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Abstract

Code summarization, which aims to automati-
cally generate natural language descriptions of
the source code, has become an essential task
in software development for better program
understanding. Abstract Syntax Tree (AST),
which represents the syntax structure of the
source code, is helpful when utilized together
with the sequence of code tokens to improve
the quality of code summaries. Recent works
on code summarization attempted to capture
the sequential and structural information of the
source code, but they considered less the prop-
erty that source code consists of multiple code
blocks. In this paper, we propose BLOCSUM,
BLOck scope-based source Code SUMmariza-
tion via shared block representation that utilizes
block-scope information by representing vari-
ous structures of the code block. We propose
a shared block position embedding to effec-
tively represent the structure of code blocks
and merge both code and AST. Furthermore,
we develop variant ASTs to learn rich informa-
tion such as block and global dependencies of
the source code. To prove our approach, we per-
form experiments on two real-world datasets,
the Java dataset and the Python dataset. We
demonstrate the effectiveness of BLOCSUM
through various experiments, including abla-
tion studies and a human evaluation.

1 Introduction

A description of source code is very important in
software development because it helps develop-
ers better understand programs. Advances in deep
learning have enabled automatic code summariza-
tion and increased software maintenance efficiency.
Previous approaches on automatic source code sum-
marization can be categorized into sequence-based,
structure-based, and hybrid approaches. Sequence-
based approaches generated summaries by captur-
ing the sequential information of source code (Iyer
et al., 2016; Allamanis et al., 2016; Liang and Zhu,
2018; Hu et al., 2018b; Wei et al., 2019; Ye et al.,

2020; Ahmad et al., 2020). They tokenized source
code into a sequence of code tokens and encoded
them using seq2seq models. Meanwhile, structure-
based approaches used Abstract Syntax Tree (AST)
to capture the structural information of code (Hu
et al., 2018a; Fernandes et al., 2019; Shido et al.,
2019; Harer et al., 2019; Zhang et al., 2019; LeClair
et al., 2020; Liu et al., 2021; Lin et al., 2021; Alla-
manis et al., 2018; Wang and Li, 2021; Wu et al.,
2021). They parsed the source code into the AST
and utilized graph models such as Graph Neural
Networks (GNNs). Some works flattened AST into
a pre-order traversal sequence (Alon et al., 2019,
2018; LeClair et al., 2019; Wang and Li, 2021;
Choi et al., 2021). Hybrid approaches utilized both
the token sequence and the ASTs of codes (Wan
et al., 2018; Wei et al., 2020; Zhang et al., 2020;
Shi et al., 2021). They parallelly processed token
sequences and ASTs with independent encoders
and tried to merge them in the decoder.

However, the existing approaches have some lim-
itations. Sequence-based approaches treated the
source code as a single statement, so they incor-
porated only the sequence information of the code
without any structural information such as code
blocks. Structural information is very important to
understand code because a snippet of code can be
considered as a hierarchy of blocks.

Structure-based approaches tried to catch such
structural information of code, but they considered
less sequential information of code. A snippet of
code is a sequence, so sequential information is
also important to understand code. Another prob-
lem is that they depended only ASTs to capture
structural information of code. However, ASTs are
not suitable for capturing structural information
because they are syntax trees for grammatical pur-
pose. Since the AST is a tree, there is only one
path between every pair of nodes. Any two nodes
in ASTs are connected, but with a relatively long
path, which hinders capturing the structural rela-
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public static void main(String[] args) {

int max = Integer.MIN_VALUE;

int min = Integer.MAX_VALUE;

int[] data = {-2, -5, -3, -7, -1};

for (int i = 0; i < data.length; i++) {

if (data[i] > max){

max = data[i] ;

System.out.println(“find min value”);

}

if(data[i] < min){

min = data[i] ;

System.out.println(“find min value”);

}

}

System.out.println(“max : "+max);

System.out.println(“min : "+min);

}
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Figure 1: An example of code snippet and its AST in the Java language. (a) The orange box denotes the code block
and the number means the index of the code block. (b) The nodes in the orange rectangular box belong to the same
block in the AST.

tions of nodes. It causes difficulties in propagating
structural information to distant nodes in the AST.
Some structure-based approaches tried to alleviate
these problems by providing additional graphs such
as Control Flow Graph (CFG) and Program Depen-
dence Graph (PDG), but the cost and time required
to produce these graphs and integrate them into one
graph are not negligible.

