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Abstract

Membership Inference attacks (MIAs) aim to
predict whether a data sample was present in
the training data of a machine learning model
or not, and are widely used for assessing the
privacy risks of language models. Most exist-
ing attacks rely on the observation that models
tend to assign higher probabilities to their train-
ing samples than non-training points. However,
simple thresholding of the model score in isola-
tion tends to lead to high false-positive rates as
it does not account for the intrinsic complexity
of a sample. Recent work has demonstrated that
reference-based attacks which compare model
scores to those obtained from a reference model
trained on similar data can substantially im-
prove the performance of MIAs. However, in
order to train reference models, attacks of this
kind make the strong and arguably unrealis-
tic assumption that an adversary has access to
samples closely resembling the original train-
ing data. Therefore, we investigate their perfor-
mance in more realistic scenarios and find that
they are highly fragile in relation to the data dis-
tribution used to train reference models. To in-
vestigate whether this fragility provides a layer
of safety, we propose and evaluate neighbour-
hood attacks, which compare model scores for
a given sample to scores of synthetically gen-
erated neighbour texts and therefore eliminate
the need for access to the training data distribu-
tion. We show that, in addition to being com-
petitive with reference-based attacks that have
perfect knowledge about the training data dis-
tribution, our attack clearly outperforms exist-
ing reference-free attacks as well as reference-
based attacks with imperfect knowledge, which
demonstrates the need for a reevaluation of the
threat model of adversarial attacks.

1 Introduction

The public release and deployment of machine
learning models trained on potentially sensitive
user data introduces a variety of privacy risks:
While embedding models have been shown to

leak personal attributes of their data (Song and
Raghunathan, 2020), generative language models
are capable of generating verbatim repetitions of
their training data and therefore exposing sensitive
strings such as names, phone numbers or email-
addresses (Carlini et al., 2021b). Another source
of risk arises from membership inference attacks
(MIAs) (Shokri et al., 2016), which enable adver-
saries to classify whether a given data sample was
present in a target model’s training data or not. Due
to their simplicity and the fact that MIAs are an
important component of more sophisticated attacks
such as extraction attacks (Carlini et al., 2021b),
they have become one of the most widely used tools
to evaluate data leakage and empirically study the
privacy of machine learning models (Murakonda
and Shokri, 2020; Song and Marn, 2020).

Typically, membership inference attacks exploit
models’ tendency to overfit their training data and
therefore exhibit lower loss values for training
members (Yeom et al., 2018; Sablayrolles et al.,
2019). A highly simple and commonly used base-
line attack is therefore the LOSS attack (Yeom
et al., 2018), which classifies samples as training
members if their loss values are below a certain
threshold. While attacks of this kind do generally
reap high accuracies, Carlini et al. (2021a) point
out a significant flaw: Good accuracies for attacks
of this kind are primarily a result of their ability
to identify non-members rather than training data
members, which does arguably not pose important
privacy risks. This shortcoming can be attributed
to the fact that certain samples such as repetitive
or very simple short sentences are naturally as-
signed higher probabilities than others (Fan et al.,
2018; Holtzman et al., 2020), and the influence
of this aspect on the obtained model score largely
outweighs the influence of a model’s tendency to
overfit its training samples (Carlini et al., 2021a).
To account for this, previous work has introduced
the idea of difficulty calibration mechanisms (Long
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Figure 1: Overview of our attack: Given a target sample x, we use a pretrained masked language model to generate
highly similar neighbour sentences through word replacements. Consequently, we compare our neighbours’ losses
and those of the original sample under the target model by computing their difference. As our neighbours are highly
similar to the target sequence, we expect their losses to be approximately equal to the target model and only to be
lower if the target sequence was a sample of the model’s training data. In this case, the difference should be below
our threshold value γ.

et al., 2018; Watson et al., 2022), which aim to
quantify the intrinsic complexity of a data sample
(i.e., how much of an outlier the given sample is un-
der the probability distribution of the target model)
and subsequently use this value to regularize model
scores before comparing them to a threshold value.

