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Abstract

Continual pre-training is the paradigm where
pre-trained language models (PLMs) contin-
ually acquire fresh knowledge from growing
data and gradually get upgraded. Before an
upgraded PLM is released, we may have tuned
the original PLM for various tasks and stored
the adapted weights. However, when tuning
the upgraded PLM, these outdated adapted
weights will typically be ignored and discarded,
causing a potential waste of resources. We
bring this issue to the forefront and contend
that proper algorithms for recycling outdated
adapted weights should be developed. To this
end, we formulate the task of recyclable tun-
ing for continual pre-training. In pilot studies,
we find that after continual pre-training, the
upgraded PLM remains compatible with the
outdated adapted weights to some extent. Moti-
vated by this finding, we analyze the connection
between continually pre-trained PLMs from
two novel aspects, i.e., mode connectivity, and
functional similarity. Based on the correspond-
ing findings, we propose both an initialization-
based method and a distillation-based method
for our task. We demonstrate their feasibility
in improving the convergence and performance
for tuning the upgraded PLM. We also show
that both methods can be combined to achieve
better performance. The source codes are pub-
licly available at https://github.com/
thunlp/RecyclableTuning.

1 Introduction

The emergence of pre-trained language models
(PLMs) has revolutionized the entire field of natu-
ral language processing (NLP) (Bommasani et al.,
2021). Through downstream adaptation, PLMs ef-
fectively stimulate the knowledge acquired during
pre-training and achieve remarkable success in var-
ious downstream tasks (Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2020). Such adaptation
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Figure 1: Task formulation. The original PLM Mi is
upgraded to Mi+1 through continual pre-training on
emerging data Di+1. Our goal is to recycle the existing
adapted weights ∆i of Mi for tuning Mi+1.

can be achieved by either full-parameter fine-tuning
or parameter-efficient tuning (Houlsby et al., 2019),
and the latter enables learning lightweight adapted
modules for downstream tasks. Currently, a de
facto paradigm for handling NLP tasks has been
formed, dividing practitioners into two groups: (1)
upstream suppliers, who pre-train PLMs on task-
agnostic data and release them on public platforms,
e.g., HuggingFace (Wolf et al., 2020), and (2)
downstream consumers, who download the PLM
and conduct personalized adaptation using task-
specific data. The corresponding adapted weights
might then be shared with third parties via plat-
forms such as AdapterHub (Pfeiffer et al., 2020).

In real-world scenarios, PLMs may constantly
get upgraded and released by the supplier. Corre-
spondingly, the customer-side compatible update
of adapted weights becomes necessary. Continual
pre-training (Qin et al., 2022c) is a typical scenario
where PLMs continually acquire fresh knowledge
from growing data and gradually get upgraded. Be-
fore an upgraded PLM is released, consumers may
have tuned the original PLM for various tasks and
stored the adapted weights. However, when tuning
the upgraded PLM, these outdated adapted weights
will typically be ignored and discarded. This can
lead to a loss of knowledge about downstream tasks
encapsulated in the outdated weights, as well as a
potential waste of computational resources. In this
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paper, we bring this issue to the forefront and ar-
gue that proper algorithms for recycling outdated
adapted weights should be developed. To this end,
we formulate the task of recyclable tuning for con-
tinual pre-training, which is illustrated in Figure 1.

Due to the parameter change during continual
pre-training, one potential concern for recycling
outdated adapted weights is their mismatch with
the upgraded PLM. However, our pilot studies re-
veal that directly applying the outdated weights to
the upgraded PLM yields substantial performance
improvements as compared to zero-shot inference
of the PLM. This shows that the upgraded PLM
remains compatible with the outdated weights to
some extent, indicating a close connection between
continually pre-trained PLMs. Intuitively, such a
connection provides a strong basis for our assertion
that outdated weights are recyclable and useful.

To uncover hints for solving our task, we further
investigate such a connection from two aspects: (1)
linear mode connectivity (Qin et al., 2022b). We
demonstrate that after adapting both the upgraded
PLM and the original PLM to the same task, lin-
early interpolating the parameters of both adapted
models could produce a series of checkpoints with
high task performance (low loss). Such a property
indicates a close parametric connection of both
PLMs in the loss landscape; (2) functional similar-
ity. After adapting both PLMs to the same task,
we observe that their corresponding attention heads
exhibit similar patterns given the same input. Such
representational proximity implies that both PLMs
own similar functionalities during text processing.

Both analyses above demonstrate the close con-
nections between continually pre-trained PLMs.
Based on the corresponding findings, we propose
two methods for recyclable tuning:

(1) Initialization-based method, which lever-
ages the adapted weights of the original PLM as the
initialization for the upgraded PLM. This method
is motivated by their close parametric connection
in the loss landscape. We demonstrate that for a
target task, initializing the tunable parameters with
the outdated weights from a similar source task
could accelerate the convergence and improve the
training efficiency, compared to using random ini-
tialization. In addition, after sufficient training, this
method generally improves the final performance.
We also observe that the benefits of this method in
terms of convergence and performance are greater
when the source and target tasks are more similar.

(2) Distillation-based method, which distills
the knowledge stored in outdated weights for
tuning the upgraded PLM. We demonstrate that
knowledge distillation can effectively facilitate
knowledge transfer between continually pre-trained
PLMs. Using only a small number of labeled ex-
amples, the upgraded PLM can outperform the
original PLM when trained with far more exam-
ples. We also show that both initialization-based
and distillation-based methods can be combined
to further improve the performance. This means
knowledge transfer through parameter space and
model outputs are complementary to each other.

In a nutshell, these results highlight the practi-
cal benefits of recyclable tuning and point to an
important future direction in sustainable NLP.

2 Related Work

Continual Pre-training. Conventionally, PLMs
are trained on static data, ignoring that streaming
data from various sources could continually grow.
Continual pre-training requires PLMs to accumu-
late new knowledge in a continual manner (Gu-
rurangan et al., 2020), meanwhile alleviating the
catastrophic forgetting problem. Prior works in
this field focus on building benchmarks and analy-
ses (Jang et al., 2021, 2022). Later works explored
the applicability of traditional continual learning
algorithms under this setting (Jin et al., 2022; Wu
et al., 2021). Recent efforts were also spent on con-
tinual pre-training in a computationally efficient
way (Qin et al., 2022c).

Previous works focus on improving the capabil-
ities of PLMs during pre-training from the stand-
point of upstream suppliers. Instead, we shift the
focus to downstream adaptation from the perspec-
tive of customers. We highlight a previously over-
looked issue of the incompatibility between up-
graded PLMs and the existing adapted weights. For
the first time, we examine the connections between
continually pre-trained models and demonstrate the
potential benefits of recycling outdated weights.

Knowledge Transfer for PLMs. Transfer learn-
ing for PLMs has gained increasing attention re-
cently. Some works study task-level transferability
for an individual PLM and find that fine-tuning on
certain source tasks conduces to the performance
on similar target tasks (Vu et al., 2020; Poth et al.,
2021; Aghajanyan et al., 2021). Differently, we
also study cross-task knowledge transfer for two
different PLMs under the continual pre-training
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scenario (§ 5.1). Besides, researchers also investi-
gate cross-model knowledge transfer. They try to
recycle lightweight adapted weights of the same
task between two independently pre-trained PLMs,
e.g., PLMs with distinct data (Su et al., 2022). As
we would show later, unlike independently trained
PLMs, continually pre-trained PLMs are guaran-
teed close connections. This distinction determines
our setting is unique to previous works and may
require different solutions.

3 Problem Formulation

Continual Pre-training. Following Qin et al.
(2022c), we simulate the scenario where new
data from 4 domains is gathered sequentially, i.e.,
biomedical papers (BIO, D1) (Lo et al., 2020), ama-
zon reviews (REV, D2) (He and McAuley, 2016),
computer science papers (CS, D3) (Lo et al., 2020),
and news articles (NS, D4) (Zellers et al., 2019).
Starting from the official RoBERTaBASE (Liu et al.,
2019) (denoted as M0), we continually pre-train
M0 on 4 domains. For each domain, we set the
pre-training steps to 12.5k and the batch size to
2048. Denote Mi as the PLM that finishes train-
ing on Di, and Mi(t) as the PLM that starts from
Mi−1 and is trained on Di for t steps. We assume
the suppliers only release the PLM that finishes
training on each domain, i.e., {M1, · · · ,M4} are
developed and released. The pre-training details
are described in appendix D.1.