Hybrid approaches utilized both code and its
AST. Since both sequential and structural informa-
tion of code is necessary to understand code, the
approaches showed higher performances than the
previous ones. However, they failed to effectively
merge two different types of information. They sim-
ply adopted independent encoders for each of them
and tried to merge them in the decoder. Due to inde-
pendent encoders, their representations are easy to
be independent. It will make it hard to effectively
merge both sequential information of code and
structural information. Since the token sequence
and the AST of code are just different descriptions
of the same code, they need to be encoded so that
they are correlated with each other.

To address these limitations mentioned above,
we exploit the fact that the source code is a set
of blocks consisting of multiple statements for a
specific purpose. The code tokens in one code block
are configured for the same purpose. As shown in
Figure 1a, the code block if { ... } (orange)
consists of statements that are executed when a
certain condition is true. So, it needs to consider
the information on which block each code token
belongs to. To better capture structural information,
we need to give each token not only positional

information but also block positional information
when encoding.

Since ASTs do not have enough information to
capture the structural information of code, we need
to modify ASTs. The additional information we try
to add is block dependency and global dependency
between nodes. For example, as shown in Figure
1b, the node “max” in the orange block of AST is
only connected to its parent node, “Statement”,
but there exists implicit block dependency that the
node “max” belongs to the same orange block as
the node “data” in the purple dashed line. Fur-
thermore, there exists implicit global dependency
between nodes. For example, the node “max” in the
orange box is the same variable as the nodes in the
green dashed line. We need to add such information
to ASTs.

Also, we need to match blocks in the token se-
quence with blocks in the AST. For example, code
tokens (“if”, “(”, “data”, ..., “}”) (or-
ange) in Figure 1a can be mapped to its correspond-
ing nodes in the AST (“If”, “data”, ... ,
“println”) (orange) in Figure 1b. Here, the block
in the code and the block in the AST are the same
part with an equal role, so we will utilize informa-
tion on which block of code corresponds to which
block of AST. Such information can make the code
and AST correlated, and assist effective merging
of two kinds of information.

In this paper, we propose BLOCSUM, BLOck
scope-based source Code SUMmarization via
shared block representation that utilizes block-
scope information of token sequences and ASTs.
First, we propose the shared block position em-
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Figure 2: Overview of our proposed approach, BLOCSUM.

beddings for effectively representing the structure
of the code block and combining a correlation be-
tween the code and the AST encoders. Furthermore,
we develop simple yet effective variants of ASTs
to learn rich information such as block and global
dependencies of the source code. To validate our ap-
proach, we perform experiments on the Java dataset
and the Python dataset. We prove the superiority of
BLOCSUM through various experiments including
ablation studies and a human evaluation.

2 BLOCSUM

In this section, we present the details of our model.
Figure 2 shows the overall architecture of BLOC-
SUM. We first introduce the shared block position
embedding and the abstract syntax tree variants and
explain the architecture of BLOCSUM in detail.

2.1 Shared Block Position Embedding

We suppose that there are code tokens ci in a code
snippet C = {c1, c2, ...} and AST nodes ni in its
AST sequence N = {n1, n2, ...}. We aim to predict
a summary given the code tokens and the AST
nodes.

Code blocks are the basic structural components
of source code. Usually, code tokens in a block are
gathered for a certain purpose, so the tokens need
to be identified that they are in the same block. To
distinguish which blocks are, we assign indexes to
each block in the order of blocks in the code. Then

each token has a block position with an index of the
block it belongs to. If the code token is in nested
blocks, we choose the innermost block index as the
block position.

In order to utilize the block information of each
token, we develop the block position embedding
layer. Tokens in the same block have the same block
position embedding. The code token embedding for
the code encoder, Ec, is defined as follows:

Ec(t) = Wc(t) + Pc(t) +Bc(t) (1)

for code token t. In the equation 1, Wc, Pc, and
Bc are the word, position, and block position em-
bedding layers for the code encoder, respectively.
Two position embeddings, Pc and Bc, are learnable
positional encoding.