In practice, difficulty calibration is mostly re-
alized through Likelihood Ratio Attacks (LiRA),
which measure the difficulty of a target point by
feeding it to reference models that help provide a
perspective into how likely that target point is in
the given domain (Ye et al., 2022; Carlini et al.,
2021a; Watson et al., 2022; Mireshghallah et al.,
2022a,b). In order to train such reference models,
LiRAs assume that an adversary has knowledge
about the distribution of the target model’s training
data and access to a sufficient amount of samples
from it. We argue that this is a highly optimistic
and in many cases unrealistic assumption: as also
pointed out by Tramèr et al. (2022), in applications
in which we care about privacy and protecting our
models from leaking data (e.g. in the medical do-
main), high-quality, public in-domain data may not
be available, which renders reference-based attacks
ineffective. Therefore, we aim to design an attack
which does not require any additional data: For the
design of our proposed neighborhood attack, we
build on the intuition of using references to help
us infer membership, but instead of using refer-
ence models, we use neighboring samples, which
are textual samples crafted through data augmenta-
tions such as word replacements to be non-training
members that are as similar as possible to the tar-

get point and therefore practically interchangeable
with it in almost any context. With the intuition
that neighbors should be assigned equal probabil-
ities as the original sample under any plausible
textual probability distribution, we then compare
the model scores of all these neighboring points to
that of the target point and classify its membership
based on their difference. Similar to LiRAs, we hy-
pothesize that if the model score of the target data
is similar to the crafted neighbors, then they are all
plausible points from the distribution and the target
point is not a member of the training set. However,
if a sample is much more likely under the target
model’s distribution than its neighbors, we infer
that this could only be a result of overfitting and
therefore the sample must be a part of the model’s
training data.

We conduct extensive experiments measuring
the performance of our proposed neighborhood
attack, and particularly compare it to reference-
based attacks with various different assumptions
about knowledge of the target distribution and ac-
cess to additional data. Concretely, amongst other
experiments, we simulate real-world reference-
based attacks by training reference models on ex-
ternal datasets from the same domain as the target
model’s training data. We find that neighbourhood
attacks outperform LiRAs with more realistic as-
sumptions about the quality of accessible data by
up to 100%, and even show competitive perfor-
mance when we assume that an attacker has perfect
knowledge about the target distribution and access
to a large amount of high-quality samples from it.
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2 Membership Inference Attacks via
Neighbourhood Comparison

In this section, we provide a detailed description of
our attack, starting with the general idea of com-
paring neighbouring samples and following with
a technical description of how to generate such
neighbors.

2.1 General Idea

We follow the commonly used setup of member-
ship inference attacks in which the adversary has
grey-box access to a machine learning model fθ
trained on an unknown dataset Dtrain, meaning
that they can obtain confidence scores and there-
fore loss values from fθ, but no additional infor-
mation such as model weights or gradients. The
adversary’s goal is to learn an attack function
Afθ : X → {0, 1} , which determines for each
x from the universe of textual samples X whether
x ∈ Dtrain or x ̸∈ Dtrain. As mentioned in the pre-
vious section, the LOSS attack (Yeom et al., 2018),
one of the most simple forms of membership in-
ference attacks, classifies samples by thresholding
their loss scores, so that the membership decision
rule is:

Afθ(x) = 1[L(fθ, x) < γ]. (1)

More recent attacks follow a similar setup, but
perform difficulty calibration to additionally ac-
count for the intrinsic complexity of the sample
x under the target distribution and adjust its loss
value accordingly. Concretely, given a function
d : X → R assigning difficulty scores to data
samples, we can extend the the decision rule to

Afθ(x) = 1[L(fθ, x)− d(x) < γ]. (2)

Likelihood Ratio Attacks (LiRAs) (Ye et al.,
2022), the currently most widely used form of
membership inference attacks, use a sample’s loss
score obtained from some reference model fϕ as
a difficulty score, so that d(x) = L(fϕ, x) . How-
ever, this makes the suitability of the difficulty
score function dependent on the quality of refer-
ence models and therefore the access to data from
the training distribution. We circumvent this by
designing a different difficulty calibration function
depending on synthetically crafted neighbors.

