
Findings of the Association for Computational Linguistics: ACL 2023, pages 11299–11329
July 9-14, 2023 ©2023 Association for Computational Linguistics

A Simple, Yet Effective Approach to Finding Biases in Code Generation

Spyridon Mouselinos
University of Warsaw

s.mouselinos@uw.edu.pl

Mateusz Malinowski
DeepMind

mateuszm@deepmind.com

Henryk Michalewski
Google, University of Warsaw

henrykm@google.com

Abstract

Recently, high-performing code generation sys-
tems based on large language models have sur-
faced. They are trained on massive corpora
containing much more natural text than actual
executable computer code. This work shows
that current code generation systems exhibit
undesired biases inherited from their large lan-
guage model backbones, which can reduce the
quality of the generated code under specific
circumstances.

To investigate the effect, we propose the ”block
of influence” concept, which enables a modu-
lar decomposition and analysis of the coding
challenges. We introduce an automated inter-
vention mechanism reminiscent of adversarial
testing that exposes undesired biases through
the failure modes of the models under test. Fi-
nally, we demonstrate how our framework can
be used as a data transformation technique dur-
ing fine-tuning, acting as a mitigation strategy
for these biases.

1 Introduction
Large language models (LLM) have recently
demonstrated their ability to generate code (Li
et al., 2022; Brown et al., 2020; Wang et al., 2021)
or solve challenging programming/math tasks on
par with human coders (Li et al., 2022; Lewkowycz
et al., 2022b; Chowdhery et al., 2022a); these mod-
els are trained with the data-driven paradigm. On
the other hand, an increasing body of work also
questions whether the data-driven approach leads
to acquiring reasoning skills (Piekos et al., 2021;
Zhang et al., 2022; Mouselinos et al., 2022), show-
ing that if left alone, it might not be sufficient for
achieving truly human-level performance on tasks
such as logical or visual reasoning. In many stud-
ied cases, models still rely on various hints in their
reasoning process. This work extends the results
above, i.e., the lack of reasoning capabilities, to
the code generation domain. More specifically, we
devise a framework that automatically identifies

subtle cues a code generation model might exploit.
Changes or removal of those cues stands as a rea-
soning test towards the generational capabilities of
the model at hand.

We presume that the reasoning process of code
generation models should remain invariant under
changes that still provide enough context or pose
little, if any, additional challenge to a human coder.
To this end, we propose an automatic and model-
agnostic framework that modifies the following: (1)
function names, (2) keywords in a problem spec-
ification, and (3) examples provided in the prob-
lem prompt. We refer to these parts as Blocks-Of-
Influence; see Figure 1. Each block contributes
partially to the context needed for correct comple-
tion. We show that minor modifications of these
blocks are sufficient to “fool” LLM-based code
generation methods.

Our results reveal biases such as keyword pref-
erence and memorization effects, which can be
identified across multiple models. During our ex-
periments, we ensure that any modifications main-
tain the global semantics of the coding challenge.
This is achieved through a context-aware filtering
mechanism that guarantees any information altered
or removed still exists and/or can be deducted from
the remaining unaltered part.

Contributions. The main contributions of our
work can be summarized in three points.
First, we propose a novel automated framework
that identifies possible biases in code generation
models. Our framework removes subtle hints, intro-
ducing minimal changes such as keyword replace-
ment or partial code-block omission, ultimately
acting as an adversarial test. Since the framework
operates on a data level, it is agnostic to the model’s
structure and internal workings. The framework
can be easily adjusted to any input format or pro-
gramming language.
Second, we introduce the ”Blocks of Influence” con-
cept. We suggest that every instance of a typical

11299

coding challenge can be analyzed into three parts
(blocks). Each part is correlated with a different
method of hinting and is used as a target of our
transformations. A model’s reasoning process is
informed by all three blocks, making them perfect
analyzing tools for cases of failing code generation.
Third, we explore new ways of mitigating biases
during code generation. In Section 6, we study the
effects of adversarial training against our proposed
perturbations, and the benefits of including exam-
ples with longer descriptions during fine-tuning.
Our results show that combining these techniques
leads to more accurate code completions.

2 Related Work
Our approach is inspired by works of various re-
search directions, which we briefly describe here.
Solving coding and math challenges. The emer-
gent abilities of large language models to gener-
ate, summarize and translate textual information,
have recently sparked interest in their aptitude for
math, logic, and programming challenges. Tasks
such as code-completion (Chen et al., 2021; Shin
et al., 2019; Hendrycks et al., 2021a; Li et al.,
2022), code summarization and code translation
(Lu et al., 2021) have been proposed, with models
constantly progressing towards near-human perfor-
mance. Similarly, (Hendrycks et al., 2021b; Saxton
et al., 2019; Ling et al., 2017; Amini et al., 2019)
have proposed tests measuring a model’s ability to
perform math and logic, ranging from school prob-
lems to competition-grade challenges. Impressive
results in multiple programming languages have
also been achieved by decoder-only works (Brown
et al., 2020; Chen et al., 2021). Fried et al. (2022)
created the first generative model to perform in-
filling using a novel masking objective. Finally,
massive-scale models such as (Chowdhery et al.,
2022b; Lewkowycz et al., 2022a) demonstrated
breakthrough capabilities in language, reasoning,
and code tasks achieving state-of-the-art perfor-
mance in multiple domains simultaneously.
Social biases in large language models. Trained
on ever-increasing amounts of publicly available
data, large language models have been studied for
adopting social biases commonly found among hu-
mans. Wallace et al. (2019) show that generative
models can be conditioned to produce toxic con-
tent, with the use of nonsense, adversarial prefixes.
Similarly, Liang et al. (2021) suggest that models
might adopt biases and social stereotypes found
among their training data and provide ways to ap-

ply fairness during generation. Countermeasures
have been proposed by (Zhao et al., 2021; Liu et al.,
2022), claiming that sanitized zero-shot examples
contribute to mitigating biases during generation.
Probing reasoning through cognitive biases.
There have been notable attempts to systemize in-
telligence and reasoning as concepts (Legg, 2008;
Chollet, 2019), yet a few recent works try to ap-
proach reasoning, through the analysis of failure
modes, caused by biases in deep learning models.
Glockner et al. (2018) suggest that natural language
inference systems can be easily fooled with a sin-
gle hypernym/hyponym swap, exhibiting an bias
towards specific word choices. Similarly, Lin et al.
(2020) prove that numerical commonsense reason-
ing in LLMs is heavily biased by adjectives de-
scribing the object of interest. Concerns against the
current data-driven methods have been expressed
by Razeghi et al. (2022), pointing out that LLMs
are more accurate on mathematical challenges that
involve terms significantly more frequently in their
pre-training dataset. Piekos et al. (2021) claim
that LLMs can answer math and logic questions
without understanding the rationale behind them,
relying blindly on the existence of specific key-
words. We place our work in this line of research,
provoking and studying the failures of LLMs un-
der reasoning-heavy coding tasks. Our main goal
consists of identifying cognitive bias sources, i.e.,
words, structures, or co-occurrence patterns, that
exist in current LLMs, and lead to systematic fail-
ures of rationale.
Adversarial methods and Language Processing.
NLP community developed excellent methods to
prepare adversarial tasks, including the TextAttack
framework (Morris et al., 2020) and sophisticated
techniques to elicit adversarial examples from hu-
mans, as in Talmor et al. (2022), though our work
seems to be the first focused on the disciplined
construction of adversarial examples for code.

3 Benchmarks
In this section, we describe the datasets used in
our experiments. We employed widely used cod-
ing challenges HumanEval (HE) and MBPP and
a more complex dataset with lengthy descriptions
of problems (DMCC). More information about the
datasets can be found in the Appendix 10.2.
HumanEval (HE). This is a human-curated
problem-solving dataset described in Chen et al.
(2021). It consists of 164 original programming
challenges assessing language comprehension, al-

11300

Figure 1—Left: The three blocks of influence: Name Block in red, Description Block in green and Example Block in blue.
Right: We demonstrate three possible transformations, one for each block: Swap the function name with ”func”, remove
keywords, and remove examples. Transformations can be applied alone or in combinations of two as described in Section 5.2

gorithms, and simple mathematics. Each problem
is presented as an incomplete function, accompa-
nied by a docstring. The docstring contains the task
and a few example cases. For each task, we are pro-
vided with a set of unit tests. A task is considered
solved when all unit tests are passed.
Mostly Basic Python Problems (MBPP). Intro-
duced in Austin et al. (2021), it contains 974 short
Python functions designed to be solved by entry-
level programmers. Contrary to HumanEval, each
task is given through a text description rather than
a docstring. Since there are no input-output exam-
ples in the prompt, we generate 3 valid pairs using
the code solutions provided. c MBPP challenges
models to perform tasks of imperative control flow,
requiring loops and conditionals.
DeepMind Code Contests (DMCC). Is the highly
challenging dataset proposed by Li et al. (2022).
The dataset includes problems from the Codeforces
platform (Mirzayanov, 2020), Description2Code
(Caballero, 2016), and CodeNet (Puri et al., 2021).
We used challenges written in the Python3 lan-
guage of the training split for our experiments.
DMCC contains long descriptions of the problems
and input-output examples of the functions to be
completed.

In this work, DMCC is used for its long context
properties during experiments of augmented fine-
tuning (Table 5). Models presented in our work
achieve zero or near-zero scores on it; hence it
is excluded from our perturbation analysis, with
HumanEval and MBPP being more suitable targets.