Downstream Adaptation. At the same time, we
have a set of downstream tasks to handle. To adapt
Mi (0 ≤ i ≤ 4) towards a task Tj , we conduct
supervised training using the loss function LTj .
Denote the pre-trained weights of Mi as θ0i , we
obtain its adapted weights ∆

Tj
i for Tj after train-

ing. By assembling both θ0i and ∆
Tj
i , the resultant

model θTji = θ0i ⊕∆
Tj
i can be deployed to handle

Tj . Throughout this paper, we consider two tuning
methods: full-parameter fine-tuning and a represen-
tative parameter-efficient tuning method, adapter
tuning (Houlsby et al., 2019) (see appendix A.1
for more backgrounds). For the former, we have
|∆Tj

i | = |θ0i |; while for the latter, |∆Tj
i | ≪ |θ0i |,

where | · | denotes the number of parameters.

Recyclable Tuning. Before the release of an up-
graded PLM Mi′ (i<i′), we have obtained adapted
weights ∆Tj

i of an old PLM Mi for task Tj . Recy-
clable tuning aims at transferring the knowledge of

∆
Tj
i to assist tuning Mi′ (i.e., learning new weights

∆
Tj
i′ ). We denote the above process as ∆Tj

i →∆
Tj
i′ .

Intuitively, ∆Tj
i encapsulates abundant knowledge

about the task Tj , which should benefit learning
∆

Tj
i′ if exploited properly. Such benefits may in-

clude improving training efficiency or performance.
To gain insights of solving the task, we first conduct
a series of empirical analyses in § 4 to understand
the connections among Mi, Mi′ , ∆

Tj
i , and ∆

Tj
i′ .

4 Empirical Analysis

We first investigate the compatibility of outdated
weights and the upgraded PLM (§ 4.1), then we
explore the (1) parametric connections and (2) rep-
resentational connections of continually pre-trained
PLMs from two aspects: (1) linear mode connectiv-
ity (§ 4.2) and (2) functional similarity (§ 4.3). The
implementation details are left in appendix D.2.

4.1 Model Compatibility Analysis
We explore to what extent the outdated weights
are compatible with the upgraded PLM and how
this compatibility changes during continual pre-
training. Specifically, we directly apply outdated
weights to the upgraded PLM and record the per-
formance variation during continual pre-training.

Settings. We first investigate the process when
upgrading M0 to M1 on the BIO domain (D1).
For downstream evaluation, we choose two classifi-
cation tasks: CHEMPROT (Kringelum et al., 2016),
which is a relevant downstream task to the BIO

domain, and MNLI (Williams et al., 2018). De-
note the model continually pre-trained on D1 for
t steps as M1(t), its pre-trained weights as θ01(t),
and the adapted weights of M0 for the downstream
task as ∆T

0 . We directly apply ∆T
0 to the upgraded

PLM M1(t), i.e., θ01(t) ⊕ ∆T
0 , and evaluate the

performance on the test set of the downstream task.
In experiments, t is selected from 1.25k to 12.5k
with an interval of 1.25k. We also report M1(t)’s
zero-shot inference performance by testing θ01(t).

Results. From the results in Figure 2 (a, b), we
observe that for both adapter and fine-tuning: (1)
with t increasing, the performance of θ01(t)⊕∆T

0

drops quickly at first. This means that ∆T
0 becomes

outdated shortly after the backbone model M1(t)
changes. (2) After sufficient pre-training steps, the
performance converges to a plateau which is still
much higher than the zero-shot inference perfor-
mance of M1(t). This implies that continually
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Figure 2: (a, b): performance variation w.r.t. pre-
training steps (t) when applying the outdated weights
(∆T

0 ) to M1(t). (c, d): performance variation when ap-
plying the outdated weights (∆T

0 ) to {M1, · · · ,M4}.

pre-trained PLMs are intrinsically connected
with their “ancestors”, otherwise the ancestor’s
adapted weights ∆T

0 would not improve the perfor-
mance of its offspring M1(t).

Extension to Multiple Domains. Next, we ex-
tend the above experiments to 4 sequentially re-
leased PLMs as mentioned in § 3 by directly ap-
plying ∆T

0 to {M1, · · · ,M4}. We derive from
Figure 2 (c, d) that: (1) applying outdated weights
consistently performs better than zero-shot infer-
ence even if the backbone PLM is trained over mul-
tiple domains; (2) the performance of M4 is the
best among {M1, · · · ,M4} though M4 is trained
for the longest time. This may be because the
NS domain (D4) is the most similar one to M0’s
pre-training data (Gururangan et al., 2020), and
continual pre-training on a similar domain of
the original PLM mitigates the incompatibility.

4.2 Linear Mode Connectivity Analysis

Backgrounds. Linear mode connectivity mea-
sures whether two sets of model weights can be
connected via a linear parametric path, along which
the performance (loss) of the downstream task re-
mains high (low) (Frankle et al., 2020). In other
words, it tests whether linear interpolations of two
model weights perform comparably to both end-
points. If this property holds, then both model
weights probably lie in the same loss basin, which
indicates a close connection between them in the
parameter space (Qin et al., 2022b). For more de-
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Figure 3: The performance of linear interpolations be-
tween two adapted PLMs on CHEMPROT. µ = 0 means
M0, and µ = 1 means M1(t) or MIND.

tailed backgrounds, please refer to appendix A.2.

Settings. Following most of the settings in § 4.1,
we adapt both M0 and M1(t) towards the task
CHEMPROT and obtain the weights θT0 and θT1 (t),
where θT0 = θ00 ⊕∆T

0 and θT1 (t) = θ01(t)⊕∆T
1 (t).

Then we linearly interpolate both θT0 and θT1 (t) as:

θ(µ) = (1− µ)θT0 + µθT1 (t), (1)

where µ ∈ (0, 1). In experiments, we evaluate the
performance of 25 evenly distributed interpolations
and two endpoints (i.e., µ = 0 and µ = 1). If there
does not exist a significant performance drop along
the linear path, we deem both endpoints linearly
mode connected. We choose M1(t) that is con-
tinually pre-trained for {2.5, 5.0, 7.5, 10.0, 12.5}k
steps and evaluate mode connectivity for each
M1(t) and M0. In addition, we pre-train a new
RoBERTaBASE (dubbed as MIND) from scratch (de-
tails in appendix D.1) and test its connectivity with
M0, i.e., θ(µ) = (1−µ)θT0 +µθTIND. In this way,
we can compare the difference between continually
pre-trained models (M0 and M1(t)) and indepen-
dently pre-trained models (M0 and MIND).

Results. We illustrate the performance of the in-
terpolations and two endpoints in Figure 3, from
which we conclude that: (1) for continually pre-
trained PLMs, although there exists a small per-
formance drop in the midpoint, the interpolations
generally achieve comparable performance to end-
points; (2) the connectivity does not vary much
with t increasing, which means within a reasonable
range, the connectivity is not sensitive to longer
pre-training; (3) while for independently trained
PLMs, the performance drops significantly in the
middle, which means the adapted weights of these
PLMs cannot be linked by a high-performance lin-
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Figure 4: Linear mode connectivity between the ini-
tial M0 (µ = 0) and 4 sequentially pre-trained PLMs
{M1, · · · ,M4} over multiple domains (µ = 1).

ear path; (4) the above conclusions hold for both
adapter and fine-tuning.

The above findings imply that when learning
the same task, two continually pre-trained PLMs
would probably be optimized into two minima
lying in the same loss basin, or at least the optimal
regions corresponding to both minima have a sub-
stantial intersection; otherwise, there should exist
a significant performance drop in between.

Intuitively, the existence of a high-performance
(low-loss) path between two optimal regions im-
plies that model weights can be easily optimized
from one optimal region to another without in-
curring a loss barrier. In this regard, it is promis-
ing to use outdated adapted weights as the initial-
ization to find the optimal solution for the upgraded
PLM, which would be explored in § 5.1. In this
way, we explicitly facilitate cross-model knowl-
edge transfer through the parameter space.

Extension to Multiple Domains. Next, we eval-
uate linear mode connectivity between the initial
M0 and Mi (1≤ i≤4) using the task CHEMPROT.
We derive from the results in Figure 4 that although
the performance tends to drop slightly near the
midpoint, the connectivity of all continually pre-
trained models is still far better than independent
PLMs (i.e., MIND in Figure 3). We also observe
that the performance drop between M0 and M2 is
larger than M0 and M4, though M4 is trained for
a longer time than M2. This means longer pre-
training does not necessarily result in poorer
connectivity; rather, the pre-training domain
has a great impact.

4.3 Functional Similarity Analysis

The close parametric connection revealed by linear
mode connectivity does not guarantee that continu-
ally pre-trained PLMs share similar functionalities

0 1 8 0 4 10 0 9 8

1 1 8 1 4 10 1 9 8

2 1 8 2 4 10 2 9 8

Figure 5: Visualization of attention heads in fine-tuned
M0, M1, and M2 given the same input. For instance,
“L4H10” refers to the 10-th head in the 4-th layer. An
attention head of Mi+1 is trained from that of Mi in
the same column. In the heatmap, the color of the i-th el-
ement in the j-th row indicates the attention value from
the j-th token to the i-th token. For more visualizations
(including MIND), please refer to appendix C.2.

when processing the text information. Following
Gong et al. (2019), we explore functional similarity
through the lens of attention distribution. Specifi-
cally, we investigate three continually pre-trained
models (M0, M1, and M2) and fine-tune them
on CHEMPROT to obtain adapted models (θT0 , θT1 ,
and θT2 ). We feed the same input sampled from
CHEMPROT to the three adapted models. Then
we select attention heads from the same position
(i.e., the h-th head in the l-th layer) in three models,
and visualize their attention distribution. Note the
selected head of Mi+1 is trained from that of Mi.