Formally, for a given x, we aim to produce
natural adjacent samples, or a set of n neighbors

{x̃1, ..., x̃n}, which slightly differ from x and are
not part of the target model’s training data, but
are approximately equally likely to appear in the
general distribution of textual data, and therefore
offer a meaningful comparison. Given our set of
neighbors, we calibrate the loss score of x under
the target model by subtracting the average loss of
its neighbors from it, resulting in a new decision
rule:

Afθ(x) = 1

[(
L(fθ, x)−

n∑

i=1

L(fθ, x̃i)
n

)
< γ

]
.

(3)
The interpretation of this decision rule is straight-

forward: Neighbors crafted through minimal
changes that fully preserve the semantics and gram-
mar of a given sample should in theory be inter-
changeable with the original sentence and therefore
be assigned highly similar likelihoods under any
textual probability distribution. Assuming that our
neighbors were not present in the training data of
the target model, we can therefore use the model
score assigned to them as a proxy for what the orig-
inal sample’s loss should be if it was not present
in the training data. The target sample’s loss value
being substantially lower than the neighbors’ losses
could therefore only be a result of overfitting and
therefore the target sample being a training member.
In this case, we expect the difference in Equation 3
to be below our threshold value γ

2.2 Obtaining Neighbour Samples
In the previous section, for a given text x, we
assumed access to a set of adjacent samples
{x̃1, ..., x̃n}. In this section we describe how those
samples are generated. As it is highly important to
consider neighbours that are approximately equally
complex, it is important to mention that beyond
the semantics of x, we should also preserve struc-
ture and syntax, and can therefore not simply con-
sider standard textual style transfer or paraphras-
ing models. Instead, we opt for very simple word
replacements that preserve semantics and fit the
context of the original word well. For obtaining
these replacements, we adopt the framework pro-
posed by Zhou et al. (2019), who propose the use
of transformer-based (Vaswani et al., 2017) masked
language models (MLMs) such as BERT (Devlin
et al., 2019) for lexical substitutions: Concretely,
given a text x := (w(1), ..., w(L)) consisting of L
tokens, the probability pθ(w̃ = w(i)|x) of token
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w̃ as the word in position i can be obtained from
the MLM’s probability distribution p(V(i)|x) over
our token vocabulary V at position i. As we do not
want to consider the influence of the probability
of the original token on the token’s suitability as a
replacement when comparing it to other candidates,
we normalize the probability over all probabilities
except that of the original token. So, if ŵ was the
original token at position i, our suitability score for
w̃ as a replacement is

pswap(ŵ
(i), w̃(i)) =

pθ(w̃ = w(i)|x)
1− pθ(ŵ = w(i)|x) . (4)

In practice, simply masking the token which we
want to replace will lead to our model completely
neglecting the meaning of the original word when
predicting alternative tokens and therefore poten-
tially change the semantics of the original sentence
– for instance, for the given sample "The movie
was great", the probability distribution for the last
token obtained from "The movie was [MASK]"
might assign high scores to negative words such
as "bad", which are clearly not semantically suit-
able replacements. To counteract this, Zhou et al.
(2019) propose to keep the original token in the
input text, but to add strong dropout to the input
embedding layer at position i before feeding it into
the transformer to obtain replacement candidates
for w(i). We adopt this technique, and therefore
obtain a procedure which allows us to obtain n
suitable neighbors with m word replacements us-
ing merely an off-the-shelf model that does not
require any adaptation to the target domain. The
pseudocode is outlined in Algorithm 1.

Algorithm 1: Neighbourhood Generation

Input : Text x = (w(1), ..., w(L)), n, m
Output: Neighbours {x̃1, ..., x̃n} with m

word replacements each
for i ∈ {1, . . . , L} do

Get embeddings (ϕ(w(1)), .., ϕ(w(L)).
Add dropout: ϕ(w(i)) = drop(ϕ(w(i))).
Obtain p(V(i)|x) from BERT.
Compute pswap(w

(i), w̃(i))∀w̃ ∈ V .