4 Evaluation

Models. In our experimental setup, we test five
models representing different approaches to code
generation. CodeParrot (Tunstall et al., 2022a)
comes with an open-source dataset and can be eas-
ily used for fine-tuning experiments due to its size.
Its smaller variant (110M) achieves competitive
results to other open-source LLMs at larger param-
eter budgets. By exploring its dataset, we tested our
hypothesis that function names act as biases during

code generation. Models can be heavily inspired
by similarly named snippets in their training set
and resort to copying whole or parts of the solution
instead of performing reasoning. (See Appendix
A.9) We also test the Incoder (Fried et al., 2022)
model, which is trained under a novel bi-directional
causal objective, being able to handle context more
efficiently than its causal counterparts. Against our
initial hypothesis, our methods cause significant
performance drops despite the model’s enhanced
context-understanding capabilities (Table 3). The
Bloom model (Mitchell et al., 2022) exhibits emer-
gent abilities in multiple domains by training on
massive multilingual and multi-purpose content.
Despite not being a code generation model, it per-
forms equally well with code-specific models in
the same parameter budget. Theoretically, bias ef-
fects can be reduced when a model is exposed to
diverse training examples. Our experiments reveal
that this is still not the case under our setup, and
post-training solutions are explored. CodeGen (Ni-
jkamp et al., 2022) is a high-performing model
trained in natural language understanding and code.
We test its Mono variant, further fine-tuned on the
Python language. Finally, we have the powerful
Codex model, which can tackle most of the pro-
posed coding challenges in the HumanEval and
MBPP datasets. A list of the tested models, as well
as KeyBert (Grootendorst, 2020) that is used in our
framework, can be found in Table 1.

Model Name Sizes Used

KeyBert (Grootendorst, 2020) 2M
Codeparrot (Tunstall et al., 2022a) 110M / 350M*/ 1.5B
InCoder (Fried et al., 2022) 1.6B / 6B
CodeGen (Nijkamp et al., 2022) 350M / 6B
Bloom (Mitchell et al., 2022) 560M* / 1.7B / 176B†

Codex (v1 / v2) (Chen et al., 2021) ∼175B† (Estimated)

Table 1: Models used: (*) refers to fine-tuned and (†) to API.

Performance metrics. We evaluate the functional
correctness of the generated programs with the
pass@k metric, introduced in Kulal et al. (2019).
This metric serves as an estimator of a model’s
generative capabilities under a specific budget. In
Chen et al. (2021), authors propose an updated un-

11301

biased version that we adopt throughout the rest of
this work. To avoid any confusion, we calculate
pass@k at exactly k attempts. The average of ten
runs with different seeds is presented for all exper-
iments in Table 3. We use sampling temperatures
of 0.2 / 0.8 for pass@1 / pass@100, which are the
optimal values across the tested models.

5 Method

5.1 Blocks of Influence

Our method treats each coding challenge as a com-
bination of three distinct but complementary blocks
rather than a single, homogeneous input. We refer
to them as Blocks of Influence and correlate each
with a different source of bias during code genera-
tion. Taking as an example Figure 1, we challenge
the model to complete a function that reverses a list
and then returns its second item.
Name Block. The first block of influence, marked
in red, informs the model about the function name
and the names and types of the input arguments.
Let us assume that initially, a model generates cor-
rect solutions to a problem. However, the model
fails when we rename the function name to some-
thing unrelated to the task, e.g., “fun“. This failure
mode indicates that neither the problem descrip-
tion was understood nor the model could extract
a reasoning pattern from the given usage exam-
ples. We associate such cases with memorization
effects, where the model relies heavily on the func-
tion name, replicating snippets from its training
dataset with the same or similar names.
Description Block. The problem description
stands as the second block, marked in green. Here
the model is expected to form a solution by utilizing
its natural language understanding capabilities. We
observe that removing specific keywords from the
problem description can lead to catastrophic results
in model performance. It is vital that removing
these keywords must not degrade the description
semantics, and any information lost should be re-
coverable from the rest of the context. For example,
in Figure 1, the removal of the word pair ”the list”
creates a description that is still well understand-
able by a human coder. We challenge the model
to deduct the missing context from the word ”list”
in the function name and the input list type in the
example given. The inability to recover the missing
context is associated with an inherent preference
bias, where the model relies on superficial lexical
clues or frequently co-occurring terms seen during

training rather than the given context to ”mentally”
fill any gaps.
Example Block. As the final block, we consider
the examples after the problem description. They
act as demonstrations, guiding the model to spe-
cific reasoning patterns. Let us consider a scenario
where models cannot generate correct code when
examples are absent. Arguably, more than the task
and given inputs alone were needed for the model
to form a proper problem understanding. In this
failure mode, the provided examples act as a ”rea-
soning tie-breaker” between proposed solutions the
model can generate. Generated solutions are not
entirely irrelevant but a relatively poor interpre-
tation of the problem. For example, in Figure 2,
when stripped of its examples, the model still ex-
hibits signs of task understanding (i.e., comparing
element difference to a threshold, iterating over
elements). However, combining these logic parts
in a meaningful manner is complex enough that
the model requires additional examples to filter out
faulty strategies. We associate such effects with
poor reasoning abilities.

5.2 Framework

The first step involves splitting a coding challenge
into the three Blocks of Influence. For this purpose,
we utilize a regular expression module that searches
for common patterns of each block’s start or end.
(e.g., Name Block: ”def (...):”, Description Block:
” or ”””, Example Block: ”Examples:” or > /≫
followed by usage of the function name).

As the next step, the Description Block is fur-
ther analyzed to identify possible hinting keywords.
Ideally, we are interested in unigrams or bigrams
that provide excess information towards complet-
ing the coding task. For keyword identification,
we use KeyBert (Grootendorst, 2020), an LLM
tasked to perform keyword extraction and word
similarity. We proceed to fine-tune KeyBert on
the open-source CodeParrot dataset (Tunstall et al.,
2022a) so that more code-specific suggestions are
provided. For each candidate keyword, we calcu-
late its embedding similarity with the set of words:
[Python, Programming, Code, Variable], again through
KeyBert. Words with cosine similarity scores un-
der 0.7 for all the items of the set are unrelated to
coding and thus filtered out. However, carelessly re-
moving keywords can lead to non-interesting drops
in performance associated with removing crucial
information rather than hinting effects. Thus, an ad-
ditional context-aware filtering stage is employed

11302

to validate that any information lost can be retrieved
from the remaining coding challenge.

During this stage, we compute each candidate
keyword’s embedding similarity with every non-
potential keyword token. The keyword is marked
as valid for removal if at least one ”close” word is
identified. Again, we consider ”close” keywords
with a similarity score larger than 0.7. If a key-
word exists in multiple locations, the first instance
is not marked as valid for removal, while the rest
are. When a keyword happens to be an argument
type (i.e., list, integer, tuple), we additionally look
for instances of that type in the examples or name
block. In case of a match, the keyword is safe for
removal. Equivalent information already exists in
the context. As the final step, we chose between
the following transformations:
Drop one. Removes one of the provided keywords
from the Description Block. The transformation is
repeated N times where N is the number of identi-
fied keywords.
Drop all. Removes all the provided keywords si-
multaneously from the Description Block
Drop examples. Removes all the provided exam-
ples from the Example Block.
Anonymize. Replaces the function name with
an arbitrary token. We use ”func” in our exper-
iments. Note that the function name is also re-
placed in the provided examples, so no information
leak occurs. We also tested whether the choice
of ”func” may potentially bear some intrinsic ad-
versarial effect associated with the training data.
We experimented with other word choice replace-
ments (”action”,”do stuff”, ”XYZ”) and got the
same results. Furthermore, we identified instances
where the function name, although closely corre-
lated to the task at hand, if it was to be taken as
the sole source of information, could instead be
misleading, signifying the need for proper context
understanding by the tested models (See Appendix
10.8).

For example, let us use our framework on the
challenge presented in Figure 1. At the first stage,
KeyBert would have identified the following key-
words: [Reverse, list, return, second]. Among
these, the word second does not pass the first fil-
tering stage with over 0.7 similarity score against
our set. In the second stage, each word would be
compared against all the existing tokens. Reverse
and return will not be associated with other tokens.
List will be identified in the function name and in-

put argument type. Also, since list is also a python
keyword, it will be matched against the list type
of the input given in the examples. This leaves list
as the only available keyword for removal. If key-
word drop would be combined with anonymization,
the drop would still be valid since the information
would still be available in the examples and input
type.

These transformations test the hypotheses we
associate with each block, as presented in Section
5.1. Removing possible hints leads to performance
drops between the original and modified challenges,
revealing underlying biases in the models’ logic Ar-
guably, any of our suggested transformations can
destroy local semantics. However, we take signif-
icant measures to ensure that global semantics is
preserved and enough information exists towards
its solution. This is also why we refrain from per-
forming simultaneous transformations in the Ex-
ample Block and Description Block, or all of the
Blocks of Influence together; a model stripped of
all necessary information cannot generate a proper
solution. To quantify the possible degree of am-
biguity our transformations introduce, we employ
the LM critic test, inspired by the work of (Ya-
sunaga et al., 2021; Yasunaga and Liang, 2021):
We collect a random sample of 200 coding chal-
lenges from the HumanEval and MBPP. Each chal-
lenge is then transformed according to the methods
presented in Table 2. Afterwards, for both the orig-
inal and every modified version of a challenge, we
calculate their log probability score using a large
language model. The core idea is that the model
will act as a soft critic, ranking model inputs by
their overall plausibility. Modified inputs that seem
”off” to the critic and are partially understood will
be assigned a log probability score far lower than
the unmodified ones. Since this criterion is based
on local neighborhood optimality, only moderate
changes are allowed between the challenges under
comparison. For example, two completely differ-
ent but syntactically and semantically correct text
snippets can have similar log probability scores.
During their comparison, however, we would have
violated the locality assumption, and no conclu-
sions could be drawn about their contents. As our
critic, we employ the Codex-v2 model (Chen et al.,
2021). We calculate log probability similarity as:
Sim = 100− LogPMethod−LogPOriginal

LogPOriginal
.

