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Abstract

Deep neural networks (DNNs) have been
proven to be sensitive towards perturbations
on input samples, and previous works high-
light that adversarial samples are even more
vulnerable than normal ones. In this work, this
phenomenon is illustrated from the perspec-
tive of sharpness via visualizing the input loss
landscape of models. We first show that adver-
sarial samples locate in steep and narrow local
minima of the loss landscape (high sharpness)
while normal samples, which differs distinctly
from adversarial ones, reside in the loss sur-
face that is more flatter (low sharpness). Based
on this, we propose a simple and effective
sharpness-based detector to distinct adversar-
ial samples by maximizing the loss increment
within the region where the inference sample is
located. Considering that the notion of sharp-
ness of a loss landscape is relative, we further
propose an adaptive optimization strategy in
an attempt to fairly compare the relative sharp-
ness among different samples. Experimental
results show that our approach can outperform
previous detection methods by large margins
(average +6.6 F1 score) for four advanced at-
tack strategies considered in this paper across
three text classification tasks. Our codes are
publicly available at https://github.com/
ruizheng20/sharpness_detection.

1 Introduction

Despite the popularity and success of pre-trained
language models (PLMs), they are vulnerable to
textual adversarial attacks (Garg and Ramakrish-
nan, 2020; Zhang et al., 2020). These attacks are
designed to generate semantically consistent and
syntactically correct adversarial samples that can
fool the model into making incorrect predictions
(Ren et al., 2019; Maheshwary et al., 2021). Ad-
versarial vulnerability raises concerns about the
safe practice of NLP systems in a variety of tasks
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Figure 1: Input loss landscape of model with respect
to normal and adversarial samples. Adversarial sample
locates in a sharp local minimum on the input loss land-
scape, while the normal one resides in a wide area.

(Wallace et al., 2019; Zhang et al., 2021; Lin et al.,
2021).

In machine learning, there are two main streams
to counter adversarial attacks: adversarial detection
and defense (Cohen et al., 2020). The purpose of
detection is to distinguish the adversarial samples
from the normal ones and discard them during the
inference phase (Mozes et al., 2021; Yoo et al.,
2022), while defense aims to predict the correct
results of adversarial texts (Li et al., 2021b; Zheng
et al., 2022; Omar et al., 2022; Liu et al., 2022b;
Xi et al., 2022). The detect-discard strategy is an
important step towards a robust model and can
be integrated with existing defense methods. A
significant challenge in adversarial detection is to
explore an effective characteristic for recognition.

The existing state-of-the-art adversarial detec-
tion methods can be broadly classified into two
categories: 1) perturbation-based methods (Mozes
et al., 2021; Mosca et al., 2022; Wang et al., 2022)
and 2) distribution-based methods (Yoo et al., 2022;
Liu et al., 2022a). The perturbation-based methods
assume that adversarial samples are more sensi-
tive to perturbations in the input space than normal
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samples. These methods are based on the model’s
reaction when the input words are perturbed by
substitution (Mozes et al., 2021; Wang et al., 2021)
or deletion (Mosca et al., 2022). However, these
methods rely on empirically designed perturbations
and it is difficult to find an optimal perturbation in
the discrete text space. More importantly, no at-
tempt has been made to explore why the sensitivity
assumption is valid or to provide more details for
this assumption.

We delve into the input loss landscape to char-
acterize the model’s sensitivities with respect to
normal and adversarial samples. By visualizing the
input loss landscape of the model, we observe a
significant difference between the adversarial and
normal samples: the loss surfaces on local min-
ima with respect to adversarial samples are steep
and narrow (high sharpness), while those of nor-
mal samples are much flatter (low sharpness). The
above-mentioned significant distinction makes it el-
igible for distinguishing adversarial samples from
normal ones. However, it remains a challenge on
how to effectively measure the sharpness of an in-
put loss landscape.