For all swaps (w(i1), w̃(i1))...(w(im), w̃(im))
with ik ̸= il for i ̸= l, compute joint
suitability

∑m
i=1 pswap(w

(i1), w̃(i1)) and
return n highest

3 Experimental Setup

We evaluate the performance of our attack as well
as reference-free and reference-based baseline at-
tacks against large autoregressive models trained
with the classical language modeling objective. Par-
ticularly, we use the base version of GPT-2 (Rad-
ford et al., 2019) as our target model.

3.1 Datasets
We perform experiments on three datasets, par-
ticularly news article summaries obtained from a
subset of the AG News corpus1 containing four
news categories ("World", "Sports", "Business",
"Science & Technology"), tweets from the Sen-
timent140 dataset (Go et al., 2009) and excerpts
from wikipedia articles from Wikitext-103 (Merity
et al., 2017). Both datasets are divided into two
disjunct subsets of equal size: one of these sub-
sets serves as training data for the target model and
therefore consists of positive examples for the mem-
bership classification task. Subset two is not used
for training, but its samples are used as negative
examples for the classification task. The subsets
contain 60,000, 150,000 and 100,000 samples for
AG News, Twitter and Wikitext, respectively, lead-
ing to a total size of 120,000, 300,000 and 200,000
samples. For all corpora, we also keep an addi-
tional third subset that we can use to train reference
models for reference-based attacks.

3.2 Baselines
To compare the performance of our attack, we con-
sider various baselines: As the standard method
for reference-free attacks, we choose the LOSS At-
tack proposed by Yeom et al. (2018), which classi-
fies samples as training members or non-members
based on whether their loss is above or below a
certain threshold (see Equation 1). For reference-
based attacks, we follow recent implementations
(Mireshghallah et al., 2022a,b; Watson et al., 2022)
and use reference data to train a single reference
model of the same architecture as the target model.
Subsequently, we measure whether the likelihood
of a sample under the target model divided by its
likelihood under the reference model crosses a cer-
tain threshold.

Training Data for Reference Models As dis-
cussed in previous sections, we would like to eval-
uate reference-based attacks with more realistic

1http://groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html
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assumptions about access to the training data dis-
tribution. Therefore, we use multiple reference
models trained on different datasets: As our Base
Reference Model, we consider the pretrained, but
not fine-tuned version of GPT-2. Given the large
pretraining corpus of this model, it should serve
as a good estimator of the general complexity of
textual samples and has also been successfully used
for previous implementations of reference-based at-
tacks (Mireshghallah et al., 2022b). Similar to our
neighbourhood attack, this reference model does
not require an attacker to have any additional data
or knowledge about the training data distribution.

To train more powerful, but still realistic ref-
erence models, which we henceforth refer to as
Candidate Reference Models, we use data that
is in general similar to the target model’s training
data, but slightly deviates with regard to topics or
artifacts that are the result of the data collection
procedure. Concretely, we perform this experi-
ment for both our AG News and Twitter corpora:
For the former, we use article summaries from re-
maining news categories present in the AG News
corpus ("U.S.", "Europe", "Music Feeds", "Health",
"Software and Development", "Entertainment") as
well as the NewsCatcher dataset2 containing article
summaries for eight categories that highly over-
lap with AG News ("Business", "Entertainment",
"Health", "Nation", "Science", "Sports", "Technol-
ogy", "World"). For Twitter, we use a depression
detection dataset for mental health support from
tweets 3 as well as tweet data annotated for offen-
sive language 4. As it was highly difficult to find
data for reference models, it was not always pos-
sible to match the amount of training samples of
the target model. The number of samples present
in each dataset can be found in Table 1.

As our most powerful reference model, hence-
forth referred to as Oracle Reference Model, we
use models trained on the same corpora, but dif-
ferent subsets as the target models. This setup as-
sumes that an attacker has perfect knowledge about
the training data distribution of the target model
and high quality samples.

2https://github.com/kotartemiy/
topic-labeled-news-dataset

3https://www.kaggle.com/datasets/
infamouscoder/mental-health-social-media

4https://www.kaggle.com/datasets/mrmorj/
hate-speech-and-offensive-language-dataset

Dataset #Samples

AG News (Other Categories) 60,000
NewsCatcher 60,000
AG News Oracle Data 60,000

Twitter Mental Health 20,000
Twitter Offensive Language 25,000
Twitter Oracle Data 150,000

Wikipedia Oracle Data 100,000

Table 1: Number of samples in the reference model
training data. Target models for News, Twitter and
Wikipedia were trained on 60,000, 150,000 and 100,000
samples, respectively.