Table 2 shows that our transformations do not in-
troduce drastic changes to the coding challenge.

11303

Similarity (%)

Method w/ CAF w/o CAF

Original 100.0 (± 0.0) 100.0 (± 0.0)
Anonymization 98.5 (± 1.2) 98.5 (± 1.2)
Drop One 97.3 (± 1.5) 84.2 (± 2.2)
Drop All 95.3 (± 1.9) 80.3 (± 2.8)
Anonymization + Drop One 95.8 (± 1.4) 80.9 (± 2.3)
Anonymization + Drop All 94.6 (± 2.3) 78.4 (± 3.1)

Table 2: Similarity scores for different methods of our frame-
work with (w/) and without (w/o) the proposed context-aware
filtering mechanism (CAF). Results of 200 samples are pre-
sented.

Even in the most aggressive transformation of
Anonymization + Drop All, the critic assigns over
94% similarity between code challenges affected
by it versus their original form. For comparison,
removing the context-aware filtering stage, leads
to only 78% similarity in the case of Anonymiza-
tion + Drop All transformation. We believe this
is a fair indicator that the tested models observe
inputs of similar quality and comprehensibility dur-
ing our experiments. Note that we omit results for
the Drop Examples method. In this case, the log
probabilities will significantly change since we re-
move many tokens, which violates the method’s
locality prerequisite.

6 Experiments

6.1 Results on Block Transformations

The main results of our experiments are presented
in Table 3. Despite their simplicity, our transforma-
tions cause consistent drops in performance across
different model sizes on both datasets.1 Mere
anonymization causes drops of 19% on average
in both Pass@1 and Pass@100 metrics, validat-
ing our claims of memorization effects. Single
(Drop One) and full keyword removal (Drop All)
reduce models’ performance by 15% and 22% on
average, suggesting their inability to deduct the
missing context from Name Block and Example
Block. Instead, models rely on generating arbi-
trary, commonly used snippets that vaguely fit for
the task. Especially interesting are the cases of
Drop Examples and Anonymize + Drop Examples,
with 15% and 25% average drops. Both transfor-
mations remove the information provided by the
docstring examples, with the latter having the addi-
tional restriction of an anonymized function. With

1We present a full table of results, including Codeparrot
(110M), CodeGen(350M), Bloom(1.7B) and Codex(v1) in
Appendix 10.5

the Description Block unmodified in both cases,
these transformations target the models’ abilities
to create solutions based on their natural language
understanding. The combination of anonymization
with the drop of all keywords (Anonymize + Drop
All) seems to be the most challenging transforma-
tion overall, with drops of approximately 40%. Its
primary purpose is to assess the model’s capability
of deducting the missing context of the Description
Block by only observing patterns in the examples.
These observations suggest a clear model prefer-
ence over its sources of information, with the task
description being the primary one. Thus, when a
model exhausts its ability to understand the task, it
exploits similarities of the function name with pre-
viously seen code solutions. Simultaneously, the
model’s reasoning relies on the example demon-
strations, which, as seen from (Anonymize + Drop
All), are not always able to provide clear directives.

6.2 Towards Bias Mitigation

Inspired by the field of adversarial training, we de-
cided to investigate the effects of using our frame-
work transformations as training augmentations. To
this end, we apply our framework to examples of
the MBPP challenge and use them as a fine-tuning
dataset for three different Codeparrot models. We
use HumanEval as our test dataset, which bears
no overlap with the MBPP. In this way, our mod-
els have not seen examples of the test set during
their training or fine-tuning steps. In Table 4, we
compare the results of our models before and after
fine-tuning. Models benefit from the introduction
of augmented examples and partially recover from
failure modes caused by the need to rely on hints.
The larger the model, the more its abilities ben-
efit. We believe this effect is closely related to
large language models’ scaling reasoning capabil-
ities and their parameter size. The need to rely
on hints can be attributed to low data quality or
lack of task-specific inductive biases. However,
the capacity to properly understand coding tasks
is undoubtedly there. To improve the code genera-
tion abilities of models, we thus suggest exposing
them to challenges that push their deductive and
reasoning abilities. We decided to repeat the ex-
periments, but without including any of our data
augmentation techniques during fine-tuning. We
observe that under this setup, models do not exhibit
any significant improvement against our method’s
perturbations. Our suggested data augmentations
that push the reasoning limits of the models are

11304

Table 3: Model results on Human Eval and MBPP.

Codeparrot (1.5B) Incoder (1.6B) CodeGen-Mono (6B)
Human Eval MBPP Human Eval MBPP Human Eval MBPP

Method Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Original 4.1 17.8 6.1 31.2 11.3 24.2 14.6 56.7 26.1 65.8 42.3 77.3
Drop One 3.9 13.2 4.2 26.8 10.5 22.3 11.5 45.4 18.4 39.3 25.2 65.7
Drop All 3.6 11.1 3.9 21.7 9.7 17.6 12.8 42.1 13.9 34.8 22.4 57.7
Drop Ex 3.7 14.3 5.3 27.5 11.3 22.2 14.4 43.8 20.4 42.3 27.2 61.7
Anon 3.8 12.5 4.7 23.2 9.1 21.8 11.3 45.2 18.2 37.3 24.0 65.6
Anon+Drop One 3.3 9.5 3.9 20.2 7.4 21.5 10.5 44.9 12.6 24.6 15.8 58.6
Anon+Drop All 2.1 8.9 3.9 17.9 6.3 17.5 8.0 41.3 11.5 23.1 14.9 46.3
Anon+Drop Ex 3.7 11.8 4.6 22.8 8.7 21.3 11.2 43.5 16.0 28.3 18.2 60.7

Incoder (6B) Codex (v2) Bloom (176B)
Human Eval MBPP Human Eval MBPP Human Eval MBPP

Method Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Original 15.2 47.0 19.4 65.1 49.4 91.4 60.1 86.3 16.4 57.2 20.8 62.4
Drop One 12.1 35.3 18.9 52.6 36.0 86.2 56.0 79.2 12.8 48.6 15.8 51.4
Drop All 10.2 28.2 15.6 47.0 37.1 73.7 52.1 69.5 11.5 40.2 14.2 44.4
Drop Ex 12.7 29.5 17.4 50.3 41.4 81.0 48.8 70.7 15.2 43.3 15.8 50.1
Anon 11.6 32.9 14.8 50.7 44.5 90.4 57.9 81.7 14.0 48.3 15.1 51.2
Anon+Drop One 8.1 30.6 13.5 46.7 29.8 74.4 51.2 69.5 12.8 41.9 13.6 46.8
Anon+Drop All 7.5 25.2 11.2 38.9 24.2 68.7 47.2 63.8 10.3 36.8 12.6 38.4
Anon+Drop Ex 11.2 28.1 14.5 50.2 34.1 72.5 42.6 70.5 14.0 39.8 14.3 47.8

Table 4: HumanEval results of fine-tuning Codeparrot on the MBPP dataset with (A) or with no (NA) augmentations: Regular
finetuning does not contribute to bias removal, achieving similar results against the perturbations. However, our suggested
augmentations lead to higher model performance, especially in the pass@100 metric. The average of 15 runs is presented. Bold
marks statistically significant improvements under the T-Test (Before versus After-A) with a = 0.95.

Codeparrot - 110M Codeparrot - 350M Codeparrot - 1.5B
Pass@1 (T=0.2) Pass@100 (T=0.8) Pass@1 (T=0.2) Pass@100 (T=0.8) Pass@1 (T=0.2) Pass@100 (T=0.8)

Before After Before After Before After Before After Before After Before After
Method NA / A NA / A NA / A NA / A NA / A NA / A

Original 3.8 3.7 / 3.7 12.7 12.1 / 12.1 3.8 3.7 / 3.7 13.9 13.7 / 13.7 4.1 4.1 / 4.1 17.8 17.8 / 17.8
Drop One 3.3 3.2 / 3.6 9.7 9.7 / 10.4 3.3 3.3 / 3.6 11.9 11.9 / 12.3 3.9 3.9 / 4.0 13.2 13.2 / 14.1
Drop All 3.1 3.1 / 3.1 7.2 7.2 / 7.9 3.2 3.2 / 3.2 10.1 10.0 / 10.7 3.6 3.6 / 3.7 11.1 11.1 / 12.3
Drop Ex 3.8 3.7 / 3.7 9.9 9.9 / 10.2 3.8 3.8 / 3.7 12.9 12.9 / 12.9 3.7 3.7 / 3.7 14.3 14.3 / 15.1

Anon 3.4 3.4 / 3.5 8.7 8.7 / 9.1 3.6 3.6 / 3.6 11.6 11.6 / 12.2 3.8 3.8 / 3.9 12.5 12.5 / 13.8
Anon+Drop One 3.0 2.8 / 3.4 7.5 7.5 / 7.9 3.0 2.8 / 3.5 8.2 8.2 / 9.4 3.3 3.3 / 3.5 9.5 9.5 / 10.5
Anon+Drop All 1.9 1.9 / 2.0 6.9 6.9 / 6.9 2.0 2.0 / 2.2 8.1 8.0 / 8.3 2.1 2.1 / 2.4 8.9 8.8 / 9.4
Anon+Drop Ex 3.4 3.3 / 3.4 8.7 8.7 / 9.0 3.6 3.6 / 3.6 10.7 10.7 / 11.8 3.7 3.7 / 3.7 11.8 11.8 / 13.7

thus a valid alternative to simple fine-tuning.