In this work, we formulate the sharpness calcula-
tion as a constrained optimization problem whose
objective is to find a neighbor within the region
where the inference sample is located to maximize
the loss increment. The convergence quality of this
constrained optimization problem can be assessed
by “Frank-Wolfe gap” (i.e., the gap between the
global optimum and the current estimate) (Frank
and Wolfe, 1956; Lacoste-Julien, 2016). With this
criterion, we find that samples tend to converge to
different levels, which hinders a fair comparison
of relative sharpness between samples (Dinh et al.,
2017). Therefore, we design an adaptive optimiza-
tion strategy that guides the solutions to converge
gradually to the same level, thereby significantly
improving the detection performance. Our contri-
butions are as follows:

• We analyze the geometric properties of the
input loss landscape. We reveal that the ad-
versarial samples have a deep and sharp local
minima on the input loss landscape.

• We propose a detection metric based on the
sharpness of input loss landscape, which can
be formulated as a constrained optimization
problem.

• We design an adaptive optimization strategy to
guide the calculation of sharpness to converge

to the same level, which can further improve
the detection performance.

2 Related Work

2.1 Textual Adversarial Attack

Unlike image attacks that operate in a high-
dimensional continuous input space, text pertur-
bation needs to be performed in a discrete input
space (Zhang et al., 2020). Text attacks typically
generate adversarial samples by manipulating char-
acters (Ebrahimi et al., 2018; Gao et al., 2018),
words (Ren et al., 2019; Jin et al., 2020; Li et al.,
2020; Alzantot et al., 2018; Zang et al., 2020; Ma-
heshwary et al., 2021), phrases (Iyyer et al., 2018),
or even the entire sentence (Wang et al., 2020). The
most widely used word-level attacks use the greedy
algorithm (Ren et al., 2019) and combinatorial op-
timization (Alzantot et al., 2018) to search for the
minimum number of substitute words. Moreover,
these attacks guarantee the fluency of adversarial
samples in semantics (Li et al., 2020) or embedding
space (Jin et al., 2020) to generate more stealthy ad-
versarial samples. Recent studies have shown that
most of the adversarial samples generated are of
low quality, unnatural, and rarely appear in reality
(Hauser et al., 2021; Wang et al., 2022).

2.2 Textual Adversarial Detection

Existing adversarial detection methods are mainly
divided into two categories: 1) perturbation-based
methods and 2) distribution-based methods. Zhou
et al. (2019) propose a discriminator that learns to
recognize word-level adversarial substitutions and
then correct them. Yoo et al. (2022) assume that the
representation distribution of original samples fol-
lows a multivariate Gaussian and use robust density
estimation (Feinman et al., 2017) to determine the
likelihood of a sentence being perturbed. Liu et al.
(2022a) introduce the local intrinsic dimensionality
(Ma et al., 2018) from image processing to text
domain. Wang et al. (2022) apply the anomaly
detector to identify unnatural adversarial samples
and then use textual transformations to mitigate the
adversarial effect. Mozes et al. (2021) find that
word-level adversarial attacks tend to replace in-
put words with less frequent ones, and exploit the
frequency property of adversarial word substitu-
tions to detect adversarial samples. Mosca et al.
(2022) introduce a logits-based metric to capture
the model’s reaction when the input words are omit-
ted. However, these methods rely on empirically
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Figure 2: Difference between normal and adversarial samples. (a) Input loss landscape of normal samples; (b) Input
loss landscape of adversarial samples. The adversarial samples’ loss landscape has a sharp bottom, while that of
normal samples is much flatter. (c) Label not flip rate, defined as the proportion of samples that keep the prediction
results unchanged under adversarial perturbations. Normal samples are more robust in the face of adversarial
perturbations than adversarial samples. Experimental results are obtained from BERT trained on AGNews, and
adversarial samples are generated via BERT-Attack (Li et al., 2020).

designed word-level perturbations, making it diffi-
cult to find an optimal perturbation.

3 Delving into Input Loss Landscape

Our aim is to better understand adversarial samples,
and thereby derive a potentially effective detector.
In this section, we investigate the geometric prop-
erties of the input loss landscape and show a clear
correlation between the sharpness of loss landscape
and adversarial samples.