We also combine the AST nodes with block po-
sition embeddings to ensure that nodes in the same
block have identical block information when node
representations are learned by the AST encoder. As
with the block position of the code tokens, each
node is assigned a block position value. Since the
block in the AST is a sub-tree structure in the AST,
the node has an index of the sub-tree to which it
belongs. Nodes in the same block have the same
block positional embedding as code tokens. The
AST node embedding for the AST encoder, Es, is
defined as follows:

Es(n) = Ws(n) + Ps(n) +Bs(n) (2)
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(a) AST-original (b) AST-block (c) AST-global

Figure 3: We introduce three different types of the AST:
(a) AST-original referred as the original AST, (b) AST-
block connected by edges between two nodes which are
in the same code block, (c) AST-global connected by
edges between all the nodes in the AST.

for node n. In Equation 2, Ws, Ps, and Bs are the
word, position, and block position embedding lay-
ers for the AST encoder, respectively. The position
of a node is defined as the position in the pre-order
traversal sequence of the AST. Two position em-
beddings, Ps and Bs, are also learnable.

There are two different types of inputs, code
and AST, but they are just different descriptions
for the same snippet. If two encoders for code and
AST learn representations for code tokens and AST
nodes separately, their representations will be easy
to be independent and very hard to effectively com-
bine both sequential and structural information.

In order to correlate the representations learned
by two encoders, we allow the encoders to share
the block position embedding layer. If the code
token and the AST node belong to the same block,
they will have the same block position embedding
value. That is, we utilize additional information on
which parts of the code correspond to which parts
of the AST to generate better representations. If
the block position embedding layers are shared, the
embeddings for a token, t, and a node, n are as
follows:

Ec(t) = Wc(t) + Pc(t) +B(t) (3)

Es(n) = Ws(n) + Ps(n) +B(n) (4)

where B is the shared block position embedding
layer.

Shared block position embedding can effectively
merge the information from two encoders. Also, it
helps the code and the AST encoders to capture
the structure of source code by providing block
information.

2.2 Abstract Syntax Tree Variants
The original AST is a structure in which a node
is connected only to its parent and children nodes.
It contains local information, but it does not in-
clude the entire structure information of the code.

Two nodes in the same block have implicit block
dependency. There is also global dependency that
two nodes have the same meaning even if their hop
distance is very long. To utilize rich structural in-
formation such as block and global dependencies,
we develop a simple yet effective method to recon-
struct variants of AST. We define three variants of
the AST: AST-original, AST-block, and AST-global.

AST-original is the original AST, which con-
tains information on the local dependency between
nodes, as shown in Figure 3a. The variants of AST
are graphs of which nodes are the same as those of
AST, but of which links are different.

AST-block is the first variant of AST. We obtain it
by removing the edges in AST-original, and adding
new edges between the nodes belonging to the same
block to represent the block structure information,
as shown in Figure 3b. It represents information on
the block dependency between nodes in the AST.

AST-global is the second variant of AST. As
shown in Figure 3c, we fully connect all the nodes
in the AST. It represents the global and complete
dependency between nodes in the AST. If the pre-
order sequence of AST-global is learned by graph
model, the node representations in the sequence
represent context information of the AST.

Each of the three AST variants represents local,
block, and global dependencies between nodes in
the AST. When they are learned organically by
the AST encoder, node representations will contain
rich structural information of the AST.

2.3 BLOCSUM Architecture

Code Encoder Our code transformer encoder
consists of 6 transformer layers (Vaswani et al.,
2017). Each layer of the code transformer en-
coder is composed of two layers: multi-head self-
attention (Vaswani et al., 2017) and feed-forward
network. And residual connection (He et al., 2016)
and layer normalization (Ba et al., 2016) are per-
formed on each two sub-layers. The transformer
encoder captures the sequential and block informa-
tion of the code tokens to which the shared block
position embedding is added.

AST Encoder We use Graph Attention Networks
(GATs) (Velickovic et al., 2018) for learning three
different AST variants defined above: AST-original,
AST-block, and AST-global. Our AST encoder con-
sists of 6 multiple GAT encoder layers. Each layer
of the AST multiple GAT encoder consists of three
GATs for each variant AST. Each GAT captures
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local dependencies for AST-original, block depen-
dencies for AST-block, and global dependencies for
AST-global, respectively.