6.3 Effects of Longer Context

When causally training on coding datasets, models
condition on multiple functions and declarations
in the same file. The input is a conglomerate of
rapidly changing contexts, with each function or
class being a self-contained entity. Subsequently, a
model is accustomed to localizing its focus when
trained on such data. As an extension to our previ-
ous experiment, we measure the effects of using a
long description dataset, DMCC, as a fine-tuning
target. By training on long descriptions of natu-
ral language, we promote the context-deducting
skills of the model under test. A model able to
widen its focus can avoid distractions caused by
missing keywords. Efficient context understand-
ing will replace not rely heavily on internal bi-
ases. We choose Bloom as the model under test
since it was not explicitly tuned for code genera-

tion but rather general language understanding. In
Table 5, we present results of fine-tuning on MBPP,
modified by our framework. We observe similar
performance improvements as in Table 4. We ex-

Table 5: HumanEval results of fine-tuning Bloom (560M)
on the modified MBPP and long-description DMCC dataset
with (A) or without (NA) augmentations: Model exhibits
increased performance under the combined augmentation
schema against perturbations that challenge language under-
standing. The average of 15 runs is presented. Bold marks
statistically significant improvements under the T-Test (Before
versus +DMCC-A) with a = 0.95.

Pass@1 (T=0.2) Pass@100 (T=0.8)

Before +MBPP +DMCC Before +MBPP +DMCC
Method NA / A NA / A NA / A NA / A

Original 3.7 3.6 / 3.6 3.6 / 3.6 12.1 12.1 / 12.1 12.0 / 12.0
Drop One 3.1 3.1 / 3.6 3.1 / 3.6 10.3 10.3 / 10.9 10.3 / 10.9
Drop All 2.4 2.3 / 2.4 2.3 / 2.9 9.2 9.1 / 9.1 9.1 / 9.7
Drop Ex 3.0 3.0 / 3.0 3.0 / 3.0 11.0 11.0 / 11.3 11.0 / 11.5

Anon 2.5 2.5 / 3.0 2.6 / 3.6 10.7 10.7 / 10.9 10.8 / 11.3
Anon+Drop One 1.9 1.9 / 2.3 1.9 / 2.4 7.8 7.8 / 9.1 7.8 / 9.7
Anon+Drop All 1.8 1.8 / 1.8 1.8 / 2.3 7.0 7.0 / 7.2 7.0 / 8.3
Anon+Drop Ex 2.4 2.4 / 2.9 2.4 / 3.0 9.7 9.7 / 10.3 9.7 / 11.4

11305

periment again, this time combining both MBPP
and DMCC examples. We show that incorporat-
ing examples of more extended context leads to
even better performance against transformations
targeting the Description Block and language un-
derstanding. Similar experiments were conducted
with the CodeParrot variants but were unfruitful.
We attribute this to the restricted focus regarding
training data (exclusively Python3 code) and archi-
tectural differences between the models. We be-
lieve that the merging benefits of our two proposed
setups can serve as an interesting direction towards
model resilience in code generation scenarios.

7 Conclusions
We present a simple approach to isolate cues and
benchmark the reasoning of code generation mod-
els through input-level transformations. Our

from typing import List
def has_close_elements(numbers: List, threshold: float):

"Check if in the given list of numbers, are any two numbers closer
to each other than given threshold."↪→

Examples:
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0,2.0,3.0,4.0,5.0,2.0], 0.3)
True
return any(abs(x-y) < threshold for x,y in zip(numbers,

numbers[1:]))↪→

from typing import List
def has_close_elements(numbers: List, threshold: float):

"Check if in the given list of numbers, are any two numbers closer
to each other than given threshold."↪→

for i in range(len(numbers) -1):
if abs(numbers[i] - numbers[i+1]) < threshold:

return True
return False

Figure 2—Example removal reveals poor reasoning (Exam-
ple drop / Codex-v1): The model initially exhibits signs of task
comprehension (top), generating a correct solution. Removing
the examples, however, reveals a lack of proper reasoning;
Although the model still understands that it has to compare
numbers, it resorts to a naive sequential check instead of com-
paring each available pair (bottom).

from typing import List
def string_xor(a:str, b:str) -> str:

"Input is two strings a and b consisting only of 1s and 0s. Perform
binary XOR on these inputs and return the result as a string.↪→

Examples:
>>> string_xor('010','110')
'100'
return ''.join([str(int(a,2) ˆ int(b,2)) for a,b in zip(a,b)])

from typing import List
def string_xor(a:str, b:str) -> str:

"Input is a and b consisting only of 1s and 0s. Perform XOR on
these inputs and return the result.↪→

Examples:
>>> string_xor('010','110')
'100'
return ''.join([str(int(a) ˆ int(b))])

Figure 3—Keyword hinting (Drop All / Bloom 175B): After
the removal of keywords, the context remains intact: The two
strings keyword can be assumed by observing the function
arguments, and the binary/string keywords by the examples
and return type signature of the function. Nevertheless, the
model fails to generate a correct solution (bottom).

method treats code examples as a combination of
three blocks, each providing different cues to the
model. We show that minor transformations can
lead models to failure, signifying the existence of
biases. Our framework can automatically identify
and remove keywords responsible for indirect hint-
ing. We show that popular models with solid results
on challenging coding challenges are susceptible
to our tests, with their performance degrading no-
ticeably. Moreover, we studied the effects of utiliz-
ing our proposed transformations during the fine-
tuning of a model. Models can benefit from our pro-
posed changes, with the effect proportional to their
parameter size. We believe that, despite their suc-
cess, code generation systems with LLMs as back-
bones inherit some of their biases and modes of fail-
ure. Training on structured and well-documented
code, combined with our proposed techniques, is
a promising direction towards reliable code gener-
ation. Although an ideal fit for competition-style
challenges, our method can be extended to support
less formatted high-quality codebases (e.g. GitHub
repositories). For a short analysis see Section 10.1
of the Appendix.

def pairs_sum_to_zero(l):
"Pairs_sum_to_zero takes a list of integers as input. It returns

True if there are two distinct elements in the list that sum to
zero, and False otherwise."

↪→
↪→
Examples:
>>> pairs_sum_to_zero([1,3,5,8])
False
>>> pairs_sum_to_zero([1,3,-2,1])
False
>>> pairs_sum_to_zero([2,4,-5,3,5,7])
True
for i in range(len(l)):

for j in range(i+1, len(l)):
if l[i] + l[j] == 0:

return True
return False

def func(l):
"Func takes a list of integers as input. It returns True if there

are two distinct elements in the list that sum to zero, and
False otherwise."

↪→
↪→
return any(sum(x) == 0 for x in l)

Figure 4—Anonymize + Drop Examples / Incoder 6B:
Using only the problem description, the model creates par-
tially informed subparts (any derives from ”if there are”,
sum(x) == 0 from ”sum to zero”, and for x in l from ”el-
ements in the list”) that are not combined correctly to solve
the task (bottom), signifying that hints from the function name
/ examples were used in the correct solution (top).

8 Limitations

Some limitations and possible research directions
exist in our work. Our study focuses on the Python3
programming language, with many coding chal-
lenges existing in different popular choices (e.g.,
C, C++, Java, Scala). Although the Blocks of In-
fluence identification mechanism could be easily

11306

adapted to each case, an off-the-shelf application
of our framework in another language would lead
to errors.

Similarly, the framework assumes that each cod-
ing challenge will be in a ”competition-style” for-
mat, meaning that a proper problem description,
in-docstring examples, and each input types are
present for each example. In Appendix Section
10.1, we present how an adaptation to less format-
ted codebases would be possible, but for now, we
leave it as a future investigation.

Finally, there is no guarantee that the improved
performance against the suggested perturbations
reflects an equivalent performance increase in real-
world code assistant applications. Real-time coding
suggestions and completions that are more user
aligned are out of the scope of this work.

9 Risks and Ethical Considerations
Our research aims to discover and remove biases
in code-generation scenarios through adversarial
intervention. However, we acknowledge that inse-
cure or malicious code can still be generated after
finetuning with our suggested augmentations. Fur-
thermore, our work is focused only on cognitive
biases that affect the reasoning and logic behind
the coding process of large language models. So-
cial biases and stereotypes can still appear when
general-purpose LLMs such as Codex or Bloom
are used in typical text generation scenarios. Signs
of robustness against our methods are not to be
confused with indicators of other forms of biases
not existent.

Acknowledgements
All experiments were performed using the En-
tropy cluster funded by NVIDIA, Intel, the
Polish National Science Center grant UMO-
2017/26/E/ST6/00622 and ERC Starting Grant
TOTAL. The work of Spyridon Mouselinos
and Henryk Michalewski was supported by the
Polish National Science Center grant UMO-
2018/29/B/ST6/02959.

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. CoRR, abs/1905.13319.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,

Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

E. Caballero. 2016. Description2code dataset, 8 2016.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

François Chollet. 2019. On the measure of intelligence.
arXiv preprint arXiv:1911.01547.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022a. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022b. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, and Sourab Mangrulkar.
2022. Accelerate: Training and inference at scale
made simple, efficient and adaptable. https://
github.com/huggingface/accelerate.

11307

http://arxiv.org/abs/1905.13319
http://arxiv.org/abs/1905.13319
http://arxiv.org/abs/1905.13319
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/ethancaballero/description2code
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021a. Measuring coding challenge com-
petence with apps. NeurIPS.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Shane Legg. 2008. Machine super intelligence. Ph.D.
thesis, Università della Svizzera italiana.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022a. Solving quantita-
tive reasoning problems with language models.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022b. Solving quantitative
reasoning problems with language models. arXiv
preprint arXiv:2206.14858.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understand-
ing and mitigating social biases in language models.
In International Conference on Machine Learning,
pages 6565–6576. PMLR.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and Xiang
Ren. 2020. Birds have four legs?! NumerSense:
Probing Numerical Commonsense Knowledge of Pre-
Trained Language Models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6862–6868,
Online. Association for Computational Linguistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

M. Mirzayanov. 2020. Codeforces: Results of 2020.

Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezin-
wanne Ozoani, Marissa Gerchick, Nazneen Rajani,
Sasha Luccioni, Irene Solaiman, Maraim Masoud,
Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bek-
man, Christopher Akiki, Danish Contractor, David
Lansky, Angelina McMillan-Major, Tristan Thrush,
Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan
Dey, Stella Biderman, Douwe Kiela, Emi Baylora,
Teven Le Scao, Aaron Gokaslan, Julien Launay, and
Niklas Muennighoff. 2022. The world’s largest open
multilingual language model: Bloom.