3.1 Visualizing Loss Landscape

Assume we have a PLM h with a loss function
ℓ(x0, y), where x0 is the normal input text, y is
the label and h(x0) denotes the output logit. As
the labels are unknown to the user in adversarial
sample detection, we use the “predicated” label
y∗ = argmaxy p(y|x0) in place of the golden la-
bel y. Following the visualization method proposed
by (Goodfellow and Vinyals, 2015) and (Li et al.,
2018), we project the high-dimensional loss sur-
face into a 2D hyperplane, where two projection
vectors α and β are chosen and normalized as the
basis vectors for the x and y axes. Then the loss
values around the input x can be calculated as:

V (i, j) = ℓ(x+ i ·α+ j · β, y∗). (1)

The coordinate (i, j) denotes the distance the ori-
gin moves along α and β directions, and V (i, j) is
the corresponding loss value that measures the con-
fidence in the model prediction y∗ when perturbing
the original input x. In Appendix A.1, we show
more details about the input loss landscape.

3.2 Results

Figs. 2(a) and (b) show two visualizations of the
loss surface in the input embedding space, which
gives an intuition of the huge difference between
the normal and adversarial samples: (1) The adver-
sarial samples’ loss surface has a deep and sharp
bottom, while the normal samples’ has a much
flatter local minimum. (2) By visualizing the con-
tour map, we find that adversarial samples are lo-
cated in a very narrow valley on the loss landscape,
while the normal ones reside in a wide area. The
above observations suggest that, the adversarial
samples are more sensitive to perturbations than
normal samples. As shown in Figure 2(c), once
small perturbations are injected into the inputs of
adversarial samples, their loss will increase signifi-
cantly and the predictions are easily flipped. The
significant difference in the sharpness of the input
loss landscape makes it eligible for distinguishing
adversarial samples from normal ones.

This difference stems from two inherent prop-
erties of model training and adversarial sample
generation. First, the model training progressively
minimizes the loss of each normal training sam-
ple, while the adversarial samples are not available
during the training process. Thus, normal samples
are in general relatively far away from the decision
boundary (Yu et al., 2019). Second, attackers aim
to generate human-imperceptible adversarial per-
turbations, so the attack process stops once the per-
turbation successfully fools the model, which often
results in just-cross-boundary adversarial samples
(Alzantot et al., 2018; Li et al., 2020).
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4 Proposed Method

In this section, we first show how a detector can be
potentially designed by using loss sharpness to dis-
tinguish between adversarial and normal samples.

4.1 Sharpness of Input Loss Landscape
The sharpness of ℓ (for the model) at x measures
the maximum increase of the prediction loss when
moving x to a nearby input. Thus, we have the
objective:

max
∥x−x0∥F≤ϵ

ℓ(x, y∗), (2)

where x is an input within a Frobenius ball around
normal sample x0 with radius ϵ. This maximization
problem is typically nonconcave with respect to the
input x.

Classical first-order optimization algorithms,
such as projected gradient descent (PGD) (Madry
et al., 2018), can be used to estimate sharpness.
Starting from a given input x0, PGD generate a
sequence {xk} of iterates that converge to the op-
timal solution. If the current estimates xk goes
beyond the ϵ-ball, it is projected back to the ϵ-ball:

xk
i =

∏(
xk−1
i + η · sign(∇xℓ(x

k−1
i ,yi))

)
,

where η is the step size, sign(·) denotes the sign
function and

∏
∥δ∥≤ϵ(·) is the projection function

4.2 Convergence Analysis
The non-convexity of loss function in deep neural
network makes the constrained optimization prob-
lem in Equation (2) also non-convex. How well this
non-convex optimization is solved directly affects
the ability to distinguish adversarial samples from
normal ones. Since the gradient norm of ℓ is not an
appropriate criterion for non-convex objectives, we
introduce the “Frank-Wolfe (FW) gap” (Frank and
Wolfe, 1956) to measure the gap between global
optimum and current estimate. Consider the FW
gap of Equation (2) at xk(Wang et al., 2019):

g(xk) = max
x∈X

〈
x− xk,∇xf(x

k)
〉
, (3)

where X = {x|∥x − x0∥F ≤ ϵ} is the input
domain of the ϵ-ball around normal sample x0,
f(xk) = ℓ(xk, y∗) and ⟨·⟩ is the inner product.
An appealing property of FW gap is that it is in-
variant to an affine transformation of the domain
{x|∥x − x0∥F ≤ ϵ} in Equation (2) and is not
tied to any specific choice of norm, unlike the
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Figure 3: Distributions of “Frank-Wolfe gap” for PGD
with different fixed steps and adaptive optimization,
while the step size η0 is 0.03. Adaptive strategies fa-
cilitate the convergence quality of different samples to
quickly approach the same level.

criterion ∥∇xf(x
k)∥. Moreover, we always have

g(xk) ≥ 0, and a smaller value of g(xk) indicates
a better solution of the constrained optimization
problem.