From Figure 5, it is found that the attention pat-
terns of M1 and M2 are quite similar to those of
their “ancestor” M0. Such representational prox-
imity indicates that the corresponding modules of
continually pre-trained PLMs own similar func-
tionalities. Since adapted weights play a pivotal
role in stimulating PLM’s abilities and function-
alities (Ding et al., 2022), such functional simi-
larity partially explains why the outdated adapted
weights can be directly applied to the upgraded
PLM and achieve non-trivial performance in § 4.1.

In a nutshell, all the analyses in this section vali-
date the close connection between continually pre-
trained PLMs. Intuitively, such a connection im-
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Figure 6: The performance variation in the early stage
of adapter tuning for 6 target tasks from different ini-
tialization. Different tasks are evaluated with different
intervals of training steps, see appendix D.3 for details.

plies that the adaptation process of these PLMs
towards downstream tasks should be closely re-
lated and transferable as well, which serves as the
strong basis for our recyclable tuning.

5 Methods and Experiments

Based on the findings in § 4, we propose two
ways to explore the practical benefits of recyclable
tuning: initialization-based method (§ 5.1) and
distillation-based method (§ 5.2). The training de-
tails of this section are discussed in appendix D.3.

5.1 Initialization-based Recyclable Tuning

We first investigate directly using outdated weights
as the initialization for tuning the upgraded PLM.

Framework. Without loss of generality, we ex-
periment when the initial PLM M0 is continually
pre-trained on the BIO domain (D1) and upgraded
to M1. Before the release of a new PLM M1, as-
sume we have tuned M0 on N tasks {T0, · · · , TN}
and obtained the corresponding adapted weights
{∆T1

0 , · · · ,∆TN
0 }. When tuning M1 on a target

task Tt, instead of using the random initialization
for tunable weights, we initialize them using M0’s

Initialization Random Tdiff Tsim Tsame

ANLI 42.5±0.7 43.7±0.7 46.2±0.8 46.8±0.1

SICK 87.6±0.6 88.1±0.7 87.7±0.2 87.9±0.6

SST-2 89.3±0.5 89.8±0.5 89.1±0.7 90.3±0.5

R. Tomatoes 85.3±0.2 85.2±0.2 85.5±0.2 84.7±0.4

H. Speech 77.2±0.6 80.1±0.8 81.9±1.3 83.9±0.5

T. Offensive 84.2±0.6 84.0±0.4 84.8±0.2 83.8±0.1

Avg. 77.7±0.5 78.5±0.6 79.2±0.6 79.6±0.4

Table 1: The best test performance on 6 target tasks with
adapter tuning from different initialization.

adapted weights ∆Ts
0 trained on a source task Ts.

Considering that in practice, it is possible that the
outdated weights of exactly the same task are not
available, i.e., Tt ̸= Ts. Thus we explore whether
initialization from the outdated weights of a differ-
ent task would suffice for our goal. Specifically,
we consider three types of source tasks: (1) Tsame,
which is the same task as the target one; (2) Tsim,
which denotes a task similar to Tt, both Tsim and
Tt typically belong to the same task type; (3) Tdiff,
which belongs to a different task category from Tt.

Settings. We experiment with 6 target tasks of 3
types: (1) natural language inference: ANLI (Nie
et al., 2020) and SICK (Marelli et al., 2014), (2)
sentiment analysis: SST-2 (Socher et al., 2013)
and Rotten Tomatoes (Pang and Lee, 2005), (3)
emotion detection: Hate Speech (Davidson et al.,
2017) and Tweet Eval-Offensive (Barbieri et al.,
2020). The choices of Tsim and Tdiff for each target
task are listed in Table 12 in the appendix.

We compare the proposed initialization strate-
gies with random initialization and record (1) the
test performance variation (w.r.t. training steps)
during the early stage of downstream adaptation
(Figure 6), and (2) the best test performance after
the adaptation converges (Table 1). For adaptation,
we mainly investigate adapter tuning and leave the
experiments of fine-tuning in appendix C.3.

Results. The observations and corresponding
conclusions are summarized as follows:

(1) Faster convergence: we observe from Fig-
ure 6 that compared with the random initialization
baseline, our method significantly accelerates the
convergence of downstream adaptation. This sug-
gests that the outdated weights provide a more ef-
fective initialization, allowing the PLM to be more
easily optimized to the desired local optima. In
practice, this method could improve the training ef-
ficiency of tuning the upgraded PLM, which saves
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the computations needed for adaptation.
(2) Improved task performance: we also con-

clude from Table 1 that after sufficient training,
initialization from the outdated weights of each
type of source tasks (even for Tdiff) could improve
the final performance (up to +1.9 average improve-
ment). This demonstrates that initialization serves
as a valid way for cross-model knowledge transfer.

(3) Similar source tasks benefit more: compar-
ing the results of initialization from different source
tasks, we find that the improvement in both conver-
gence and performance can be generally ranked as
Tsame>Tsim>Tdiff. This is because the knowledge
required by more similar tasks has a greater overlap.
Thus the knowledge transfer benefits more when
the target task and source task are more similar. In
practice, this finding expands the selection scope of
source adapted weights, broadening the application
scenarios for our initialization-based method.

5.2 Distillation-based Recyclable Tuning

According to Lin et al. (2021), model outputs often
contain sufficient supervision that is complemen-
tary to the knowledge stored in parameters. There-
fore, besides the initialization-based method, we
also explore knowledge distillation (Hinton et al.,
2015) to recycle the outdated weights.

Framework. Given a task Tj , assume we have
optimized an outdated PLM Mi and obtained its
adapted weights ∆

Tj
i . Our goal is to distill the

knowledge stored in ∆
Tj
i to optimize an updated

PLM Mi+1. We follow Sun et al. (2019) to con-
struct our framework. For each data point x from
Tj , denote P(x, θ

Tj
i ) as the probability distribu-

tion the adapted Mi assigns over the label space,
where θ

Tj
i =θ0i ⊕∆

Tj
i . We minimize the KL diver-

gence between probabilities predicted by Mi and
Mi+1. In addition, Mi+1 mimics Mi’s interme-
diate hidden representations of each layer. Specif-
ically, given the same input x, denote hk(x, θ

Tj
i )

and hk(x, θ
Tj
i+1) as the normalized hidden states of

the k-th layer of Mi and Mi+1, we minimize the
mean-square loss of hidden states together with the
KL divergence as follows:

LKD = KL(P(x, θ
Tj
i )||P(x, θ

Tj
i+1))+

αΣk||hk(x, θ
Tj
i )−hk(x, θ

Tj
i+1)||2,

(2)

where α denotes a hyper-parameter. During op-
timization, only ∆

Tj
i+1 is tunable. Besides LKD,

Method Teacher Lfinal-LKD Lfinal Lfinal+Init.

Setting (a): ∆Ti
i →∆Ti

i+1, i ∈ {1, 2, 3}

∆T1
1 →∆T1

2

AP 65.2±1.7 58.0±0.9 62.4±1.3 63.8±3.2

FT 66.0±1.4 61.4±3.1 64.5±0.5 64.7±0.6

∆T2
2 →∆T2

3

AP 84.8±1.3 78.3±1.4 80.7±0.3 80.8±0.7

FT 82.0±1.8 76.7±2.2 79.5±1.5 79.7±1.9

∆T3
3 →∆T3

4

AP 50.6±3.0 48.2±2.9 48.0±1.4 55.9±3.9

FT 52.5±0.6 51.8±4.2 54.2±0.7 61.3±2.9

Setting (b): ∆Ti
i−1→∆Ti

i , i ∈ {1, 2, 3}

∆T1
0 →∆T1

1

AP 59.1±2.5 53.1±0.7 61.4±1.1 64.7±0.4

FT 61.8±1.3 56.6±1.2 59.3±1.5 63.4±0.7

∆T2
1 →∆T2

2

AP 83.1±0.3 84.8±1.3 86.0±0.2 87.3±0.4

FT 83.3±0.6 82.0±1.8 85.5±0.8 86.8±0.7

∆T3
2 →∆T3

3

AP 49.9±3.5 49.4±3.2 49.9±3.8 49.2±1.2

FT 54.4±1.2 49.4±3.6 50.6±3.0 58.0±3.4

Table 2: Experiments of distillation-based recyclable
tuning. For each task Ti, we evaluate two settings
∆Ti

i →∆Ti
i+1 and ∆Ti

i−1 →∆Ti
i . For example, ∆Ti

i →
∆Ti

i+1 denotes distilling the knowledge of Mi to Mi+1

for task Ti. Here AP / FT refers to adapter / fine-tuning.