John X. Morris, Eli Lifland, Jin Yong Yoo, and Yanjun
Qi. 2020. Textattack: A framework for adversar-
ial attacks in natural language processing. CoRR,
abs/2005.05909.

Spyridon Mouselinos, Henryk Michalewski, and Ma-
teusz Malinowski. 2022. Measuring clevrness:
Blackbox testing of visual reasoning models. ICLR:
International Conference on Learning Representa-
tions.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint.

Piotr Piekos, Henryk Michalewski, and Mateusz Mali-
nowski. 2021. Measuring and improving bert’s math-
ematical abilities by predicting the order of reasoning.
ACL: Association for Computational Linguistics.

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir R. Choudhury, Lindsey
Decker, Veronika Thost, Luca Buratti, Saurabh Pujar,
and Ulrich Finkler. 2021. Project codenet: A large-
scale AI for code dataset for learning a diversity of
coding tasks. CoRR, abs/2105.12655.

11308

https://proceedings.neurips.cc/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/2020.emnlp-main.557
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://bigscience.huggingface.co/blog/bloom
https://bigscience.huggingface.co/blog/bloom
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655

Yasaman Razeghi, Robert L. Logan, Matt Gardner, and
Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot reasoning.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. 2021. Zero-
offload: Democratizing billion-scale model training.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Eui Chul Shin, Miltiadis Allamanis, Marc
Brockschmidt, and Alex Polozov. 2019. Pro-
gram synthesis and semantic parsing with learned
code idioms. Advances in Neural Information
Processing Systems, 32.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan
Berant. 2022. Commonsenseqa 2.0: Exposing
the limits of AI through gamification. CoRR,
abs/2201.05320.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.
2022a. Natural language processing with transform-
ers.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.
2022b. Natural language processing with transform-
ers.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2021. Lm-critic: Language models for unsupervised
grammatical error correction. In Empirical Methods
in Natural Language Processing (EMNLP).

Michihiro Yasunaga and Percy Liang. 2021. Break-it-
fix-it: Unsupervised learning for program repair. In
ICML, pages 11941–11952.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-
Wei Chang, and Guy Van den Broeck. 2022. On
the paradox of learning to reason from data. arXiv
preprint arXiv:2205.11502.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697–12706.
PMLR.

11309

https://doi.org/10.48550/ARXIV.2202.07206
https://doi.org/10.48550/ARXIV.2202.07206
http://arxiv.org/abs/2101.06840
http://arxiv.org/abs/2101.06840
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX
http://arxiv.org/abs/2201.05320
http://arxiv.org/abs/2201.05320
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
http://proceedings.mlr.press/v139/yasunaga21a.html
http://proceedings.mlr.press/v139/yasunaga21a.html
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html

10 Appendix

10.1 Extension to open-source code

Although an ideal fit for competition-style challenges, our method can be extended to support less
formatted high-quality codebases (e.g. GitHub repositories). Large files can be broken down into
individual functions/classes, each further analyzed into Blocks of Influence. In such codebases, function
names should be closely relevant to their purpose. The existence of meaningful docstrings is crucial, the
absence of which promotes more memorization and biases as we exhibited. Moreover, the input/output
checks contained in function unit tests can be repurposed as function examples. Keywords can be chosen
similarly, with the context being co-informed by both local and larger scopes.

10.2 Information on Models and Datasets

Model Name Link LICENSE

KeyBert (Grootendorst, 2020) https://github.com/MaartenGr/KeyBERT MIT
Codeparrot (Tunstall et al., 2022b) https://huggingface.co/codeparrot/codeparrot Apache License 2.0
InCoder (Fried et al., 2022) https://github.com/dpfried/incoder CC-BY-NC 4.0
CodeGen (Nijkamp et al., 2022) https://github.com/salesforce/CodeGen BSD 3-Clause
Bloom (Mitchell et al., 2022) https://huggingface.co/bigscience/bloom BigScience RAIL License v1.0
Codex-V2 (Chen et al., 2021) https://beta.openai.com/ N/A

Table 6: URL and Licenses of used Models.

Dataset Name Link LICENSE

CodeParrot Dataset (Tunstall et al., 2022a) https://huggingface.co/datasets/codeparrot/codeparrot-clean Apache License 2.0
HumanEval (Chen et al., 2021) https://github.com/openai/human-eval MIT
MBPP (Austin et al., 2021) https://github.com/google-research/google-research/tree/master/mbpp CC BY 4.0
DMCC (Li et al., 2022) https://github.com/deepmind/code contests Apache License 2.0

Table 7: URL and Licenses of used Datasets.

Name #Problems #Tests per Problem Avg. desc. length Avg. keywords

HumanEval (Chen et al., 2021) 164 8 449 4
MBPP (Austin et al., 2021) 1000 3 235 4
DMCC (Train / Python3) (Li et al., 2022) 8139 85 1480 9

Table 8: Datasets used in experiments. We present the number of problems, number of tests per problem, average
length of the challenge description and average distinct keywords identified by our framework.

For all of our perturbation experiments, we utilize the abovementioned models, and we comply with
their respective licenses and intended use (generating code completions in python3). This also stands
true for Codeparrot and Bloom, for which we create fine-tuned versions. Furthermore, we do not plan
to repack or redistribute any of the used datasets. We plan to release the codebase of this work as an
open-source project.

10.3 Information on Experimental Setup

Our experimental setup consisted of 4x NVIDIA V100 GPUs. Regarding the results of Table 3, the
computing time of each table entry was influenced by: the model size, the k value of pass@k metric
(number of generations), the perturbation method, and the dataset tested. Specifically for the drop one
/ anonymize + drop one methods, the experiment was repeated N times, where N corresponds to the
number of keywords identified. This results in approximately four times slower experiments for those
perturbations since in both HumanEval and MBPP, four keywords on average per problem were identified
(see Table 8). API calls to Codex and Bloom models were subject to throttling limits, and waiting loops

11310

were introduced to avoid interruptions of service. The total experiment time resulted in approximately
500 hours.

Regarding the finetuning experiments of Table 4, we trained Codeparrot Models with the AdamW
optimizer at a learning rate of 1e-5, batch size of 64, weight decay of 0.01, and constant learning rate
schedule. The same hyperparameters were chosen as well in the case of the MBPP-only experiment of
the Bloom Model in Table 5. When both MBPP and DMCC datasets were combined, a learning rate
of 3e-5 and a batch size of 256 were used. The hyperparameters were chosen after a grid search on
the following choices: Weight decay (0.01 / 0.0), Learning Rate: (1e-6,1e-5,3e-5,5e-5,1e-4), Schedule:
(Constant, Cosine). The batch size was chosen proportionally to the overall dataset length. All models
were trained with the Accelerate library (Gugger et al., 2022) and Zero-3 (Ren et al., 2021) partitioning
schema. Regarding the training objective, we used a custom causal language modeling loss. The loss
was calculated only on the generated tokens corresponding to the problem solution and not on any
tokens belonging to the problem description or examples. We used a random validation split of 10% and
validation loss for all experiments as our metric for early stopping.

10.4 Qualitative Examples

We present examples of code generation failures caused by our framework across different models and
scenarios. On each pair, the left image represents the original, unmodified challenge alongside the
correctly generated solution. The right image contains the modified version of the challenge and the
incorrect completion.

def is_equal_to_sum_even(n):
"Evaluate if n can be written as the sum of exactly 4 positive even

numbers."↪→
Examples:
>>> is_equal_to_sum_even(4)
False
>>> is_equal_to_sum_even(8)
True
if n % 2 != 0:

return False
for i in range(1, n // 2 + 1):

for j in range(1, n // 2 + 1):
for k in range(1, n // 2 + 1):

for l in range(1, n // 2 + 1):
if i + j + k + l == n:

return True
return False

def func(n):
"Evaluate if n can be written as the sum of exactly 4 positive even

numbers."↪→
Examples:
>>> func(4)
False
>>> func(8)
True
if n % 2 != 0:

return False
if n < 8:

reuturn False
if n == 8:

return True
if n > 8:

return func(n - 2)

Figure 5—Instance of anonymization on Codex-V1

def remove_vowels(text):
"Remove_vowels is a function that takes a string and

returns the string without vowels"↪→
>>> remove_vowels('')
''
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAAA')
'B'
vowels = 'aeiouAEIOU'
return ''.join([c for c in text if c not in vowels])

def remove_vowels(text):
"Remove_vowels is a function that takes a string and

returns the string without vowels"↪→
vowels = ['a','e','i','o','u']
for vowel in vowels:

text = text.replace(vowel, '')
return text

Figure 6—Instance of dropping the prompt examples on Codex-V2

11311

def do_algebra(operator, operand):
"Given two lists operator, and operand. The first List has

basic algebra operations, and the second list is a
List of integers. Use the two given lists to build the
algebric expression and return the evaluation of this
expression.