The FW gap has the following closed form solu-
tions and can be computed for free in our proposed
algorithm:

g(xk) =max
x∈X

〈
x− xk,∇xf(x

k)
〉

=max
x∈X

〈
x− x0 + x0 − xk,∇xf(x

k)
〉

=max
x∈X

〈
x− x0,∇xf(x

k)
〉

+
〈
x0 − xk,−∇xf(x

k, y∗)
〉

=
√
ϵ∥∇xf(x

k)∥F −
〈
xk − x0,∇xf(x

k)
〉
.

The sample-wise criterion g(xk) reflects the con-
vergence quality of xk with respect to both input
constraint and the loss function. Optimal con-
vergence where g(xk) = 0 is achieved when 1)
∇xf(x

k) = 0, i.e., xk is a stationary point in the
interior of X ; or 2) xk−x0 =

√
ϵ ·sign(∇xf(x

k)),
that is, local maximum point of f(xk) is reached
on the boundary of X . The FW gap allows monitor-
ing and controlling the convergence quality of the
sharpness optimization among different samples.

4.3 Adaptive Optimization

As shown in Figure 3, optimizing the maximization
problem in Equation (2) at a fixed step size leads
to different FW gaps among the samples. However,
the concept of sharpness of a minimum is relative,
and it is difficult to fairly compare the sharpness of
different minima when the convergence quality of
Equation (2) is not the same. Thus, the inconsistent
convergence quality reduces the disparity between
normal and adversarial samples. It motivates us to
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Figure 4: Detection score distribution of the proposed methods and two baselines. The proposed detection scores
are more discriminative than other baselines. Detection scores are normalized into the range [0, 1]. Experimental
results are obtained from BERT trained on AGNews, and adversarial samples are generated via BERT-Attack (Li
et al., 2020).

monitor and control the quality of convergence to
the identical level for all samples. Therefore, we
propose to optimize the sharpness by adaptively
decreasing the step size (increasing convergence
quality) and stop the optimization process when a
predefined convergence criterion is reached. Our
proposed adaptive step size at the k-th step is:

ηk = min

{
0,

gmin − g(xk)

gmin − g(x0)
· η0

}
, (4)

where η0 is the initial step size and gmin is the
predefined convergence criterion. According to
the estimation of the FW gap, the step size de-
creases linearly towards zero as the optimization
proceeds, and is zero after the convergence crite-
rion is achieved. We use the early stopping strategy
to save computational overhead during inference by
halting the optimization process when the FW gap
is less than gmin. For non-convex objective, the
first-order optimization method requires at most
O(1/g2min) iterations to find an approximate sta-
tionary point with gap smaller than gmin.

5 Experimental Setup

We validate the effectiveness of the proposed
method on three classification benchmarks: IMDB
(Maas et al., 2011), SST-2 (Socher et al., 2013)
and AGNews (Zhang et al., 2015). The first two
are binary sentiment analysis tasks that classify re-
views into positive or negative sentiment, and the
last one is a classification task in which articles are
categorized as world, sports, business or sci/tech.
We use the widely used BERTBASE as the target
model and use three attacks to generate adversarial
samples for detection.