we also introduce the original task loss LTj , which
is calculated using supervised training examples
from task Tj , with another hyper-parameter β:

Lfinal = βLTj + (1− β)LKD. (3)

Settings. We consider the sequentially released
PLMs {M0, · · · ,M4} as mentioned in § 3. Fol-
lowing Gururangan et al. (2020), we choose three
tasks T1: CHEMPROT, T2: IMDB (Maas et al.,
2011) and T3: ACL-ARC (Jurgens et al., 2018),
which are relevant to domain D1, D2 and D3, re-
spectively. We mainly consider recyclable tun-
ing between adjacent PLMs, i.e., Mi and Mi+1,
and also evaluate non-adjacent PLMs (e.g., Mi

and Mi+2) in appendix C.7. For each task Ti
(i ∈ {1, 2, 3}), we consider two settings:

(a) First, we recycle Mi’s outdated weights to
Mi+1, which is denoted as ∆Ti

i → ∆Ti
i+1. Here

the evaluated task Ti is relevant to the pre-training
domain Di of the original PLM Mi. During con-
tinual pre-training on Di+1, Mi+1 suffers from
catastrophic forgetting of Di. Hence Mi+1 should
perform worse on Ti than Mi. In experiments, both
PLMs are adapted using the same 32-shot dataset.

(b) Second, we evaluate the recyclable tuning
from Mi−1 to Mi, which is denoted as ∆Ti

i−1 →
∆Ti

i . Different from setting (a), here the evaluated
task Ti is relevant to the pre-training domain Di of
the newly released PLM Mi. Mi performs better
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than Mi−1 since Mi has acquired more knowl-
edge related to Ti when learning Di. In light of this,
we explore whether Mi could achieve better per-
formance than Mi−1 even when trained with fewer
supervised examples. Specifically, the data size of
Mi−1 is set to {32, 256, 32}-shot for {T1, T2, T3},
and the data size of Mi is set to {16, 32, 16}-shot,
respectively. We also evaluate our method under
the zero-shot setting in appendix C.4.

We compare our method with utilizing only the
task loss (Lfinal-LKD) to validate the benefits of
knowledge distillation. Further, we explore com-
bining both distillation-based and initialization-
based recyclable tuning (Lfinal+Init.). This is imple-
mented by first using the outdated weights as the
initialization then tuning with Lfinal. We also report
teacher performance (Teacher) as a reference.

Results. It can be concluded from Table 2 that:
(1) compared with optimizing only the task loss
(Lfinal-LKD), distilling knowledge from the out-
dated weights (Lfinal) significantly improves the
performance, which shows that knowledge distil-
lation is an effective way for recyclable tuning.
(2) In general, Lfinal+Init. leads to better perfor-
mance than Lfinal. This finding reveals that both
distillation-based and initialization-based meth-
ods are complementary to each other and can be
further combined to fully exploit the knowledge in
outdated weights. (3) In Table 2 setting (a), Mi+1

performs worse than Mi on task Ti, which is be-
cause Mi+1 forgets some knowledge of domain
Di when learning Di+1. However, such forget-
ting can be mitigated by designing better continual
pre-training algorithms (Qin et al., 2022c). (4) In
Table 2 setting (b), Mi outperforms Mi−1 despite
being trained with fewer examples. This shows that
the newly acquired knowledge on domain Di con-
duces to Mi’s performance in Di’s relevant task
Ti, and improves the data efficiency. We further
discuss the difference between distillation-based
and initialization-based methods in appendix F.

6 Discussion

Training-free Weight Recycling. Both methods
proposed in § 5 necessitate tuning the upgraded
PLM. Such a process often relies on abundant com-
putational costs and may be infeasible practically.
Given the close connections among continually pre-
trained PLMs, we contend that weight recycling
can be realized without training. As a prelimi-
nary exploration, we show in appendix B that it

is possible to learn a cross-task generalizable pro-
jection to directly upgrade the outdated weights
and make them compatible with the new PLM. Up-
grading outdated weights using such a projection
requires far fewer computations (< 0.002‰) and
still achieves satisfactory performance.

Downstream-compatible Continual Pre-
training. From another angle, recyclable tuning
addresses the incompatibility between outdated
adapted weights and the upgraded PLM from the
customer perspective, analogous to the concept of
forward compatibility in software engineering. In
fact, the responsibility for maintaining compatibil-
ity can also be shifted to upstream suppliers during
PLM upgrading (i.e., backward compatibility).
Potential solutions include adding regularization
terms during continual pre-training to maintain
compatibility with existing adapted weights. In
this way, we solve the incompatibility problem
once and for all, which is more customer-friendly.
However, modifying pre-training objectives may
come at the cost of reduced model performance.

Broader Application Scenarios. Although we
primarily focus on recyclable tuning for one spe-
cific scenario (i.e., continual pre-training), PLMs
may be subject to various types of evolution in
practice. For instance, the expansion of model size
(e.g., from T5BASE (Raffel et al., 2020) to T5LARGE),
the upgrading of model architecture (Chen et al.,
2022; Lee-Thorp et al., 2022), the alteration of opti-
mization objective (e.g., from T5 to T0 (Sanh et al.,
2021) and UNIFIEDQA (Khashabi et al., 2020)),
etc. Once the backbone infrastructure is upgraded,
massive adapted weights would become outdated
and potentially wasted. Hence we believe recy-
clable tuning in fact has broader application scenar-
ios and we hope our findings and solutions could
inspire more future research in this area.

7 Conclusion

In this paper, we formulate the task of recyclable
tuning for continual pre-training. We conduct em-
pirical analyses for this task through the lens of
model compatibility, linear mode connectivity, and
functional similarity. Inspired by the corresponding
findings, we explore the practical benefits of recy-
clable tuning through parameter initialization and
knowledge distillation. We also envision our setup
to serve as the testbed for other topics, e.g., cross-
model knowledge transfer and continual learning.
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to make sure that recyclable tuning does not per-
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PLM adaptation, recyclable tuning contributes
to the responsible development of AI systems.
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Appendices

A Additional Backgrounds

A.1 Parameter-efficient Tuning

Conventional downstream adaptation of PLMs in-
volves optimizing all parameters (i.e., fine-tuning),
which may cause a heavy burden on the com-
putational infrastructure and storage space. To
efficiently utilize the knowledge contained in
PLMs, parameter-efficient tuning (PET) is pro-
posed, which optimizes only a few parameters and
freezes the majority of parameters (Houlsby et al.,
2019). Despite extensively reducing the tunable pa-
rameters, PET achieves comparable performance
to fine-tuning. Besides, due to its lightweight na-
ture, adapted weights produced by PET are eas-
ier to train, store, and share among consumers.
Thus we deem PET as an essential component
in our problem setup. Without loss of general-
ity, we consider a representative PET algorithm,
i.e., adapter (Houlsby et al., 2019) in this paper.
Adapter inserts tunable modules into both the feed-
forward module and multi-head attention module
of each Transformer (Vaswani et al., 2017) layer.

A.2 Mode Connectivity

Mode connectivity measures whether two minima
in the parameter space can be connected by a para-
metric path, where the loss (performance) remains
low (high) (Garipov et al., 2018; Freeman and
Bruna, 2017; Draxler et al., 2018). Such a property
implies that different minima can potentially form
a connected manifold in the loss landscape. For
two connected minima, we can interpolate them
to obtain a series of high-performance solutions.
These solutions can be ensembled to achieve per-
formance (Garipov et al., 2018) that is better than
the endpoints.

Prior works in mode connectivity show that un-
der most cases, in neural networks, there exists a
non-linear low-loss path between different minima.
However, only occasionally a linear low-loss path
could connect different minima. Later works fur-
ther contend that it is non-trivial if both minima can
be connected by a linear path (Frankle et al., 2020;
Mirzadeh et al., 2020). The linearity indicates that
both minima may probably lie in the same loss
basin (Qin et al., 2022b), which is a more favorable
property and indicates a closer connection between
both minima. In view of this, we focus on analyz-
ing the linear mode connectivity in this paper.

Previous efforts were mainly spent on investi-
gating mode connectivity for non-pre-trained mod-
els, until recently, Qin et al. (2022b) explore such
property for PLMs. They focus on tuning one
static base model with different adaptation strate-
gies. Differently, we take the first step to explore
mode connectivity for different backbone models
(continually pre-trained PLMs) and reveal novel in-
sights. Following Qin et al. (2022b), we present the
results of task performance (e.g., accuracy) to eval-
uate the mode connectivity in the main paper and
also report the results of task loss in appendix E.