3.3 Implementation Details
We obtain and fine-tune all pretrained models using
the Huggingface transformers library (Wolf et al.,
2020) and PyTorch (Paszke et al., 2019). As target
models, we fine-tune the pretrained 117M parame-
ter version of GPT-2, which originally has a vali-
dation perplexity of 56.8 and 200.3 on AG News
and Twitter data, respectively, up to validation set
perplexities of 30.0 and 84.7. In our initial imple-
mentation of our neighbourhood attack, we obtain
the 100 most likely neighbour samples using one
word replacement only from the pretrained 110M
parameter version of BERT. We apply a dropout
of p = 0.7 to the embedding of the token we
want to replace. For evaluating LiRA baselines,
we train each reference model on its respective
training dataset over multiple epochs, and choose
the best performing reference model w.r.t attack
performance. Following Carlini et al. (2021a), we
evaluate our attack’s precision for predetermined
low false positive rate values such as 1% or 0.01%.
We implement this evaluation scheme by adjust-
ing our threshold γ to meet this requirement and
subsequently measure the attack’s precision for the
corresponding γ. All models have been deployed
on single GeForce RTX 2080 and Tesla K40 GPUs.

4 Results

In this section, we report our main results and per-
form additional experiments investigating the im-
pact of reference model performance on the suc-
cess of reference-based attacks as well as several
ablation studies. Following (Carlini et al., 2021a),
we report attack performances in terms of their
true positive rates (TPR) under very low false posi-
tive rates (FPR) by adjusting the threshold value γ.
Concretely, we choose 1%, 0.1% and 0.01% as our
target FPR values.
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News Twitter Wikipedia

False Positive Rate 1% 0.1% 0.01% 1% 0.1% 0.01% 1% 0.1% 0.01%

Likelihood Ratio Attacks:
Base Reference Model 4.24% 0.91% 0.16% 5.66% 0.98% 0.22% 1.21% 0.12% 0.01%
Candidate Reference Model 1 4.91% 0.95% 0.15% 6.49% 1.10% 0.24%
Candidate Reference Model 2 4.76% 0.92% 0.15% 6.61% 1.19% 0.25%
Oracle Reference Model* 18.90% 3.76% 0.16% 13.90% 1.59% 0.28% 11.70% 3.70% 0.12%

Reference-Free Attacks:
LOSS Attack 3.50% 0.10% 0.01% 2.08% 0.11% 0.02% 1.06% 0.11% 0.01%
Neighbour Attack (Ours) 8.29% 1.73% 0.29% 7.35% 1.43% 0.28% 2.32% 0.27% 0.10%

Table 2: True positive rates of various attacks for low false positive rates of 1%, 0.1%, and 0.01%. Candidate
Reference Model 1 refers to reference models trained on data from other AG News categories and our Twitter
mental health dataset, Candidate Reference Model 2 refers to reference models trained on NewsCatcher and the
offensive tweet classification dataset. *As reference attacks trained on oracle datasets represent a rather unrealistic
scenario with perfect assumptions, we compare our results with other baselines with more realistic assumptions
when highlighting best results as bold.

4.1 Main Results

Our results can be found in Table 2 and 3, with the
former showing our attack performance in terms of
true positive rates under low false positive rates and
the latter showing AUC values. As previously dis-
covered, the LOSS attack tends to perform badly
when evaluated for very low false positive rates
(Carlini et al., 2021a; Watson et al., 2022). Likeli-
hood Ratio Attacks can clearly outperform it, but
we observe that their success is highly dependent
on having access to suitable training data for ref-
erence models: Attacks using the base reference
models and candidate models can not reach the per-
formance of an attack using the oracle reference
model by a large margin. Notably, they are also sub-
stantially outperformed by our Neighbour Attack,
which can, particularly in low FPR ranges, even
compete very well with or outperform Likelihood
Ratio Attacks with an Oracle Reference Model,
without relying on access to any additional data.