For the l-th layer of the AST encoder, the process
is performed as follows:

hlln = GATln(Aln, h
l−1
n )

hlbn = GATbn(Abn, h
l−1
n ) (5)

hlgn = GATgn(Agn, h
l−1
n )

where GATln, GATbn, GATgn and Aln, Abn, Agn

denote the GAT layers for three variant ASTs and
the adjacency matrices in the AST-original, AST-
block, and AST-global, respectively. Especially, the
GAT for AST-global is the same as self-attention
for learning the context of all nodes in the AST.

Finally, the three representations are combined
and performed from residual connection and layer
normalization by the following equation:

hln = LN(hl−1
n + FFN(hlln, h

l
bn, h

l
gn)) (6)

where hln is the concatenated node embedding in
the l-th layer of AST GAT encoder, LN denotes
layer normalization, and FFN is a feed-forward
network.

With the deep AST encoder layers, the node
representations combine and propagate the local,
block, and global information of the AST.

Summary Decoder The summary transformer
decoder consists of 6 transformer decoder layers
(Vaswani et al., 2017). Code token representations
are learned with sequence and block information
in the code transformer encoder and node represen-
tations are learned with local, block, and global de-
pendencies of the code in the AST encoder. Given
the code and node representations learned from
each encoder, the summary transformer decoder
learns to predict the summary of the original code
token by fusion of the code and the AST representa-
tions. The multi-head self-attention in the decoder
is performed sequentially on the code representa-
tions and node representations.

Finally, when the summary transformer decoder
predicts the t-th words, the copy mechanism (See
et al., 2017) is applied to directly use the code
tokens and AST nodes.

3 Experiment Results

3.1 Setup
Datasets We evaluate using the benchmarks of
the two real-world datasets, the Java dataset (Hu

et al., 2018b) and the Python dataset (Wan et al.,
2018). The experiment datasets are divided into
69,708/8,714/8,714 and 55,538/18,505/18,502 for
train/valid/test, respectively. For extracting the AST
of each dataset, we used a java parser javalang
in the Java dataset and a python parser ast in the
Python dataset used by Wan et al. (2018). Refer
to Appendix A for the statistics of the datasets in
detail.

Hyper-parameters We set the maximum length
of code, AST, and summary to be 200, 200, and 50,
respectively. For training the model, we use Adam
optimizer (Kingma and Ba, 2015). We set the mini-
batch size as 80. The maximum training epoch is
100, and if the performance does not improve for 5
epochs, we stop early. Refer to Appendix C for the
implementation details.

Evaluation Metrics We use BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
and ROUGE-L (Lin, 2004) as metrics. We adopt S-
BLEU, which indicates the average sentence-level
BLEU score. Refer to Appendix B in detail.

Baselines We adopt seq2seq models (Iyer et al.,
2016; Hu et al., 2018a,b; Wei et al., 2019; Ahmad
et al., 2020), graph2seq models (Eriguchi et al.,
2016; Wan et al., 2018; Wu et al., 2021), hybrid
models (Choi et al., 2021; Shi et al., 2021; Wu et al.,
2021; Gong et al., 2022), and a pre-trained model
CodeBERT (Feng et al., 2020) as the baselines. We
fine-tuned the pre-trained model CodeBERT for
code summarization.

3.2 Quantitative Result

Overall Result Table 1 shows the overall per-
formance of BLOCSUM and baselines on the
Java and Python benchmark datasets. First, we
can see that BLOCSUM improves the perfor-
mance by 4.47 and 2.64 BLEU, 5.68 and 4.66
METEOR, and 4.63 and 3.85 ROUGE-L on the
Java and Python datasets compared to the sequence-
based approach, TransRel. In comparison with the
structure-based approach, SITTransformer, the per-
formance of BLOCSUM improves by 3.29 and
1.05 BLEU, 4.53 and 2.11 METEOR, and 3.84
and 2.23 ROUGE-L on the two datasets. The result
shows that it is effective to capture the overall struc-
ture of code when AST is utilized together with
the sequence of code tokens. Moreover, BLOC-
SUM performs better than hybrid approaches. Com-
pared to GCNTransformer, the result shows that it
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Methods Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CODE-NN (Iyer et al., 2016) 27.60 12.61 41.10 17.36 09.29 37.81
Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 09.75 39.34
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
TL-CodeSum (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
Transformer (Ahmad et al., 2020) 44.58 26.43 54.76 32.52 19.77 46.73
CodeBERT* (Feng et al., 2020) 41.32 27.42 55.33 30.72 21.53 49.93
GCNTransformer (Choi et al., 2021) 45.49 27.17 54.82 32.82 20.12 46.81
SiTTransformer (Wu et al., 2021) 45.76 27.58 55.58 34.11 21.11 48.35
CAST (Shi et al., 2021) 45.19 27.88 55.08 - - -
SCRIPT (Gong et al., 2022) 46.89 28.48 56.69 34.00 20.84 48.15