B Training-free Weight Recycling

Although we have shown that initialization-based
recyclable tuning could accelerate the convergence
and improve the training efficiency, tuning the up-
graded PLM still requires abundant training compu-
tations. Especially considering the massive number
of tasks to handle, conducting adaptation for all of
them whenever the PLM is upgraded is computa-
tionally expensive.

In this section, we explore whether we could alle-
viate the burden of supervised training, and directly
upgrade the outdated weights at a small cost. A de-
sired algorithm should consume significantly lower
computations than that of training the new PLM
from scratch. Meanwhile, this algorithm should
achieve satisfactory task performance.

B.1 Framework

Inspired by Qin et al. (2021); Yi et al. (2022), we
propose a training-free weight recycling method.
Specifically, we learn a cross-task generalizable
projection that could directly produce upgraded
adapted weights for a specific task, omitting the
labor of supervised training. We contend that al-
though there exist massive downstream tasks, a
large percentage of them are intrinsically similar
and can be categorized into the same task type (e.g.,
sentiment analysis, question answering, etc.). In-
tuitively, the upgrading of a certain task T1 should
provide a referential experience for that of a sim-
ilar task T2. In view of this, we propose to make
the upgrading process of T1 recyclable so that the
upgrading of T2 can be achieved efficiently.

For two sequentially released PLMs Mi and
Mi+1, assume we have the adapted weights of
Mi for both T1 and T2. We aim to recycle these
adapted weights for tuning Mi+1 on both tasks.
As illustrated in Figure 7, our framework consists
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Figure 7: Illustration of our training-free weight recy-
cling algorithm. We learn a cross-task generalizable
projection (i.e., the projection learning stage) that could
directly upgrade outdated adapted weights (i.e., the pro-
jection transferring stage).

of two stages: (1) projection learning and (2) pro-
jection transferring. We learn an upgrading projec-
tion using task T1 in the first stage, and then apply
(transfer) the learned projection to task T2 in the
second stage. Note the first stage requires training
while the second stage is training-free. Next, we
introduce the details of the two stages.

Projection Learning. Instead of directly optimiz-
ing the parameters in ∆T1

i+1, we learn a low-rank
decomposition ∆T1

i+1 = Proj(∆T1
i ) as follows:

Proj∗i→i+1 = argmin
Proj

L(Proj(∆T1
i )),

where Proj=Proj↑×Proj↓. Denote d as a low-
dimensional bottleneck dimension, Proj↓ projects
the dimension of ∆T1

i to d, i.e., Proj↓(∆
T1
i ) ∈

Rd. Then Proj↑ projects the dimension from d

back to |∆T1
i |, i.e., Proj↑(Proj↓(∆

T1
i ))∈R|∆T1

i |.
Either Proj↑ or Proj↓ is implemented by a 2-
layer MLP. During training, ∆T1

i is kept frozen and
only the parameters in Proj are tuned. Note the
dimensions of ∆T1

i and ∆T1
i+1 are the same, i.e.,

|∆T1
i |= |∆T1

i+1|. Proj(∆T1
i ) is then applied to the

upgraded PLM Mi+1 to compute the loss L.

Projection Transferring. When upgrading the
outdated weights of a similar task T2, we directly
apply the projection Proj∗i→i+1 learned on T1 to
∆T2

i and obtain the approximated updated weights
∆T2∗

i+1:

∆T2∗
i+1 = Proj∗i→i+1(∆

T2
i ).

We formulate the downstream tuning as prompt
learning (Schick and Schütze, 2021), instead of

MNLI Amazon Polarity Tweet Eval Offensive
Target Task
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Figure 8: Time needed for upgrading outdated weights
on different target tasks. Our proposed training-
free weight recycling method (Proj) consumes <
0.002‰ computations than the conventional tuning-
based method (Tune).

introducing additional classification heads for dif-
ferent tasks. Hence the number of parameters in
∆T1

i and ∆T2
i is the same, i.e., |∆T1

i | = |∆T2
i |. Note

that only applying the projection to compute the
upgraded weights consumes very limited computa-
tions (see Figure 8), hence we significantly reduce
the computations of learning ∆T2

i+1, compared with
the conventional tuning-based method.

Besides, since the projection Proj comprises
an integral multiple (d×) of ∆T1

i ’s parameters, our
solution is only feasible for parameter-efficient tun-
ing. While for fine-tuning, it is computationally
intractable to train the projection due to the tremen-
dous size of parameters in ∆T1

i and Proj. Being
the first attempt in this research direction, we leave
corresponding explorations for fine-tuning as fu-
ture work.

B.2 Experiments

Settings. We mainly evaluate M1 and M2 as
defined in § 3. We choose a series of NLP tasks
and categorize them into 3 classes: (1) natural lan-
guage inference: MNLI, SICK, ANLI, QNLI (Ra-
jpurkar et al., 2016), and WNLI (Faruqui and Das,
2018), (2) sentiment analysis: SST-2, Amazon Po-
larity (McAuley and Leskovec, 2013), and Rot-
ten Tomatoes, (3) emotion detection: Hate Speech,
Tweet Eval-Offensive, Tweet Eval-Hate, Tweet
Eval-Abortion, Tweet Eval-Feminist, and Tweet
Eval-Atheism from Barbieri et al. (2020). We par-
tition the tasks belonging to the same category into
source task T1 and target task T2 (see Table 3), and
learn the projection Proj on the source task.

We consider the zero-shot setting for the first
stage (projection learning) and use the knowl-
edge distillation loss function LKD. Here the
teacher model weights are the adapted M1, and
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Source Target LT
KD Lwiki

KD Demo. FD FS

MNLI SICK 75.2 74.3 60.5 88.1 78.0
ANLI MNLI 65.2 43.7 46.1 79.9 41.7
QNLI WNLI 72.2 58.3 55.6 55.6 50.0

SST-2 A. Polarity 95.0 94.0 81.8 95.8 94.1
SST-2 R. Tomatoes 87.8 84.7 71.4 87.4 78.7

H. Speech T. Offensive 77.1 74.5 63.5 84.5 71.4
H. Speech T. Hate 62.4 59.1 50.7 52.7 49.2
Abortion Feminist 63.5 64.6 47.7 59.0 49.5
Abortion Atheism 71.8 70.0 51.4 74.6 65.0

Table 3: Performance evaluation for our training-free
upgrading algorithm. We distill the knowledge of out-
dated weights using both unlabeled task data (LT

KD) and
Wikipedia (Lwiki

KD ). We also report the performance of
directly tuning the upgraded PLM using the full dataset
(FD) or 32-shot data (FS), and the demonstration learn-
ing baseline (Demo.).

the student model weights are obtained by apply-
ing Proj(∆T1

1 ) to the pre-trained weights of M2.
For the unlabeled corpus used for distillation, we
evaluate both the target task data (denoted as LT

KD)
and Wikipedia corpora (Lwiki

KD ). Note for the former,
we only use the input x and discard the correspond-
ing label y (i.e., the zero-shot setting). The former
can be seen as the upper bound for the latter since
the data format of the latter may not be compatible
with the target task. After that, we directly uti-
lize the learned projection to upgrade the outdated
weights of similar target tasks.

Baselines. We consider demonstration learn-
ing (Brown et al., 2020) as the baseline, which
integrates a few labeled examples into the input
text as additional context. The PLM directly per-
forms inference on the test set without incurring
any training. For reference, we also report the
performance when M2 is adapted using the full
dataset (FD) and the 32-shot dataset (FS). Instead,
our method requires no labeled data.

Efficiency Evaluation. We compare the compu-
tational costs needed for our training-free method
and the conventional tuning-based method in Fig-
ure 8. For the former, we record the time needed
in projection transferring (i.e., computing the up-
graded weights ∆T2∗

i+1). For the latter, we record the
training time needed until an adaptation converges.
It can be derived that our method requires signif-
icantly fewer computations, which demonstrates
its efficiency. In practice, such a projection can
be trained once and for all. As long as we have
obtained the projection, we can directly upgrade

0 2 10 0 5 5 0 7 10

1 2 10 1 5 5 1 7 10

2 2 10 2 5 5 2 7 10

IND 2 10 IND 5 5 IND 7 10

Figure 9: More attention visualization of attention heads
in fine-tuned M0, M1, and M2 given the same input.
Apart from the above PLMs, we also present the atten-
tion pattern of an independently trained PLM MIND.

potentially massive outdated weights in an efficient
manner, and the computations involved during pro-
jection learning can be neglected. Although cur-
rently we only support projection transferring for
a similar target task that belongs to the same cat-
egory of the source task, we expect future work
to explore how to train a universal projection that
could be applied to an arbitrary task.