5.1 Baselines
We compare our proposed detectors based on sharp-
ness of input loss landscape (Sharpness) with sev-
eral strong baselines in adversarial sample detec-
tion. MD (Lee et al., 2018): A simple yet effective
method for detecting out-of-distribution and ad-
versarial samples in the image processing domain.
The main idea is to induce a generative classifier
under Gaussian discriminant analysis, which re-
sults in a detection score based on Mahalanobis
distance. DISP (Zhou et al., 2019): A novel frame-
work learns to identify perturbations and can cor-
rect malicious perturbations. To detect adversarial
attacks, the perturbation discriminator verifies the
likelihood that a token in the text has been per-
turbed. FGWS (Mozes et al., 2021) leverages the
frequency properties of adversarial word substi-
tution to detect adversarial samples. Word-level
attacks have a tendency to replace the input word
with a less frequent one. RDE (Yoo et al., 2022):
To model the probability density of the entire sen-
tence, which uses parametric density estimation
for features and generates the likelihood of a sen-
tence being perturbed. MDRE (Liu et al., 2022a)
is a multi-distance representation ensemble method
based on the distribution characteristics of adver-
sarial sample representations.

5.2 Adversarial Attacks
We selected three widely used attack methods ac-
cording to the experimental setting used in previ-
ous work. PWWS (Ren et al., 2019) is based on
a greedy algorithm that uses word saliency and
prediction probability to determine word substi-
tution order and maintains a very low word sub-
stitution rate. TextFooler (Jin et al., 2020) first
identifies important words in the sentence and then
replaces them with semantically similar and gram-
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Dataset Method
PWWS TextFooler BERT-Attack TextFooler-adj

ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

SST-2

DISP (Zhou et al., 2019) 74.4 70.9 − 71.2 66.0 − 70.8 65.4 − 79.2 58.9 −
MD (Lee et al., 2018) 77.5 77.2 82.0 79.6 77.0 83.4 82.7 83.2 86.1 63.8 70.3 68.6

FGWS (Mozes et al., 2021) 82.5 81.3 85.0 72.0 63.5 69.1 70.3 63.7 69.1 64.3 68.2 69.9

RDE (Yoo et al., 2022) 79.5 77.6 80.1 78.0 73.4 80.1 83.4 81.3 85.9 69.3 72.3 77.1

MDRE (Liu et al., 2022a) 78.8 79.8 − 82.7 87.2 − 83.8 84.2 − 66.6 66.2 −
Sharpness (Ours) 85.4 83.8 91.7 87.0 86.3 92.8 90.2 89.7 95.4 72.2 75.0 75.1

IMDB

DISP (Zhou et al., 2019) 66.8 68.2 − 68.8 70.6 − 67.3 68.8 − 68.0 67.3 −
MD (Lee et al., 2018) 82.5 79.4 88.9 84.7 81.8 91.8 84.7 82.3 91.8 77.0 79.4 81.1

FGWS (Mozes et al., 2021) 77.5 74.0 80.4 74.7 69.7 76.8 74.4 69.3 78.1 76.9 78.9 85.1

RDE (Yoo et al., 2022) 82.0 74.4 90.1 83.2 75.6 92.8 83.5 76.6 92.7 78.7 80.2 86.3

MDRE (Liu et al., 2022a) 82.7 83.6 − 84.3 86.1 − 81.3 85.5 − 78.8 80.2 −
Sharpness (Ours) 88.7 85.7 94.5 90.9 87.9 96.0 90.5 87.6 95.7 84.7 83.7 90.7

AGNews

DISP (Zhou et al., 2019) 86.9 86.6 − 86.7 86.4 − 83.5 82.6 − 85.8 61.5 −
MD (Lee et al., 2018) 77.3 76.9 83.8 79.9 79.6 85.1 82.7 78.6 85.2 52.8 67.2 62.3

FGWS (Mozes et al., 2021) 75.0 70.6 76.6 68.3 59.6 69.2 68.2 59.4 69.1 69.8 74.6 73.2

RDE (Yoo et al., 2022) 85.8 81.4 93.3 85.0 86.7 94.5 88.2 88.2 94.6 55.1 67.7 67.0

MDRE (Liu et al., 2022a) 84.2 85.5 − 85.0 85.4 − 84.7 84.0 − 59.6 55.1 −
Sharpness (Ours) 94.9 93.8 98.4 96.3 95.8 98.8 96.3 95.9 98.8 70.4 70.2 72.8

Table 1: Adversarial detection performance of our proposed method and baselines on BERT-base. The proposed
detector outperforms the baselines consistently. The best performance is marked in bold.

matically correct synonyms until the prediction
changes. BERT-Attack (Li et al., 2020) uses BERT
to generate adversarial text, so that the generated
adversarial samples are fluent and semantically pre-
served. TextFooler-adj (Morris et al., 2020) adjusts
constraints to better preserve semantics and syntax,
which makes adversarial samples less detectable.