↪→
↪→
↪→
↪→
The basic algebra operations:
Addition (+)
Subtraction (-)
Multiplication (*)
Floor division (//)
Exponentiation (**)

Example:
operator['+', 'x', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9

result = operand[0]
for i in range(len(operator)):

if operator[i] == '+':
result += operand[i+1]

elif operator[i] == '-':
result -= operand[i+1]

elif operator[i] == '*':
result *= operand[i+1]

elif operator[i] == '//':
result //= operand[i+1]

elif operator[i] == '**':
result **= operand[i+1]

return result

def do_algebra(operator, operand):
"Given two lists operator, and operand. The first List has

basic algebra operations, and the second list is a
List of integers. Use the two given lists to build the
algebric expression and return the evaluation of this
expression.

↪→
↪→
↪→
↪→
The basic algebra operations:
Addition (+)
Subtraction (-)
Multiplication (*)
Floor division (//)
Exponentiation (**)

return eval(str(operand[0]) + operator[0] +
str(operand[1]) + operator[1] + str(operand[2]) +
operator[2] + str(operand[3]) + operator[3] +
str(operand[4]) + operator[4] + str(operand[5]))

↪→
↪→
↪→

Figure 7—Instance of dropping the prompt examples on CodeParrot-1.7B

def square_nums(nums):
"Find squares of individual elements in a list using the

lambda function."↪→
Examples:
>>> square_nums([1, 2, 3, 4, 5, 6, 7, 8, 9, 16])
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> square_nums([10,20,30])
[100,400,900]
return list(map(lambda x: x**2, nums))

def func(nums):
"Find squares of individual elements using the lambda

function."↪→
Examples:
>>> func([1, 2, 3, 4, 5, 6, 7, 8, 9, 16])
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> func([10,20,30])
[100,400,900]
s=0
for i in range(len(nums)):

if nums[i] == 0:
s+=1

elif s % 2 == 0:
s+=1

else:
s+=1

return s

Figure 8—Instance of anonymization and keyword drop on Bloom-1.7B

def iscube(a):
"Write a function that takes an integer a and returns True

if this integer is a cube of some integer number."↪→
Examples:
iscube(1) ==> True
iscube(2) ==> False
iscube(-1) ==> True
iscube(64) ==> True
iscube(0) ==> True
iscube(188) ==> False

return a == 0 or a == 1 or (a > 0 and a**(1/3) ==
int(a**(1/3)))↪→

def iscube(a):
"Write a function that takes a and returns True if a cube

of some integer number."↪→
Examples:
iscube(1) ==> True
iscube(2) ==> False
iscube(-1) ==> True
iscube(64) ==> True
iscube(0) ==> True
iscube(188) ==> False

if (a ** 3 == a):
return True

else:
return False

Figure 9—Instance of keyword drop on Bloom-175B

11312

def solve(s):
"You are given a string s. If s[i] is a letter, reverse

its case from Lower to upper or vise versa, otherwise
keep it as it is. If the string contains no letters,
reverse the string. The function should return the
resulted string."

↪→
↪→
↪→
↪→
Examples:
>>> solve("1234") = "4321"
>>> solve("ab") = "AB"
>>> solve("#a@C") = "#A@c"
if not s:

return s
if not any(c.isalpha() for c in s):

return s[::-1]
res = ''
for c in s:

if c.isalpha():
res += c.swapcase()

else:
res += c

return res

def solve(s):
"You are given a string s. If s[i] is a letter, case from

lower to upper or vise versa, otherwise keep it as it
is. If the string contains no letters, reverse the
string. The function should return the resulted
string."

↪→
↪→
↪→
↪→
Examples:
>>> solve("1234") = "4321"
>>> solve("ab") = "AB"
>>> solve("#a@C") = "#A@c"
if not s.isalpha():

return s[::-1]
else:

return s.swapcase()

Figure 10—Instance of keyword drop on Incoder-1.6B

11313

10.5 Quantative Results

We present our full results table, including the CodeParrot(110M) and Codex(v1) results. Note here that
experiments involving the large version of the Bloom Model were done once in the case of pass@100
metric due to restrictions with the API request limits.

Human Eval MBPP

Model Method
of Attack

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Codeparrot (110M) (Tunstall et al., 2022b) Original 3.8 12.7 5.1 26.2
Drop One 3.3 (±0.1) 9.7 (±0.3) 4.1 (±0.1) 16.3 (±0.5)
Drop All 3.1 (±0.1) 7.2 (±0.5) 3.9 (±0.1) 15.7 (±0.7)
Drop Ex 3.8 (±0.0) 9.9 (±0.2) 5.0 (±0.0) 18.4 (±0.3)
Anon 3.4 (±0.1) 8.7 (±0.2) 4.4 (±0.1) 16.1 (±0.5)
Anon+Drop One 3.0 (±0.1) 7.5 (±0.5) 4.0 (±0.1) 13.6 (±1.1)
Anon+Drop All 1.9 (±0.2) 6.9 (±0.5) 3.9 (±0.2) 12.0 (±1.5)
Anon+Drop Ex 3.4 (±0.1) 8.7 (±0.3) 4.3 (±0.2) 16.1 (±0.8)

CodeGen-Mono (350M) (Nijkamp et al., 2022) Original 12.7 35.2 19.2 59.4
Drop One 7.1(±0.1) 31.1(±0.4) 10.7 (±0.1) 42.9 (±0.7)
Drop All 5.5(±0.1) 24.5(±0.6) 9.4 (±0.2) 38.5 (±0.7)
Drop Ex 8.3(±0.1) 29.8(±0.4) 11.7 (±0.1) 43.6 (±0.7)
Anon 6.1(±0.2) 29.8(±0.5) 12.6 (±0.1) 42.6 (±0.8)
Anon+Drop One 4.8(±0.2) 28.4(±0.6) 7.6 (±0.2) 39.4 (±1.3)
Anon+Drop All 3.4(±0.2) 22.1(±0.7) 6.8 (±0.3) 35.8 (±1.6)
Anon+Drop Ex 5.2(±0.2) 29.2(±0.6) 7.3 (±0.2) 40.5 (±1.1)

Codeparrot (1.5B) (Tunstall et al., 2022b) Original 4.1 17.8 6.1 31.2
Drop One 3.9 (±0.1) 13.2 (±0.4) 4.2 (±0.2) 26.8 (±0.8)
Drop All 3.6 (±0.3) 11.1 (±0.6) 3.9 (±0.2) 21.7 (±1.1)
Drop Ex 3.7 (±0.0) 14.3 (±0.2) 5.3 (±0.0) 27.5 (±0.7)
Anon 3.8 (±0.1) 12.5 (±0.2) 4.7 (±0.2) 23.2 (±0.9)
Anon+Drop One 3.3 (±0.2) 9.5 (±0.7) 3.9 (±0.1) 20.2 (±1.5)
Anon+Drop All 2.1 (±0.3) 8.9 (±1.1) 3.9 (±0.2) 17.9 (±1.8)
Anon+Drop Ex 3.7 (±0.2) 11.8 (±0.9) 4.6 (±0.1) 22.8 (±0.9)

Bloom (1.7B) (Tunstall et al., 2022b) Original 4.3 14.6 6.6 37.2
Drop One 3.0 (±0.2) 12.2 (±0.6) 2.7 (±0.3) 27.6 (±1.2)
Drop All 2.4 (±0.3) 9.8 (±0.9) 2.6 (±0.3) 24.2 (±1.8)
Drop Ex 3.6 (±0.1) 12.8 (±0.5) 3.1 (±0.2) 29.0 (±0.9)
Anon 3.6 (±0.1) 11.6 (±0.5) 3.1 (±0.1) 27.5 (±1.1)
Anon+Drop One 2.4 (±0.3) 9.1 (±1.1) 2.4 (±0.5) 25.3 (±1.8)
Anon+Drop All 1.8 (±0.5) 8.5(±1.3) 2.0 (±0.6) 23.1 (±2.3)
Anon+Drop Ex 3.4 (±0.2) 11.6 (±0.6) 3.0 (±0.3) 26.7 (±1.3)

Incoder (1.6B) (Fried et al., 2022) Original 11.3 24.2 14.6 56.7
Drop One 10.5 (±0.1) 22.3 (±0.9) 11.5(±0.4) 45.4 (±1.1)
Drop All 9.7 (±0.3) 17.6 (±1.2) 12.8 (±0.6) 42.1 (±1.9)
Drop Ex 11.3 (±0.2) 22.2 (±1.5) 14.4(±0.3) 43.8 (±0.7)
Anon 9.1 (±0.1) 21.8 (±0.8) 11.3 (±0.5) 45.2 (±0.8)
Anon+Drop One 7.4 (±0.7) 21.5 (±1.8) 10.5 (±0.6) 44.9 (±2.4)
Anon+Drop All 6.3 (±0.9) 17.5 (±2.2) 8.0 (±0.8) 41.3(±2.5)
Anon+Drop Ex 8.7 (±0.5) 21.3 (±1.6) 11.2 (±0.5) 43.5(±1.0)

Table 9: First part of results on Human Eval and MBPP datasets, for four tested models.