News Twitter Wiki

LiRA:
Base Reference Model 0.76 0.75 0.54
Candidate Reference 1 0.78 0.81
Candidate Reference 2 0.75 0.77
Oracle Reference* 0.94 0.89 0.90

Other Attacks:
LOSS Attack 0.64 0.60 0.52
Neighbour Attack 0.79 0.77 0.62

Table 3: AUC values of various attacks.

4.2 Measuring the Dependence of Attack
Success on Reference Model Quality

Motivated by the comparably poor performance of
Likelihood Ratio Attacks with reference models
trained on only slightly different datasets to the
target training data, we aim to investigate the de-
pendence of reference attack performances on the
quality of reference models in a more controlled
and systematic way. To do so, we train reference
models on our oracle data over multiple epochs,
and report the attack performance of Likelihood
Ratio Attacks w.r.t to the reference models’ valida-
tion perplexity (PPL) on a held out test set, which
is in this case the set of non-training members of
the target model. Intuitively, we would expect the
attack performance to peak when the validation
PPL of reference models is similar to that of the
target model, as this way, the models capture a
very similar distribution and therefore offer the
best comparison to the attack model. In this setup,
we are however particularly interested in the attack
performance when the validation PPL does not ex-
actly match that of the target model, given that
attackers will not always be able to train perfectly
performing reference models.

The results of this experiment can be found in
Figure 2 for our News and Twitter dataset and in
Figure 3 for Wikitext. As can be seen, the per-
formance of reference-based attacks does indeed
peak when reference models perform roughly the
same as the target model. A further very interesting
observation is that substantial increases in attack
success only seem to emerge as the validation PPL
of reference models comes very close to that of the
target model and therefore only crosses the success
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Figure 2: Attack Performance of reference attacks w.r.t
validation PPL of reference models, compared to the
performance of neighborhood attacks. The perplexities
of the target models were 30.0 and 84.7 for AG News
and Twitter, respectively

rate of neighbourhood attacks when the reference
model’s performance is almost the same as that
of the target model. This further illustrates the
fragility of reference-based attacks with respect to
the choice of the reference model.

4.3 Ablation Studies

Having extensively studied the impact of different
reference model training setups for the Likelihood
Ratio Attack, we now aim to explore the effect
of various components of our proposed neighbour-
hood attack.

Number of Generated Neighbours For our
main results in Table 2, we report the performance
of neighbour attacks for the 100 most likely gen-

#Neighbours 5 10 25 50 100

News:
1% FPR 2.98% 4.57% 6.65% 8.19% 8.29%
0.1% FPR 0.53% 0.79% 1.43% 1.50% 1.73%
0.01% FPR 0.05% 0.07% 0.18% 0.23% 0.29%

Twitter:
1% FPR 3.93% 4.88% 6.21% 6.63% 7.35%
0.1% FPR 0.57% 0.62% 1.01% 1.34% 1.43%
0.01% FPR 0.05% 0.07% 0.10% 0.23% 0.28%

Wikipedia:
1% FPR 1.57% 1.81% 2.02% 2.17% 2.32%
0.1% FPR 0.16% 0.21% 0.23% 0.26% 0.27%
0.01% FPR 0.05% 0.08% 0.09% 0.10% 0.10%

Table 4: Attack performance w.r.t the number of neigh-
bours against which we compare the target sample

erated neighbours as determined by BERT. In the
following, we measure how varying this number
affects the attack performance. While intuitively,
a higher number of neighbours might offer a more
robust comparison, it is also plausible that selecting
a lower number of most likely neighbours under
BERT will lead to neighbours of higher quality
and therefore a more meaningful comparison of
loss values. Our results in Table 4 show a clear
trend towards the former hypothesis: The number
of neighbours does in general have a strong influ-
ence on the performance of neighbourhood attacks
and higher numbers of neighbours produce better
results.