Performance Evaluation. The results are shown
in Table 3, from which we find that: (1) our method
generally outperforms the demonstration baseline,
and could surpass the supervised performance (FD
and FS) under certain cases, despite not using any
labeled data. Hence, besides being computationally
efficient, our method achieves satisfactory perfor-
mance in general. This also validates our intuition
that for continually pre-trained PLMs, the upgrad-
ing of a specific task could provide referential ex-
perience for similar tasks; (2) using the task data
(LT

KD) for distillation generally performs better than
using Wikipedia (Lwiki

KD ), showing the importance
of proper data distribution used for knowledge dis-
tillation.
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Figure 10: Euclidean distance of continually pre-trained PLMs and their adapted weights. During pre-training, we
save the checkpoint for every 2.5k steps and fine-tune each checkpoint on the task CHEMPROT.

Initialization Random Tdiff Tsim Tsame

ANLI 47.4±0.9 46.3±1.1 49.6±1.1 48.8±0.9

SICK 88.8±0.2 88.8±0.3 89.4±0.4 89.5±0.2

H. Speech 79.9±3.1 82.4±0.9 78.4±2.0 81.1±2.6

Avg. 72.0±1.4 72.5±0.8 72.5±1.2 73.1±1.2

Table 4: The best test performance on 3 target tasks
with fine-tuning from different initialization using
RoBERTaBASE.

C Additional Experiments and Analyses

C.1 Euclidean Distance Analysis

We report the Euclidean distance of continually pre-
trained PLMs and the corresponding adapted mod-
els. We evaluate when the official RoBERTaBASE
is adapted on the BIO domain for 12.5k steps fol-
lowing the settings in § 3. We save the check-
point for every 2.5k steps. For each checkpoint
M1(t), denote its weights as θ01(t), we fine-tune
it on CHEMPROT to obtain its adapted weights
∆T

1 (t), where |∆T
1 (t)| = |θ01(t)|. The resultant

model weights are θT1 (t) = θ01(t)⊕∆T
1 (t).

Given two continually pre-trained models M1(t)
and M1(t

′), where t′ = t + 2.5k, we flatten their
pre-trained weights θ01(t) and θ01(t

′), and calcu-
late their L-2 norm1: ||θ01(t′) − θ01(t)||. In addi-
tion, we also calculate the L-2 norm of flattened
adapted weights (||∆T

1 (t)|| / ||∆T
1 (t

′)||) and dis-
tance between adapted PLMs (||θT1 (t′)− θT1 (t)||).
We illustrate the results in Figure 10 and find
that: (1) ||θ01(t′) − θ01(t)|| / ||θT1 (t′) − θT1 (t)||
gradually decreases with t increasing. This is
mainly because the learning rates are warmed up
for the first 6% steps, and the learning rate starts
to decrease at the 0.75k-th step, which means the
PLM gradually moves slower in the parameter
space; (2) the parameter change caused by down-
stream adaptation (i.e., ||∆T

1 (t)|| / ||∆T
1 (t

′)||) is far

1We use torch.dist function in PyTorch (Paszke et al.,
2019) for implementation.

smaller than that brought by continual pre-training
(||θ01(t′) − θ01(t)||). This is because downstream
adaptation converges shortly. After convergence,
the model parameters generally stay in a specific
optimal region. While continual pre-training con-
stantly pushes the model weights away from the
previous checkpoints in the parameter space. An-
other reason is that continual pre-training uses a
large batch 2048, while downstream adaptation of-
ten uses a much smaller batch size (e.g., 16).

C.2 More Visualization for Functional
Similarity Analysis

In the main paper (Figure 5), we visualize three
different attention heads of M0, M1, and M2.
In this section, we present more visualizations
to further support our claim. We also visualize
the attention pattern of an independently trained
PLM MIND. The results in Figure 9 again demon-
strate our claim that continually pre-trained PLMs
exhibit similar attention patterns, which indepen-
dently trained PLMs do not have.

C.3 Initialization-based Recyclable Tuning for
Fine-tuning and RoBERTaLARGE

In § 5.1, we mainly evaluate initialization-based
recyclable tuning using RoBERTaBASE and adapter
tuning. Here we extend the experiments to either
fine-tuning (Table 4) or RoBERTaLARGE (Table 5).
We choose 3 tasks in Table 1 and follow most of
the settings. From Table 4 and Table 5, we find that
the main conclusions are generally consistent with
those mentioned in the main paper. This implies
that the initialization-based method can be applied
to different tuning methods and PLMs.

C.4 Distillation-based Recyclable Tuning
under the Zero-shot Setting

We extend our distillation-based recyclable tuning
to the zero-shot setting where there is no labeled
data for tuning the upgraded PLM. We show that it
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Initialization Random Tdiff Tsim Tsame

ANLI 56.6±0.3 57.0±0.2 61.0±0.4 59.9±0.5

SICK 89.8±0.3 89.6±0.1 91.5±0.3 90.6±0.4

H. Speech 84.7±1.3 82.1±0.5 83.6±0.7 85.3±0.4

Avg. 77.0±0.6 76.2±0.3 78.7±0.5 78.6±0.4

Table 5: The best test performance on 3 target tasks
with adapter tuning from different initialization using
RoBERTaLARGE.

Task CHEMPROT IMDB SST-2 MNLI

Prompt 8.9 74.4 81.2 44.4
Demo. 9.8 78.1 84.4 47.1

Method AP FT AP FT AP FT AP FT

LKD 63.8 67.4 89.4 88.6 90.6 92.0 56.5 78.3
LKD+Init. 73.5 76.0 90.3 90.4 92.5 92.5 76.0 78.3

Table 6: Zero-shot experiments for distillation-based
recyclable tuning between M1 and M2. The outdated
weights of M1 are trained using the full dataset. Both
manual prompting (Prompt) and demonstration learning
(Demo.) are compared as the baseline.

is able to utilize unlabeled raw corpora to distill the
knowledge of outdated weights. Specifically, we
remove the task loss LT in Lfinal and only retain
LKD. Instead of using supervised examples, we
sample unlabeled data x from Wikipedia to com-
pute LKD. We evaluate recyclable tuning between
M1 and M2 and choose 4 downstream tasks, i.e.,
CHEMPROT, IMDB, SST-2, and MNLI. For each
task, the outdated weights of M1 are obtained with
the full dataset, and our goal is to distill their knowl-
edge and optimize M2’s weights.

Two training-free baselines are considered: (1)
manual prompting (Schick and Schütze, 2021),
which restructures the input into templates by in-
serting prompts, and (2) demonstration learning,
which has been introduced in appendix B.2. For
both baselines, the PLM directly performs infer-
ence on the test set without incurring any train-
ing. Moreover, we also evaluate the performance
when knowledge distillation is combined with the
initialization-based method.

We list the results in Table 6, from which it can
be derived that: (1) our method surpasses man-
ual prompting and demonstration learning by a
large margin, which shows the benefits of recy-
cling outdated adapted weights in the zero-shot
setting; (2) initializing tunable weights with the
outdated weights could further improve the perfor-
mance of LKD, which again demonstrates that both

Method Lfinal-LKD Lfinal Lfinal+Init. LITP

Setting (a): ∆Ti
i →∆Ti

i+1, i ∈ {1, 2, 3}

∆T1
1 →∆T1

2

AP 58.0±0.9 62.4±1.3 63.8±3.2 64.4±1.9

FT 61.4±3.1 64.5±0.5 64.7±0.6 64.8±0.8

∆T2
2 →∆T2

3

AP 78.3±1.4 80.7±0.3 80.8±0.7 80.9±0.3

FT 76.7±2.2 79.5±1.5 79.7±1.9 80.2±0.3

∆T3
3 →∆T3

4

AP 48.2±2.9 48.0±1.4 55.9±3.9 51.3±3.2

FT 51.8±4.2 54.2±0.7 61.4±2.9 55.6±3.2

Setting (b): ∆Ti
i−1→∆Ti

i , i ∈ {1, 2, 3}

∆T1
0 →∆T1

1

AP 53.1±0.7 61.4±1.1 64.7±0.4 62.3±1.4

FT 56.6±1.2 59.3±1.5 63.4±0.7 62.8±1.2

∆T2
1 →∆T2

2

AP 84.8±1.3 86.0±0.2 87.3±0.4 86.2±0.4

FT 82.0±1.8 85.5±0.8 86.8±0.7 85.7±1.0

∆T3
2 →∆T3

3

AP 49.4±3.2 49.9±3.8 49.2±1.2 50.4±3.3

FT 49.4±3.6 50.6±3.0 58.0±3.4 86.2±0.4

Table 7: Performance of interpolation distillation. We
follow the settings in § 5.2. The results of Lfinal-LKD,
Lfinal, and Lfinal+Init. are borrowed from Table 2.

initialization-based and distillation-based methods
are complementary to each other.