BLOCSUM 49.05 32.11 59.42 35.16 23.22 50.58

Table 1: Comparison of our proposed model with the baseline models on the Java and Python datasets. We fine-tuned
CodeBERT* with an input length of 200 and an output length of 50 for the two datasets.

is more effective to capture both the sequential
and structural information of the code consider-
ing the local, block, and global dependencies of
AST rather than a flattened AST. Also, BLOC-
SUM considering the correlation between code and
node representations performs better than Triplet-
pos using two independent encoders for the code
and AST. Finally, we compared our approach with
CodeBERT, a strong pre-trained program language
model. BLOCSUM performs significantly better
than CodeBERT trained on large code data. The
result shows that our approach is more appropriate
for code modeling than the pre-trained model in
the code summarization task.

3.3 Qualitative Result

Ablation Study we perform ablation studies to
validate the effectiveness of shared block posi-
tion embedding and AST variants on the Java and
Python datasets.

First, we design five models for comparison to
verify the shared block position embedding: 1) not
use block position embedding (unuse) 2) only use
code block position embedding (code block emb) 3)
only use AST block position embedding (ast block
emb) 4) use separate block position embedding
for code and AST (separate) 5) use shared block
position embedding (share).

In Table 2, code block emb and ast block emb
have better performance than unuse. This result
shows that block position embedding is effective
in capturing the block information in each encoder.
Also when both code and AST encoder use each
separate block position embedding, we can see that
it is more effective than only using one block po-

Block Pos Emb BLEU METEOR ROUGE-L

Java Dataset

unuse 48.46 31.47 58.65
code block emb 48.53 31.56 58.63
ast block emb 48.54 31.77 58.92
separate 48.83 32.06 59.13
share 49.05 32.11 59.42

Python Dataset

unuse 34.33 22.74 49.98
code block emb 34.50 22.84 50.10
ast block emb 34.56 22.83 50.08
separate 34.79 23.10 50.33
share 35.16 23.22 50.58

Table 2: Ablation study on shared block position embed-
ding.

sition embedding. Moreover, share has the best
performance in comparison with other models. The
shared block position embedding can learn the
correlation between the code and AST encoders
through the block-scope information rather than
each separate block position embedding. Shared
block position embedding not only effectively cap-
tures the structure of the code block, but also helps
connect both the code and AST.

Second, we compare our approach with other
combinations for verifying the effectiveness of vari-
ant ASTs: 1) AST-original (o) 2) AST-block (b), 3)
AST-global (g).

As illustrated in Table 3, the results show that
leveraging more structural information, such as
block or global dependencies, performs better than
modeling AST-original with only local dependency.
Also, combining AST-original, AST-block, and AST-
global has the best performance in comparison with
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Combination BLEU METEOR ROUGE-L

Java Dataset

o 48.39 31.73 58.98
g 48.41 31.63 58.40
o + g 48.76 31.87 59.00
o + b + g 49.05 32.11 59.42

Python Dataset

o 34.58 22.76 50.14
g 34.41 22.84 50.01
o + g 34.64 22.87 50.11
o + b + g 35.16 23.22 50.58

Table 3: Ablation study on combination of AST variants.

combining other combinations. We demonstrate
that utilizing AST variants helps learn rich infor-
mation such as block and global dependencies of
the source code.

Human Evaluation We performed a human eval-
uation on the Python dataset to demonstrate the
quality of generated summaries. We randomly se-
lect 100 code snippets and ask three people with
knowledge of the Python language to evaluate the
summaries. They are CS graduate students with
many years of experience in Python languages. Fol-
lowing the human evaluation metrics of (Choi et al.,
2021), we ask them to evaluate the 3 following
metrics: 1) Fluency (Quality of the summary &
grammatically correct), 2) Relevance (Selection of
the consistent content in source code), 3) Cover-
age (Selection of the important content in source
code). We show pairs of summaries generated from
BLOCSUM and the baseline fine-tuned (Feng et al.,
2020) to the evaluators, and they select one of win,
tie, and loss in three metrics for both results.