5.3 Evaluation Metrics

Following previous works, we use the following
three metrics to measure the effectiveness of a
method in detecting adversarial samples. (1) Detec-
tion accuracy (ACC) corresponds to the maximum
classification probability over all possible thresh-
olds. (2) F1-score (F1) is defined as the harmonic
mean of precision and recall. (3) Area Under
ROC (AUC) is a threshold-independent metric that
can be interpreted as the probability that a positive
sample is assigned a higher detection score than a
negative sample. The ROC curve describes the re-
lationship between the true positive rate (TPR) and
the false positive rate (FPR). For all three metrics,
a higher value indicates better performance.

5.4 Implementation Details

We fine-tune the BERT-based victim model using
the official default settings. For SST-2, we use the
officially provided validation set, while for IMDB
and AGNews, we use 10% of the data in the train-
ing set as the validation set. The validation set
and the adversarial samples generated based the

validation set are used for the selection of hyper-
parameters and thresholds. All three attacks are
implemented using TextAttack framework with the
default parameter settings.1 Following Mozes et al.
(2021), we build a balanced set consisting of 2, 000
test instances and 2, 000 adversarial samples to
evaluate the detectors. For SST-2, we use all 1, 872
test data to construct the balanced set. Hyperpa-
rameters and decision thresholds of the proposed
methods are presented in Appendix A.3.

6 Experimental Results and Analysis

In this section, we show the performance of the pro-
posed method in a comprehensive way and investi-
gate the effect of hyperparameters on performance.

6.1 Main Results

Unless specifically stated otherwise, we follow a
common practice (Mozes et al., 2021; Yoo et al.,
2022; Mosca et al., 2022) to ensure that our detec-
tion mechanism is tested on successful adversarial
samples that can actually fool the model. Table 1
reports the detection performance of our method
under various configurations. We can observe that:
1) Compared with previous detection methods, the
proposed detector based on sharpness achieves sig-
nificant improvements in three evaluation metrics.
This demonstrates the effectiveness of sharpness
of the input loss landscape in detecting adversar-

1https://github.com/QData/TextAttack
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Dataset Method
PWWS TextFooler BERT-Attack TextFooler-adj

ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

SST-2

DISP (Zhou et al., 2019) 74.4 68.8 − 71.1 64.9 − 70.7 64.9 − 78.0 53.3 −
MD (Lee et al., 2018) 77.2 77.9 81.1 76.7 75.2 83.2 82.4 83.0 86.0 59.2 68.9 64.0

FGWS (Mozes et al., 2021) 69.3 61.7 65.4 65.7 55.6 62.8 64.6 53.5 61.4 64.6 68.0 68.8

RDE (Yoo et al., 2022) 78.6 77.7 79.9 77.4 73.2 79.3 82.9 81.0 85.7 71.3 72.1 76.4

MDRE (Liu et al., 2022a) 78.8 79.5 − 81.7 82.5 − 85.3 85.7 − 68.8 69.6 −
Sharpness (Ours) 83.7 83.1 90.4 86.4 86.2 92.4 89.8 89.3 95.1 71.3 76.1 77.5

IMDB

DISP (Zhou et al., 2019) 62.4 51.9 − 64.1 53.7 − 63.2 52.6 − 59.6 61.0 −
MD (Lee et al., 2018) 74.5 77.2 85.2 74.0 82.4 77.8 74.4 78.9 90.7 70.1 74.9 75.5

FGWS (Mozes et al., 2021) 63.5 49.8 60.1 62.1 47.4 61.1 58.6 39.6 60.3 56.1 57.5 63.2

RDE (Yoo et al., 2022) 76.1 74.3 78.9 76.8 72.3 78.1 77.5 8.6 78.6 68.8 70.5 76.9

MDRE (Liu et al., 2022a) 75.4 77.5 − 76.5 80.2 − 76.5 78.8 − 69.8 70.2 −
Sharpness (Ours) 79.2 81.9 88.4 80.1 84.8 90.8 81.3 84.7 91.4 77.5 80.1 78.4

