.
These factors include the impact of teacher model
quality, the use of parameter remapping as an ini-
tialization technique for DWT, and guidelines for
adjusting the weighting value of the DWT loss.
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Limitations

In this section, we faithfully discuss the current lim-
itations and potential avenues for future research.
First of all, in the analysis, we observed that giv-
ing heavy weight to the soft loss at initial training
epochs improves the convergence speed. Yet, con-
tinuing training with such heavy weight to the soft
loss could hinder the further performance improve-
ment of the student. Therefore, adjusting soft loss
weights depending on the training phase from a
larger value to a small value (e.g., using the time
function) would be helpful for both convergence
speed and improving the model’s quality.

Secondly, it has been demonstrated in the vi-
sual recognition domain that adjusting the tempera-
ture of distillation loss for poorly performed teach-
ers can improve the student model quality due to
the regularization effect. Following them, increas-
ing the temperature to smooth the soft labels from
poorly performed teachers, such as 1-layer or 2-
layer teachers, would help improve the quality of
distillation via the regularization effect.

Ethics Statement

Our Distillation from Weak Teacher (DWT) frame-
work facilitates enhancing larger student models
through knowledge transfer from smaller, weaker
teacher models. However, our research findings
indicate that the effectiveness of the teacher model,
particularly when it is extremely weak, can have a
negative impact on the quality of the student model.
Consequently, the utilization of our DWT frame-
work should be approached with caution, particu-
larly in high-risk domains like biomedicine. Eval-
uating performance prior to making critical deci-
sions may be necessary.
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