C.5 Interpolation Distillation

Traditional knowledge distillation frameworks have
no assumptions about the parametric connection
between the teacher and the student, and resort to
pulling closer their predictions (P) or inner rep-
resentations (h). As we have shown in the main
paper, continually pre-trained PLMs are guaran-
teed with close parametric connections. Therefore,
traditional knowledge distillation methods may fail
to exploit the parametric knowledge contained in
the teacher model’s parameters. Here we explore
another way for more effective distillation-based
recyclable tuning under our setting.

Framework. Inspired by MC-SGD (Mirzadeh
et al., 2020), we propose an interpolation distil-
lation technique to fully exploit the parametric
knowledge contained in outdated adapted weights.
Specifically, for recyclable tuning between Mi and
Mi+1, instead of optimizing the overall loss func-
tion using the only endpoint checkpoint (θLj

i+1 =

θ0i+1 ⊕ ∆
Tj
i+1) for task Tj , we linearly interpolate

θ
Lj

i and θ
Lj

i+1 to obtain a series of model check-

points: θ(µ) = (1−µ)θ
Lj

i +µθ
Lj

i+1. After that, we
feed data into θ(µ) and minimize the corresponding
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Method Lfinal-LKD Lfinal LITP Lfinal+Init.

Setting: full-data teacher

∆T1
1 →∆T1

2

AP 58.0±0.9 71.3±1.9 76.8±0.6 73.1±1.3

FT 61.4±3.1 70.7±1.5 74.4±0.8 76.2±0.5

∆T2
2 →∆T2

3

AP 78.3±1.4 84.3±0.5 84.7±0.3 86.7±0.5

FT 76.7±2.2 83.5±0.9 84.2±0.1 87.3±0.4

∆T3
3 →∆T3

4

AP 48.2±2.9 66.7±0.9 67.4±0.7 68.3±2.6

FT 51.8±4.2 62.8±3.0 65.2±1.4 69.8±1.8

Table 8: Experiments on RoBERTaBASE when teacher
models are adapted with the full-size dataset. Other
settings are kept the same with Table 2 setting (a).

loss together with L(θLj

i+1):

LITP(∆
Tj
i+1) = L(θLj

i+1)+γ
∑

µ∈{ 1
Nµ

,··· ,Nµ−1

Nµ
}

L(θ(µ)),

where γ is a hyper-parameter, and Nµ denotes a
constant integer. In practice, we found a small Nµ

(e.g., 2) already achieves satisfying performance.
During optimization, only ∆

Tj
i+1 is tuned by receiv-

ing gradients from both L(θji+1) and L(θ(µ)).
Experiments. We follow most of the settings in
§ 5.2 and evaluate the performance of interpolation
distillation. We compare it with the results of Lfinal-
LKD, Lfinal, and Lfinal+Init.. All results are shown
in Table 7, from which we observe that the inter-
polation distillation method (LITP) generally out-
performs the vanilla distillation (Lfinal), and could
surpass Lfinal+Init. in certain cases. This shows
that interpolation distillation successfully exploits
the parametric knowledge contained in the outdated
adapted weights, and serves as an improved method
for the distillation-based method.

C.6 Effects of Teacher Model Capability for
Distillation-based Recyclable Tuning

For experiments of setting (a) in distillation-based
recyclable tuning (§ 5.2), the teacher model is
trained with the same 32-shot dataset as the stu-
dent model. Here we explore whether a teacher
model with stronger capabilities would conduce to
the student’s performance. Specifically, keeping all
the other settings the same, we change the teacher
model’s data to the full-data size. The new results
are placed in Table 8, from which we conclude that:
(1) our methods (Lfinal, LITP, and Lfinal+Init.) still
outperform the baseline without knowledge dis-
tillation (Lfinal-LKD); (2) comparing the student’s
performance in Table 8 and Table 2 setting (a), we

Method Lfinal-LKD Lfinal LITP Lfinal+Init.

Few-shot teacher

∆T1
1 →∆T1

3

AP 60.5±2.1 66.3±1.5 67.5±1.7 67.2±1.5

FT 61.9±1.3 64.7±0.9 64.8±0.8 65.4±1.3

∆T1
1 →∆T1

4

AP 56.6±1.1 57.9±1.5 65.3±1.7 64.9±3.6

FT 59.7±2.3 62.9±2.4 64.4±0.5 65.1±2.2

Full-data teacher

∆T1
1 →∆T1

3

AP 60.5±2.1 74.2±0.9 77.8±0.6 78.0±0.5

FT 61.9±1.3 70.9±0.5 73.3±1.0 77.3±0.7

∆T1
1 →∆T1

4

AP 56.6±1.1 68.6±0.7 75.6±0.7 76.7±0.1

FT 59.7±2.3 69.8±0.5 74.0±0.5 76.0±0.8

Table 9: Experiments for distillation-based recyclable
tuning between non-adjacent PLMs, i.e., (M1, M3)
and (M1, M4). We follow the setting (a) in § 5.2. The
teacher model is trained using either the 32-shot data
or the full data. The student model is trained using the
32-shot data.

find through learning from a more powerful teacher,
the student’s performance is improved as well.

C.7 Experiments on Non-adjacent PLMs

For most of the experiments, we mainly focus on
recyclable tuning between adjacent PLMs. We
contend that the proposed methods should also
work for non-adjacent PLMs since they are still
guaranteed with close connections. To demon-
strate this, we take the distillation-based recyclable
tuning as an example. Specifically, we evaluate
the distillation-based recyclable tuning between
(M1, M3) and (M1, M4) using T1, and largely
follow the settings in § 5.2. We choose setting
(a) in § 5.2, and the only difference is that the
teacher model M1 is trained either using the 32-
shot dataset (dubbed as few-shot teacher) or the full
dataset (dubbed as full-data teacher). While the
student model is trained using the 32-shot dataset.
In this way, we could understand the role of the
teacher model in knowledge distillation.

The results are placed in Table 9, from which
we find that: (1) introducing knowledge distillation
(Lfinal) improves the performance than only using
task loss (Lfinal-LKD) and (2) introducing the para-
metric knowledge either through interpolation dis-
tillation (LITP) or weight initialization (Lfinal+Init.)
could further improve the task performance. Both
conclusions are aligned with those obtained on ad-
jacent PLMs. This demonstrates our claim that our
recyclable tuning is not limited to adjacent PLMs,
but also non-adjacent ones. Finally, we observe that
the student performance when the teacher is trained
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Method Lfinal-LKD Lfinal LITP Lfinal+Init.

Few-shot teacher

∆T1
1 →∆T1

2

AP 64.6±1.2 69.3±0.8 70.2±0.1 69.2±1.1

FT 64.7±2.7 70.3±1.6 70.9±2.0 72.5±1.1

Full-data teacher

∆T1
1 →∆T1

2

AP 64.6±1.2 78.8±0.6 82.8±0.3 82.4±0.5

FT 64.7±2.7 76.9±0.5 79.8±1.0 82.1±0.3

Table 10: Experiments of distillation-based recyclable
tuning for RoBERTaLARGE (M1, M2). We follow the
setting (a) in § 5.2. The teacher model is trained using
either the 32-shot data or the full data. The student
model is trained using the 32-shot data.
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Figure 11: Performance variation of distillation-based
recyclable tuning on IMDB at different data scales. We
compare two methods: the conventional tuning method
(Tuning), and our interpolation distillation method
(ITP).

using full data is much better, which shows the ben-
efits of learning from a more advanced teacher.

C.8 Distillation-based Recyclable Tuning
Experiments using RoBERTaLARGE

Previous experiments for distillation-based recy-
clable tuning are based on RoBERTaBASE, now we
turn to RoBERTaLARGE to show that our proposed
methods are model-agnostic. We experiment with
M1 and M2 using the task CHEMPROT. Other
settings are kept the same as those in appendix C.7.
In Table 10, we show that the results are generally
aligned with our conclusions before. These results
also reflect that our proposed method is agnostic to
the specific PLM chosen.