AGNews

DISP (Zhou et al., 2019) 85.4 81.0 − 86.1 84.5 − 83.1 81.5 − 86.2 61.0 −
MD (Lee et al., 2018) 73.2 71.5 79.7 77.9 77.0 83.8 79.2 78.9 85.2 58.0 68.8 68.2

FGWS (Mozes et al., 2021) 67.7 58.4 68.7 64.7 52.8 65.4 64.1 51.6 64.3 58.8 59.1 60.5

RDE (Yoo et al., 2022) 77.0 78.5 85.9 85.1 84.4 90.2 86.6 85.7 91.4 62.0 69.2 70.7

MDRE (Liu et al., 2022a) 75.8 77.2 − 81.8 82.4 − 84.1 84.4 − 66.3 62.4 −
Sharpness (Ours) 84.7 83.9 90.4 90.7 90.5 95.2 94.1 94.1 97.4 75.3 76.5 76.4

Table 2: Adversarial detection performance of our proposed method and baselines on RoBERTa-base. The best
performance is marked in bold.

Dataset Method PWWS TextFooler BERT-Attack

SST-2

MD 56.4 56.4 61.0

FGWS 0.0 0.0 0.0

RDE 54.4 51.3 65.5

Sharpness 68.3 70.4 83.6

IMDB

MD 61.5 68.1 67.8

FGWS 0.0 0.0 0.0

RDE 69.5 73.3 74.1

Sharpness 80.1 86.2 85.0

AGNews

MD 37.4 40.0 40.8

FGWS 0.0 0.0 0.0

RDE 72.6 77.3 74.4

Sharpness 94.6 96.1 96.0

Table 3: Adversarial detection performance on the met-
ric TNR@95TPR.

ial samples. 2) The performance of FGWS de-
creases under TextFooler and BERT-Attack, which
are more subtle attacks with less significant fre-
quency differences, as FGWS relies on the occur-
rence of rare words. FGWS also performs poorly
on AGNews, most likely because it covers four
different news domains, resulting in its low word
frequency. These results are consistent with the
results reported by Yoo et al. (2022). 3) DISP is a
threshold-independent method and therefore AUC
metric is not applicable. DISP does not perform
well except on AGNews dataset.

6.2 More Rigorous Metric

TNR@95TPR is short for true negative rate (TNR)
at 95% true positive rate (TPR), which is widely

used in out-of-distribution detection (Li et al.,
2021a; Liang et al., 2018). But to our knowledge,
no textual adversarial sample detector has been
evaluated using this metric. TNR@95TPR can be
interpreted as the probability of a normal sample be-
ing correctly classified (Acc-) when the probability
of an adversarial sample being correctly classified
(Acc+) is as high as 95%. As can be seen in Ta-
ble 3, with this strict evaluation metric, there is a
significant advantage for our prediction-loss-based
detector, while FGWS fails to detect the normal
samples at all.

6.3 More Model

In previous experiments, all results are based on
the BERT-base model, and we also evaluate the
performance of the proposed method on RoBERTa-
base (Liu et al., 2019). Table 2 shows the detection
results using RoBERTa as the victim model. The
overall trend among detection methods is similar to
Table 1. From the results in Tables 1 and 2, it can
be concluded that our proposed methods perform
as stable as the traditional statistical-based methods
(MD and RDE) under different experimental set-
tings, while empirically designed DISP and FGWS
do not perform consistently.

6.4 Ablation Study

To better illustrate the contribution of adaptive op-
timization strategy to the proposed detector, we
perform an ablation study by removing adaptive
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Figure 5: Heatmaps of AUC for the proposed method, with different perturbation sizes and numbers of steps on
BERT-base. Adversarial samples are generated via BERT-Attack. The darker the color, the better the performance.