Number of Word Replacements Besides the
number of generated neighbours, we study how
the number of replaced words affects the perfor-
mance of our attack. While we reported results
for the replacement of a single word in our main
results in Table 2, there are also reasons to expect
that a higher number of replacements leads to bet-
ter attack performance: While keeping neighbours
as similar to the original samples as possible en-
sures that their probability in the general distribu-
tion of textual data remains as close as possible,
one could also expect that too few changes lead
the target model to assign the original sample and
its neighbours almost exactly the same score, and
therefore make it hard to observe high differences
in loss scores for training members. Our results
of generating 100 neighbours with multiple word
replacements are reported in Table 5. We find that
replacing only one word clearly outperforms mul-
tiple replacements. Beyond this, we do not find
highly meaningful differences between two and
three word replacements.

11336



#Word Replacements 1 2 3

News:
1% FPR 8.29% 4.09% 4.18%
0.1% FPR 1.73% 0.85% 0.94%
0.01% FPR 0.29% 0.23% 0.21%

Twitter:
1% FPR 7.35% 4.86% 4.37%
0.1% FPR 1.43% 0.74% 0.72%
0.01% FPR 0.28% 0.14% 0.11%

Wikipedia:
1% FPR 2.32% 1.76% 1.44%
0.1% FPR 0.27% 0.23% 0.17%
0.01% FPR 0.10% 0.07% 0.03%

Table 5: Attack performance w.r.t the number of words
that are replaced when generating neighbours

5 Defending against Neighbourhood
Attacks

Due to the privacy risks that emerge from the pos-
sibility of membership inference and data extrac-
tion attacks, the research community is actively
working on defenses to protect models. Beyond
approaches such as confidence score perturbation
(Jia et al., 2019) and specific regularization tech-
niques (Mireshghallah et al., 2021; Chen et al.,
2022) showing good empirical performance, differ-
entially private model training is one of the most
well known defense techniques offering mathemati-
cal privacy guarantees: DP-SGD (Song et al., 2013;
Bassily et al., 2014; Abadi et al., 2016), which uses
differential privacy (Dwork et al., 2006) to bound
the influence that a single training sample can have
on the resulting model and has been shown to suc-
cessfully protect models against membership in-
ference attacks (Carlini et al., 2021a) and has re-
cently also successfully been applied to training
language models (Yu et al., 2022; Li et al., 2022;
Mireshghallah et al.). To test the effectiveness of
differential privacy as a defense against neighbour-
hood attacks, we follow Li et al. (2022) and train
our target model GPT-2 in a differentially private
manner on AG News, where our attack performed
the best. The results can be seen in Table 6 and
clearly demonstrate the effectiveness of DP-SGD.
Even for comparably high epsilon values such as
ten, the performance of the neighbourhood attack
is substantially worse compared to the non-private
model and is almost akin to random guessing for
low FPR values.

ϵ = 5 ϵ = 10 ϵ = ∞
TPR @ 1% FPR 1.29% 1.52% 8.29%
TPR @ 0.1% FPR 0.09% 0.13% 1.73%
TPR @ 0.01% FPR 0.01% 0.01% 0.29%

Table 6: Performance of neighbourhood attacks against
models trained with DP-SGD

6 Related Work

MIAs have first been proposed by Shokri et al.
(2016) and continue to remain a topic of interest
for the machine learning community. While many
attacks, such as ours, assume to only have access
to model confidence or loss scores (Yeom et al.,
2018; Sablayrolles et al., 2019; Jayaraman et al.,
2020; Watson et al., 2022), others exploit addi-
tional information such as model parameters (Leino
and Fredrikson, 2020) or training loss trajectories
(Liu et al., 2022). Finally, some researchers have
also attempted to perform membership inference
attacks given only hard labels without confidence
scores (Li and Zhang, 2021; Choquette-Choo et al.,
2021). Notably, the attack proposed by Choquette-
Choo et al. (2021) is probably closest to our work
as it tries to obtain information about a sample’s
membership by flipping its predicted labels through
small data augmentations such as rotations to im-
age data. To the best of our knowledge, we are the
first to apply data augmentations of this kind for
text-based attacks.