C.9 Effects of Data Size for Distillation-based
Recyclable Tuning

Taking a step further, we study the performance
of our distillation-based recyclable tuning at dif-
ferent data scales. Specifically, we focus on T2
(IMDB) for recycling M1’s outdated weights to
M2, where M1 is adapted using the full dataset,
and M2 is trained with {8, 16, 32, 64}-shot dataset,

Task LR BS S/E(AP) S/E(FT)

CHEMPROT 2× 10−5 16 25 epochs 10 epochs
IMDB 2× 10−5 16 25 epochs 10 epochs

ACL-ARC 2× 10−5 16 25 epochs 10 epochs
MNLI 2× 10−5 32 50k steps 50k steps
ANLI 2× 10−5 32 50k steps 50k steps
SICK 2× 10−5 32 50k steps 50k steps

R. Tomatoes 2× 10−5 32 50k steps 50k steps
A. Polarity 2× 10−5 16 15k steps 15k steps

SST-2 2× 10−5 16 15k steps 15k steps
H. Speech 2× 10−5 16 15k steps 15k steps

T. Hate 2× 10−5 16 15k steps 15k steps
T. Offensive 2× 10−5 16 15k steps 15k steps

Table 11: Hyper-parameters used for downstream adap-
tation (LR: learning rate, BS: batch size, S / E: maxi-
mum step / maximum epoch. AP and FT refer to adapter
tuning and fine-tuning.

respectively. By comparing the method mentioned
in appendix C.5 (LITP) with only the task loss LT ,
we visualize the performance variation in Figure 11,
from which we observe that: LITP surpasses only
the task loss (LT ) in general. However, with the
data scale increasing, the improvement becomes
smaller. This is because M2 is more adept at T2
than M1 due to the incremental knowledge acqui-
sition of D2. When there are only a few examples
to train M2, the teacher model has the advantage
of more labeled data. However, with the data size
of the student gradually approaching that of the
teacher, learning from the teacher gradually be-
comes redundant. The student model could well
master the downstream knowledge on its own.

D Training Details

We ensure that all the artifacts used in this paper
are consistent with their intended use.

D.1 Pre-training
We conduct pre-training using 8 NVIDIA V100
GPUs based on fairseq2 (Ott et al., 2019). We
choose Adam (Kingma and Ba, 2015) as the opti-
mizer. The hyper-parameters (ϵ, β1, β2) for Adam
are set to 1 × 10−6, 0.9, 0.98, respectively. The
dropout rate and weight decay are set to 0.1 and
0.01, respectively. The total number of param-
eters of RoBERTaBASE and RoBERTaLARGE are
125M and 355M, respectively. We implement pre-
training using the codes of Qin et al. (2022a).

Continual Pre-training. We start with the offi-
cial RoBERTa model and sequentially pre-train the

2https://github.com/pytorch/fairseq
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Target Task Tdiff Tsim EI (steps)

ANLI SST-2 MNLI 1000
SICK SST-2 MNLI 50
SST-2 MNLI A. Polarity 60
R. Tomatoes MNLI A. Polarity 100
H. Speech MNLI T. Hate 300
T. Offensive MNLI T. Hate 40

Table 12: The selection of source tasks and target tasks
for experiments in § 5.1. For each target task, we list
both Tdiff and Tsim. We also report the evaluation interval
(EI) w.r.t. training steps for each of the 6 target tasks.

PLM on 4 domains. For each domain, we set the
batch size to 2048, the training steps to 12.5k, and
the max sequence length to 512.

Pre-training from Scratch. For MIND that is
pre-trained from scratch, we follow the model
structure of RoBERTaBASE, and pre-train the model
on the concatenation of Wikipedia and BookCor-
pus (Zhu et al., 2015), which is the same as the
pre-training corpus of BERT (Devlin et al., 2019).
We pre-train the model for 125k steps, using a batch
size of 2048 and a sequence length of 512. The to-
tal computations involved are roughly comparable
to those of BERTBASE. MIND has totally different
initialization and pre-training corpus than the offi-
cial RoBERTaBASE, which helps us understand the
property between independently trained PLMs.

D.2 Empirical Analyses

Model Compatibility Analysis. We adapt the
initial PLM M0 on two tasks CHEMPROT and
MNLI. The training hyper-parameters conform to
those listed in Table 11. All experiments are con-
ducted 3 times with different random seeds, and
we report the average results.

Linear Mode Connectivity Analysis. All the
training hyper-parameters conform to those in Ta-
ble 11. The endpoints are adapted three times using
different random seeds. We test the performance of
25 evenly distributed points along the linear path
and two endpoints. We report the average perfor-
mance over three random seeds.

Functional Similarity Analysis. We adapt dif-
ferent PLMs on task CHEMPROT using the hyper-
parameters listed in Table 11. We randomly sam-
ple one instance3 from CHEMPROT and feed it
into different PLMs to obtain the scores after the

3We find empirically that the results and conclusions are
very consistent across different random samples.
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Figure 12: The loss of linear interpolations between two
adapted PLMs (θT0 and θT1 (t)) on CHEMPROT. The
corresponding visualization for performance is shown
in Figure 3.
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Figure 13: Mode connectivity (loss evaluation) between
continually pre-trained PLMs across 4 domains and
the initial M0. The corresponding visualization for
performance is shown in Figure 4.

self-attention computation. We draw the attention
scores for the first 25 tokens of the sampled in-
stance.

D.3 Methods and Experiments

For the optimizer of all the experiments in § 5, we
choose AdamW (Loshchilov and Hutter, 2019).

Initialization-based Recyclable Tuning. We
adapt M0 on the source tasks using the hyper-
parameters listed in Table 11. The adapted weights
are further used as target tasks’ initialization (ex-
cept the Random setting). The target tasks’ train-
ing configurations also conform to Table 11. We
conduct the experiments for 3 times with different
random seeds and report the average performance.
The choices of Tdiff and Tsim for different target
tasks are shown in Table 12. The evaluation inter-
val for each target task is also reported in Table 12.

Distillation-based Recyclable Tuning. We set
the maximum training step for CHEMPROT and
ACL-ARC to 100k and the maximum training step
for IMDB to 50k. The learning rate and batch size
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are set to 1× 10−4 and 2, respectively. We warm
up the learning rate for the first 8% percentage
of total training steps. We report the average re-
sults over 3 different random seeds. As for other
hyper-parameters discussed in § 5.2, we perform
grid search for β over {0.1, 0.3}, and α(1 − β)
over {0, 1, 5, 10, 50, 100}. We also conduct
a grid search for the temperature in knowledge
distillation loss over {10, 20} when calculating
KL(P(x,Mi)||P(x,Mi+1)). We select the best-
performing combination of these hyper-parameters
and then report the performance. Our grid search
is performed for our method and all the baseline
methods for a fair comparison.

E The Visualization of Loss for Linear
Mode Connectivity Analysis

When conducting experiments for the mode con-
nectivity analysis in the main paper, we mainly
resort to performance as the evaluation protocol for
the interpolations following Qin et al. (2022b). In
this section, we show the corresponding visualiza-
tion of loss for Figure 3 and Figure 4, see Figure 12
and Figure 13. From these figures, we conclude
that a significant loss barrier generally indicates the
existence of a large performance drop.

F Comparison of Initialization-based and
Distillation-based Recyclable Tuning

Both initialization-based and distillation-based
methods serve as powerful ways for recyclable
tuning under the continual pre-training scenario.
Both methods have their own advantages, where
the initialization-based method can bring faster con-
vergence and performance improvement, while the
distillation-based method can bring improvement
in performance as well (but may be less efficient).
In addition, both methods can be combined with
each other to further improve performance.

In terms of practical application scenarios, both
methods are slightly different. For one thing, the
initialization-based method requires that the ar-
chitectures of the new PLM and the old PLM
are the same. This requirement may be infeasi-
ble for broader application scenarios, such as re-
cyclable tuning between different PLMs as dis-
cussed in § 6. For another, the initialization-based
method typically requires access to the parame-
ters of the outdated adapted weights. This can be
a practical issue due to model privacy concerns.
While some customers are willing to share their

adapted weights on public platforms like Adapter-
Hub (Pfeiffer et al., 2020), a majority of adapted
weights are publicly unavailable. In contrast, the
distillation-based method can be achieved without
access to the model weights, but through receiving
model inference from the owner (e.g., API-based
online knowledge transfer (Krishna et al., 2019)).
In this sense, the distillation-based method could
protect the model privacy to a certain degree.

Broader Impacts

This research has the potential to have a broad
impact in several ways.
• First, recyclable tuning could improve the ef-

ficiency of adapting PLMs to new tasks. By
recycling adapted weights from previous tasks,
the need for costly retraining can be reduced, po-
tentially making it more feasible to apply PLMs
in a wider range of scenarios.

• Second, the results of this research could have
implications for the sustainability of machine
learning systems. Reusing adapted weights
rather than discarding them can help us reduce
the carbon footprint and resource consumption
of PLM adaptation, making it more environmen-
tally friendly.

• Third, this research has the potential to bene-
fit a wide range of stakeholders, including re-
searchers, developers, and users of PLMs. Re-
searchers can use the proposed task and bench-
mark to develop and evaluate new techniques
for recyclable tuning, while developers can ap-
ply these techniques to improve the efficiency
and sustainability of PLM-based systems. Fi-
nally, users of PLMs can benefit from the re-
duced costs and improved performance made
possible by recyclable tuning.
Overall, this research on recyclable tuning for

continual pre-training has the potential to have a
wide-ranging impact on the efficiency, sustainabil-
ity, and practicality of machine learning systems.
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hyperparameter values?
Section D.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4, Section 5, Section B, Section C, and Section D.

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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