Dataset Method ACC F1 AUC

SST-2
Sharpness 90.2 89.7 95.4

w/o Adaptive 78.9 83.0 81.1

IMDB
Sharpness 90.5 87.6 95.7

w/o Adaptive 80.6 80.4 89.6

AGNews
Sharpness 96.3 96.2 98.7

w/o Adaptive 87.6 87.2 92.4

Table 4: Ablation study on the proposed detector. We re-
move the adaptive optimization strategy (w/o Adaptive)
to illustrate the the importance of adaptive optimization
strategy. Results are obtained from BERT-base, and
adversarial samples are generated via BERT-Attack.

optimization (w/o Adaptive). The experimental re-
sults are shown in Table 4. We can observe that
the adaptive optimization strategy is important for
the sharpness calculation. The inconsistent conver-
gence quality reduces the disparity between normal
and adversarial samples.

6.5 Hyper-parameter Investigation

6.5.1 Detection Threshold
To investigate the influence of detection thresholds,
we analyze the performance with different thresh-
olds on the three datasets, as shown in Figure 6.
The performance of the proposed detector gradu-
ally improves as the threshold increases, but when
the threshold is too large, the results of the detectors
are concentrated in one certain category, leading to
a decrease in performance. The peak performance
of both detectors occurs near the midpoint of the
potential thresholds, indicating that our method per-
forms well on both normal and adversarial samples.

6.5.2 Parameters of Optimization
Figure 5 shows the detection performance with dif-
ferent step sizes and numbers of steps. In order

0.0 0.4
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

SST2
IMDB
AGNews

0.2

Figure 6: F1 score with respect to detection threshold
of the proposed detector using BERT-base as the victim
model and adversarial samples are generated via BERT-
Attack.

to show more intuitively the effect of optimization
steps and size on the AUC metric, we preserve the
results within 2 percents below the highest value,
and the rest of the data are shown as light-colored
blocks in Figure 5. We can observe that the pro-
posed detector achieve sufficiently consistent per-
formance under various optimization parameters
(i.e., the number of steps K and step size η), and the
detection performance is decided by δK ≈ K × η.

7 Conclusion

Our work starts from a finding: adversarial samples
locate in steep and narrow local minima of the loss
landscape while normal samples, which differs dis-
tinctly from adversarial ones, reside in the loss sur-
face that is more flatter. Based on this, we propose
a simple and effective sharpness-based detector that
uses an adaptive optimization strategy to compute
sharpness. Experimental results have demonstrated
the superiority of our proposed method compared
to baselines, and analytical experiments have fur-
ther verified the good performance of our method
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under different parameters.

Limitations

In this work, we propose a detector that aims to de-
tect adversarial samples via sharpness of input loss
landscape for model. However, the computational
cost of the sharpness is high because it requires at
most K-step gradient descents. Moreover, in this
work, we mainly considered word-level adversarial
sample detection as often studied in previous work,
while character-level and sentence-level adversarial
samples are not studied. These two problems will
be explored in our future work.
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A Appendix

A.1 Input Loss Landscape
In Figure 7, we comprehensively show the differ-
ences between the input loss landscapes of normal
and adversarial samples on three datasets. Adver-
sarial samples are generated by the three textual
adversarial attacks that we used in the experimental
section. Front elevation view of the input loss land-
scape on IMDB is shown in Figure 8. The sharp
input loss landscape of adversarial samples is not a
coincidence; it is a general phenomenon.

A.2 Detection Score
As a supplement, we show the detection score dis-
tributions of the proposed detectors and other base-
line methods on the SST-2 and IMDB datasets in
Figure 9. Our detection scores are still more dis-
criminative than the other baselines.

A.3 Hyperparameters
The optimal hyperparameter values are task-
specific, but the following range of possible values
works well in all tasks: 1) the number of steps K:
1, 2, . . . , 10; 2) step size η is tuned via a grid search
within the range of [2e−3, 2e−2] with interval 2e−2;
3) decision threshold is chosen via a grid search
within the range of [0, 1] with interval 1e−2.
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Figure 7: Input loss landscapes of normal and adversarial samples on SST-2, IMDB and AGNews datasets. The
adversarial samples are generated by textual adversarial attacks including PWWS, TextFooler and BERT-Attack.
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Figure 8: Front evaluation view of the input loss landscape on IMDB.
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Figure 9: Detection score distribution of the proposed methods and two baselines on SST-2 and IMDB datasets.
Detection scores are normalized into the range [0, 1]. The proposed detection scores are more discriminative than
other baselines. Adversarial samples are generated via BERT-Attack.
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