Membership Inference Attacks in NLP Specif-
ically in NLP, membership inference attacks are an
important component of language model extraction
attacks (Carlini et al., 2021b; Mireshghallah et al.,
2022b). Further studies of interest include work by
Hisamoto et al. (2020), which studies membership
inference attacks in machine translation, as well
as work by Mireshghallah et al. (2022a), which
investigates Likelihood Ratio Attacks for masked
language models. Specifically for language models,
a large body of work also studies the related phe-
nomenon of memorization (Kandpal et al., 2022;
Carlini et al., 2022b,a; Zhang et al., 2021), which
enables membership inference and data extraction
attacks in the first place.

Machine-Generated Text Detection Due to the
increasing use of tools like ChatGPT as writing
assistants, the field of machine-generated text de-
tection has become of high interest within the re-
search community and is being studied extensively
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(Chakraborty et al., 2023; Krishna et al., 2023;
Mitchell et al., 2023; Mireshghallah et al., 2023).
Notably, Mitchell et al. (2023) propose DetectGPT,
which works similarly to our attack as it compares
the likelihood of a given sample under the target
model to the likelihood of perturbed samples and
hypothesizes that the likelihood of perturbations is
smaller than that of texts the model has generated
itself.

7 Conclusion and Future Work

In this paper, we have made two key contributions:
First, we thoroughly investigated the assumption
of access to in-domain data for reference-based
membership inference attacks: In our experiments,
we have found that likelihood ratio attacks, the
most common form of reference-based attacks, are
highly fragile to the quality of their reference mod-
els and therefore require attackers to have access
to high-quality training data for those. Given that
specifically in privacy-sensitive settings where pub-
licly available data is scarce, this is not always
a realistic assumption, we proposed that the de-
sign of reference-free attacks would simulate the
behavior of attackers more accurately. Thus, we
introduced neighborhood attacks, which calibrate
the loss scores of a target samples using loss scores
of plausible neighboring textual samples generated
through word replacements, and therefore elimi-
nate the need for reference trained on in-domain
data. We have found that under realistic assump-
tions about an attacker’s access to training data, our
attack consistently outperforms reference-based
attacks. Furthermore, when an attacker has per-
fect knowledge about the training data, our attack
still shows competitive performance with reference-
based attacks. We hereby further demonstrated the
privacy risks associated with the deployment of lan-
guage models and therefore the need for effective
defense mechanisms. Future work could extend our
attack to other modalities, such as visual or audio
data, or explore our attack to improve extraction
attacks against language models.

Limitations

The proposed attack is specific to textual data
While many membership inference attacks are uni-
versally applicable to all modalities as they mainly
rely on loss values obtained from models, our pro-
posed method for generating neighbours is specific
to textual data. While standard augmentations such

as rotations could be used to apply our method for
visual data, this is not straightforward such as the
transfer of other attacks to different modalities.

Implementation of baseline attacks As the per-
formance of membership inference attacks depend
on the training procedure of the attacked model
as well as its degree of overfitting, it is not pos-
sible to simply compare attack performance met-
rics from other papers to ours. Instead, we had to
reimplement existing attacks to compare them to
our approach. While we followed the authors’ de-
scriptions in their papers as closely as possible, we
cannot guarantee that their attacks were perfectly
implemented and the comparison to our method is
therefore 100% fair.

Ethical Considerations

Membership inference attacks can be used by
malicious actors to compromise the privacy of
individuals whose data has been used to train
models. However, studying and expanding our
knowledge of such attacks is crucial in order to
build a better understanding for threat models and
to build better defense mechanisms that take into
account the tools available to malicious actors.
Due to the importance of this aspect, we have
extensively highlighted existing work studying
how to defend against MIAs in Section 6. As we
are aware of the potential risks that arise from
membership inference attacks, we will not freely
publicize our code, but instead give access for
research projects upon request.

With regards to the data we used, we do not
see any issues as all datasets are publicly available
and have been used for a long time in NLP research
or data science competitons.
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Section 3 (Experiments), particularly 3.1 and 3.2

C �3 Did you run computational experiments?
Section 3 (Experiments)

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 3 (Experiments), particularly 3.3

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 3 (Experiments), particularly 3.3

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Results Section (Section 4)

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3 (Experiments), particularly 3.3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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