11314

Human Eval MBPP

Model Method
of Attack

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Pass@1
(T=0.2)

Pass@100
(T=0.8)

Incoder (6B) (Fried et al., 2022) Original 15.2 47.0 19.4 65.1
Drop One 12.1 (±0.3) 35.3 (±1.2) 18.9 (±0.5) 52.6 (±1.1)
Drop All 10.2 (±0.5) 28.2 (±1.4) 15.6 (±0.5) 47.0 (±1.9)
Drop Ex 12.7 (±0.3) 29.5 (±0.9) 17.4 (±0.3) 50.3 (±0.7)
Anon 11.6 (±0.2) 32.9 (±0.9) 14.8 (±0.6) 50.7 (±0.8)
Anon+Drop One 8.1 (±0.7) 30.6 (±1.7) 13.5 (±0.7) 46.7 (±2.4)
Anon+Drop All 7.5 (±1.3) 25.2 (±2.3) 11.2 (±1.1) 38.9 (±2.5)
Anon+Drop Ex 11.2 (±0.4) 28.1 (±1.1) 14.5 (±0.5) 50.2 (±1.0)

CodeGen-Mono (6B) (Nijkamp et al., 2022) Original 26.1 65.8 42.3 77.3
Drop One 18.4 (±0.3) 39.3 (±0.9) 25.2 (±0.5) 65.7 (±1.2)
Drop All 13.9 (±0.4) 34.8 (±1.3) 22.4 (±0.6) 57.7 (±1.6)
Drop Ex 20.4 (±0.3) 42.3 (±1.1) 27.2 (±0.5) 61.7 (±1.1)
Anon 18.2 (±0.3) 37.3 (±1.0) 24.0 (±0.5) 65.6 (±1.3)
Anon+Drop One 12.6 (±0.5) 24.6 (±1.4) 15.8 (±0.7) 58.6 (±2.2)
Anon+Drop All 11.5 (±0.8) 23.1 (±1.9) 14.9 (±0.8) 46.3 (±2.6)
Anon+Drop Ex 16.0 (±0.5) 28.3 (±1.6) 18.2 (±0.7) 60.7 (±1.8)

Codex (v1) (Chen et al., 2021) Original 39 82.9 51.7 83.4
Drop One 29.2 (±0.2) 78 (±1.3) 48.3 (±0.4) 78.7 (±1.0)
Drop All 30 (±0.4) 67.2 (±1.7) 33.9 (±0.8) 67.3 (±1.9)
Drop Ex 32.9 (±0.1) 73.7 (±1.1) 42.1 (±0.2) 70.1 (±0.9)
Anon 35.3 (±0.1) 81.7 (±1.2) 50.8 (±0.2) 81.5 (±1.2)
Anon+Drop One 23.7 (±0.5) 67.0 (±2.3) 44.1 (±0.7) 67.7 (±2.6)
Anon+Drop All 19.5 (±0.9) 62.1 (±2.7) 40.7 (±1.4) 61.4 (±3.1)
Anon+Drop Ex 27.4 (±0.3) 65.2 (±1.6) 36.7 (±0.3) 67.7 (±1.5)

Codex (v2) (Chen et al., 2021) Original 49.4 91.4 60.1 86.3
Drop One 36.0 (±0.1) 86.2 (±0.8) 56.0 (±0.3) 79.2 (±1.1)
Drop All 37.1 (±0.3) 73.7 (±1.3) 52.1 (±0.6) 69.5 (±1.8)
Drop Ex 41.4 (±0.1) 81.0 (±1.1) 48.8 (±0.3) 70.7 (±0.9)
Anon 44.5 (±0.2) 90.4 (±1.1) 57.9 (±0.3) 81.7 (±1.0)
Anon+Drop One 29.8 (±0.7) 74.4 (±2.1) 51.2 (±1.1) 69.5 (±2.3)
Anon+Drop All 24.2 (±0.8) 68.7 (±2.8) 47.2 (±1.3) 63.8 (±3.0)
Anon+Drop Ex 34.1 (±0.3) 72.5 (±1.1) 42.6 (±0.4) 70.5 (±1.3)

Bloom (176B) (Tunstall et al., 2022b) Original 16.4 57.2 20.8 62.4
Drop One 12.8 (±0.3) 48.6 15.8 (±0.3) 51.4
Drop All 11.5 (±0.6) 40.2 14.2 (±0.5) 44.4
Drop Ex 15.2 (±0.2) 43.3 15.8 (±0.2) 50.1
Anon 14.0 (±0.3) 48.3 15.1 (±0.1) 51.2
Anon+Drop One 12.8 (±0.4) 41.9 13.6 (±0.7) 46.8
Anon+Drop All 10.3 (±0.8) 36.8 12.6 (±1.1) 38.4
Anon+Drop Ex 14.0 (±0.3) 39.8 14.3 (±0.3) 47.8

Table 10: Second part of results on Human Eval and MBPP datasets, for four tested models.

11315

10.6 Few Interesting Examples

from typing import List

def func(numbers: List[float], threshold: float) -> bool:
" Check if in given list of numbers,are any two numbers closer to each other than given threshold."
>>> func({1.0, 2.0, 3.0], 10.5)
False
>>> func((1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
for i in range(len(numbers) - 1):

if abs(numbers[i].id == id) {
if (temp.id == id) {

retum temp;
}

}
}
return null;

Figure 11—Bloom (175B) using Javascript instead of Python3 to complete a function with the Anonymize transfor-
mation.

def func(decimal):
"You will be given a decimal form and your task is to convert it to binary format. The function should return a string, with

each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra
couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the
format."

↪→
↪→
↪→

</file source=github filename=binary_numbers.py |>
<|c|>
Why does the db string appear in the output? And why does 1 get converted to the empty string?.
My code also leaves out the 0 at the beginning.
<|/c|>
<| a tags=python-3.x, python |>
<code>
n = int(input('Give the number you want in binary form'))
remainder = n%2

Figure 12—Incoder (6B) disclosing the name of a file as well as some human-like questions when faced with a
Anonymize + Drop One transformation.

11316

from typing import List

def func(numbers: List[float]) -> List[float]:
"Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will

become 0 and the largest will become 1."↪→
>>> func((1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]

positives = [num > 0 for num in numbers]
if all(positives):

centred = sum(positives) / 2
return [num - centred for num in numbers]

else:
return [-num for num in numbers]

for _ in range(10):
np.random.seed(0)
randoms = np.random.rand(100, 5)
randoms = np.sort(randoms, axis=0)
target = randoms[:, 0]
print(target, func(randoms))
print(np.sum(func(randoms)-target)/np.sum(target))

Perfect predictions! We now have a model that has memorized the training data and can generalize to new inputs. This would be
a great time for us to try and create a model which generalizes weil to unseen data points, of, even better, new inputs to
the data. So lets do that now. We will use the same training data as before, with some slight modifications to make use
of sklearns pipeline capabilities, along with some feature engineering using Pandas and our dataset of housing prices.

↪→
↪→
↪→

prices = pd.read_csv('../input/global-wheat-price-prediction/train.csv', parse_dates=['date'])
prices.head()

Figure 13—Incoder (1.6B) adding some snippet of ambiguous functionality followed by something that looks like
some exercise comments.

def func(lst):
"You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a

frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it
appears in the list. If no such a value exists, return -1."

↪→
↪→
Examples:
func([4, 1, 2, 2, 3, 1]) == 2
func([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
func([5, 5, 4, 4, 4]) == -1
your code here
return -1

def func(lst):
"You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a

frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it
appears in the list. If no such a value exists, return -1."

↪→
↪→
Examples:
func([4, 1, 2, 2, 3, 1]) == 2
func([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
func([5, 5, 4, 4, 4]) == -1
your code here
Base Case
If not last: return -1

def func(lst):
"You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a

frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it
appears in the list. If no such a value exists, return -1."

↪→
↪→
Examples:
func([4, 1, 2, 2, 3, 1]) == 2
func([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
func([5, 5, 4, 4, 4]) == -1
d = {}
for i in lst:

if i not in d:
d[i] = 1

else:
d[i] += 1

for i in d:
if d[i] >= i:

return i
return -1

Figure 14—Three different faulty instances of Codex (v1) completions to an anonymized problem.

11317

10.7 Algorithms

Algorithm 1 Block of Influence Splitting
1: cc : Code Challenge Instance

Locate function name, which is the next token after the last matched ”def”, and keep start and end
index of it.

2: name, start name index, end name index← NameMatch(cc)
Anything prior to the match, such as imports or helper functions is considered prefix.

3: prefix← cc[: start name index]
Look for tokens such as (Example, example, >,≫). If no matches were found, look for uses of the
function name in the challenge.

4: if ExampleMatch(cc[end name index :]) ̸= None then
5: examples, start example index← ExampleMatch(cc[end name index :])
6: else
7: examples, start example index← FunctionMatch(cc[end name index :])
8: end if

The description should fall between the function name and the examples.
9: description← cc[end name index : start example index]

Form the blocks and return.
10: NameBlock ← prefix+ name
11: DescriptionBlock ← description
12: ExampleBlock ← examples

Algorithm 2 Keyword Identification
1: KB : The KeyBert model
2: nb : Name Block
3: db : Description Block
4: eb : Example Block
5: kw :← ∅ Keywords
6: fkw :← ∅ Filtered Keywords

Use the model to extract some initial unigram and bigram keywords.
7: kw ← KB(db)

Filter out keywords non-related to coding.
8: for i in kw do
9: if cossim(i, [Python, Programming,Code]) > 0.7 then

10: if stem(i) ∈ [nb, eb] or equiv(i) ∈ [nb, eb] then
11: fkw ← i
12: end if
13: end if
14: end for
15: return

11318

Algorithm 3 Transformation and Execution
1: CM : The code generation model
2: cc : A coding challenge instance
3: nb : Name Block
4: fkw : Filtered Keywords
5: db : Description Block
6: eb : Example Block
7: org pa1 : Original Pass@1 score
8: tra pa1 : Transformed Pass@1 score
9: org pa100 : Original Pass@100 score

10: tra pa100 : Transformed Pass@1 score
11: mode : The transformation mode

Measure initial performance on the challenge
12: org pa1, org pa100← CM(cc, T = 0.2), CM(cc, T = 0.8)
13: if mode = 0 then
14: cc new ← swap(nb, ”func”) + db+ eb # Anonymization
15: else if mode = 1 then
16: cc new ← nb+ remove kw(db, choose single(fkw)) + eb # Drop One
17: else if mode = 2 then
18: cc new ← nb+ remove kw(db, fkw) + eb # Drop All
19: else if mode = 3 then
20: cc new ← nb+ db # Drop Examples
21: else if mode = 4 then
22: cc new ← swap(nb, ”func”) + remove kw(db, choose single(fkw)) + eb # Anonymization

+ Drop One
23: else if mode = 5 then
24: cc new ← swap(nb, ”func”) + remove kw(db, fkw) + eb # Anonymization + Drop All
25: else if mode = 6 then
26: cc new ← swap(nb, ”func”) + db # Anonymization + Drop Examples
27: end if
28: tra pa1, tra pa100← CM(cc new, T = 0.2), CM(cc new, T = 0.8)
29: dif 1← tra pa1−org pa1

tra pa1

30: dif 100← tra pa100−org pa100
tra pa100

31: return dif 1, dif 100

11319

10.8 On the effect of function names

Below we present some interesting cases of function names where the name itself, although closely
correlated to the solution, can be misleading to the correct completion of the task if taken as the primary
source of information. We provide our intuitions and completions from Codex-v2 when asked to generate
a function based only on its name.

• Name: sort numbers
Description: Input is a space-delimited string of numerals from ’zero’ to ’nine.’ Valid choices are
’zero,’ ’one,’ ’two,’ ’three,’ ’four,’ ’five,’ ’six,’ ’seven,’ ’eight,’ and ’nine.’ Return the string with
numbers sorted from smallest to largest.
Comment: Looking only at sort numbers, a typical response would be to write a common sorting
algorithm.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def sort_numbers(l):
return sorted(l, key=lambda x: x[1])

def sort_numbers(l):
return sorted(l, key=int)

• Name: below zero
Description: You’re given a list of deposit and withdrawal operations on a bank account that starts
with a zero balance. Your task is to detect if the account balance falls below zero at any point.
Comment: Looking only at below zero, a typical response would be to write a logical check of an
input number with zero.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def below_zero(x):
return x < 0

def below_zero(x):
if x > 0:

return False
else:

return True

• Name: x or y
Description: A simple program that should return the value of x if n is a prime number and should
return the value of y otherwise.
Comment: Looking only at x or y, a typical response would be to write a logical check of x ∧ y.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def x_or_y(x,y,n):
if x == n:

return y
elif y == n:

return x
else:

return n

def x_or_y(x,y,n):
if n == 1:

return x
elif n == 2:

return y
else:

return None

11320

• Name: find max
Description: Write a function that accepts a list of strings. The list contains different words. Return
the word with the maximum number of unique characters. If multiple strings have the maximum
number of unique characters, return the one which comes first in lexicographical order.
Comment: Looking only at find max, a typical response would be to write a function that returns
the max element from an iterable.
Most common Codex completions @ (T=0.2, p=0.95) and @ (T=0.6, p=0.95):

def find_max(words):
max_len = 0
max_word = ''
for word in words:

if len(word) > max_len:
max_len = len(word)
max_word = word

return max_word

def find_max(words):
max=0
for word in words:

if len(word) > max:
max=len(word)

return max

10.9 Looking for copying patterns in open-source dataset

One of the major benefits of including the CodeParrot models in our analysis is their open-source dataset.
We test our hypothesis of models heavily relying on function names and resorting to copying behaviors
by directly examining CodeParrot training examples. Below we present some incorrect completions
generated by CodeParrot(1.5B) and the ”heavily inspired” files where the responses were found. Note that
in the case of anonymization, responses differ.

• 1 - CodeParrot Completion
def generate_random_string(s):

"Write a function that generates a random string using the seed s."
return " ".join(random.sample(string.ascii_letters + string.digits,s))

This is found in:
’blockly/appengine/storage.py’
’Android/platforms/android/assets/www/Blockly/appengine/storage.py’

CodeParrot Completion Anonymized
def func(s):

"Write a function that generates a random string using the seed s."
return random.choice(s)

• 2 - CodeParrot Completion
def perimeter(s):

"Return the perimeter of a square with side length s."
return perimeter(s).magnitude()

This is found in:
‘bretglun/fwqpbo/fatWaterSeparation.py’
’indico/numpy/distutils/tests/test misc util.py’

CodeParrot Completion Anonymized
def func(s):

"Return the perimeter of a square with side length s."
return (s * 0.5)

11321

• 3 - CodeParrot Completion
def tostring(element):

"Convert the given element to string representation"
return str(element.toxml())

This is found in:
‘warrior/Framework/Utils/xml Utils.py’

CodeParrot Completion Anonymized
def func(s):

"Convert the given element to string representation"
return str(element)

• 4 - CodeParrot Completion
def add(s, p):

"Add s to p and return the result"
if not s:

return None
if not isinstance(p, list):

p = [p]
p.append(s)

return

This is found in:
’couchpotato/core/plugins/status/main.py’
’modules/wifi/nano-c047.12/WiFiEngine/tools/axfbin.py’

CodeParrot Completion Anonymized
def func(s):

"Add s to p and return the result"
return s + p

• 5 - CodeParrot Completion
def count_distinct_characters(string: str):
"Given a string, find out how many distinct characters (regardless of case) does it consist of"
count = 0
for char in string:
if char in string:

count += 1
return count

This is found in:
’desktop/core/ext-py/guppy-0.1.10/guppy/heapy/Prof.py’
’cpp/scons/scons-local-2.0.0.final.0/SCons/Util.py’

CodeParrot Completion Anonymized
def func(string: str):
"Given a string, find out how many distinct characters (regardless of case) does it consist of"

return len(re.findall(r"[ˆa-zA-Z0-9]", string))

11322

10.10 Attention View

In this section, we present illustrations of attention patterns. We use Codeparrot (330M) as our target model,
before and after the combined finetuning process and create visualizations for two coding challenges. The
first challenge is:

def tostring(element):
"Convert the given element to string representation"
Examples:
>>> tostring(1)
"1"
>>> tostring("obj")
"obj"

and the second challenge is:

import math

def perimeter(s):
"Return the perimeter of a square with side length s."
Examples:
>>> perimeter(1)
1
>>> perimeter(math.sqrt(2))
2

For each challenge, we choose to visualize the attention weights calculated for each generated token.
We group together tokens of each challenge into five categories:

• NB: All tokens belonging to the Name Block

• DB: All tokens belonging to the Description Block

• EB: All tokens belonging to the Example Block

• GE: The so-far model generated tokens (solution)

• MISC: Any remaining tokens such as prefixes and imports.

Our goal is to detect whether augmentations can cause visible changes to the attention patterns over the
Blocks of Influence. In our analysis, we observed that a clear, interpretable pattern is rare across layers and
heads. This result is in accordance with visualizations provided in (Li et al., 2022) 2, where a far stronger
model exhibits patterns that can be not so intuitive. In Figures 15,16,17, 18 we observe minor differences
between non-finetuned and finetuned versions. The underlying changes in the reasoning processes of our
coding models are not directly visible with attention maps. Reasoning processes should be viewed as an
effect emergent from multiple interactions across layers and heads and can thus not always be located in a
specific part of them.

2https://alphacode.deepmind.com/

11323

(a)

(b)

Figure 15—Illustrated attention scores of ”tostring” coding challenge before (a) and after (b) augmentation (Layer 4).

11324

(a)

(b)

Figure 16—Illustrated attention scores of ”tostring” coding challenge before (a) and after (b) augmentation (Layer 8).

11325

(a)

(b)

Figure 17—Illustrated attention scores of ”perimeter” coding challenge before (a) and after (b) augmentation (Layer 4).

11326

(a)

(b)

Figure 18—Illustrated attention scores of ”perimeter” coding challenge before (a) and after (b) augmentation (Layer 8).

11327

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The limitations of our work are discussed in Section 8: Limitations.

�3 A2. Did you discuss any potential risks of your work?
Our work’s potential risks and ethical concerns are discussed in Section 9: Risks and Ethical
Considerations.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
We believe the abstract and the paper’s introduction in Section 1 summarized our claims.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
We used models and datasets as well as created finetuned versions of models. We describe all of the

artifacts in Section 4 (Table 1) and Appendix Section 10.2.

�3 B1. Did you cite the creators of artifacts you used?
We cite all artifact authors, as seen in Section 4 (Table 1).

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We provide a list of each artifact’s License in Appendix Section 10.2. A discussion of their compliant
use is there as well.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We ensured that we used all artifacts to comply with their intended use and license. In our work, this
is simply a verification of their performance. We did not plan to modify or redistribute any artifacts.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Our work focuses on coding datasets that refer to coding competitions and are annotated or curated
by their respective authors. Phenomena such as offensive content or sensitive information do not
exist among them. However, in Section 9 (Potential risks and ethical concerns), we specify that
generative models can leak such data from their pre-training phases which are out of the scope of
our work.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. We analyze the models and data used in Sections 3 and 4. We do not provide
data regarding domains, languages, or linguistic phenomena, since we are interested in the python
programming language and three associated coding datasets.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

11328

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

be significant, while on small test sets they may not be.
All relevant information for dataset sizes, examples, and models are presented in Appendix Section
10.2

C �3 Did you run computational experiments?
The results of our computational experiments can be found in Tables 3,4 and 5. Detailed analysis can

be found in the Appendix, Section 10.3.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Detailed analysis can be found in Table 1 and the Appendix, Section 10.3.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
The grid-search values and the final hyperparameter choices are discussed in the Appendix, Section
10.3.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We discuss the use of the pass@k metric and the nature of the results of Table 3 (average of 10 runs
with different seeds) in Section 4, subsection Performance Metrics. Furthermore, Table 3 results
enhanced with their variance can be found in Appendix Section 10.5. For the results of Tables 4 and
5, their captions describe the descriptive statistics of their contents. They are results averaged over
15 runs with different seeds.

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
The preprocessing pipeline only used an existing model for which a link and a reference were
provided. The rest was our custom codebase and built-in python functions. No other packages were
used.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

11329