Table 4 shows the results of human evaluation
on the generated summaries on the Python dataset.
The scores of fluency is lower, but the relevance
and coverage are very higher than the baseline,
CodeBERT. We analyzed the generated summaries
of the two models and identified that BLOCSUM
generates it similarly to the ground truth, reflect-
ing the keyword of the code. CodeBERT, a pre-
trained language model, can generate more fluent
and grammatical summaries, but the length is rela-
tively short and a very plain summary with no key-
words. The average tokens in the ground truth are
10.14, while the average tokens in summaries gen-
erated by BLOCSUM and CodeBERT are 9.91 and
8.16, respectively. We think that short sentences
are more grammatically advantageous than long
sentences. BLOCSUM has the highest tie in terms

Fluency Relevance Coverage

Win 76 143 125
Tie 114 64 80

Loss 110 93 95

Table 4: Human evaluation of the appropriateness of the
generated adversarial example on the Python dataset.

of fluency but the highest win in terms of relevance
and coverage. The result means that BLOCSUM
reflects more the core characteristic of the code
than CodeBERT.

Comparison with the baselines Table 5 shows
the summary examples generated from our pro-
posed model on the Python dataset. The result on
the Python dataset example shows BLOCSUM pre-
dicts the keywords “wsgi” and “request” by re-
flecting block-scope information. Although there
is no dependency between two words in the code
and the original AST, BLOCSUM utilizes three
different types of AST variants and jointly learns
structural dependency in three aspects to improve
the performance of the model. Refer to Appendix
D for more summary examples on the Java and
Python datasets.

4 Related Work

Sequence-based Approaches Iyer et al. (2016)
and Allamanis et al. (2016) proposed to use Long
Short Term Memory (LSTM) and Convolutional
Neural Networks (CNNs) for the source code sum-
marization. Liang and Zhu (2018) proposed a tree-
based recursive neural network to represent the
syntax tree of code. Hu et al. (2018b) and Chen
et al. (2021) summarized the source code with the
APIs knowledge. Wei et al. (2019) used a dual train-
ing framework by training code summarization and
code generation tasks. Also, Ye et al. (2020) consid-
ered the probabilistic correlation between the two
tasks. Choi et al. (2020) proposed attention-based
keyword memory networks for code summariza-
tion. Ahmad et al. (2020) proposed a Transformer
model using a relative position. However, these
approaches have limitations in that they did not
explicitly incorporate the structural information of
the source code, which is just as crucial as captur-
ing the code semantics. Also, they did not learn the
code block information because they learned the
code as a sequence of tokens.
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Python Code def simulate_request(app, method=’GET’, path=’/’, query_string=None, headers=None, body=None,
file_wrapper=None, params=None, params_csv=True):

if (not path.startswith(’/’)):
raise ValueError("path must start with ’/’")

if (query_string and query_string.startswith(’?’)):
raise ValueError("query_string should not start with ’?’")

if (’?’ in path):
raise ValueError(’path may not contain a query string. Please use the query_string parameter

instead.’)
if (query_string is None):

query_string = to_query_str(params, comma_delimited_lists=params_csv, prefix=False)
env = helpers.create_environ(method=method, path=path, query_string=(query_string or ”),

headers=headers, body=body, file_wrapper=file_wrapper)
srmock = StartResponseMock()
validator = wsgiref.validate.validator(app)
iterable = validator(env, srmock)
result = Result(iterable, srmock.status, srmock.headers)
return result

Ground Truth simulate a request to a wsgi application .
CodeBERT simulate a wsgi environment .
BLOCSUM simulate a request to a wsgi request .

Table 5: A qualitative example on the Python dataset.

Structure-based Approaches Hu et al. (2018a)
proposed an RNN-based model using the pre-order
traversal sequence as input. Shido et al. (2019);
Harer et al. (2019) adopted Tree-LSTM, Tree-
Transformer to encode tree-based inputs. LeClair
et al. (2020) proposed encoded AST using graph
neural networks and trained LSTM. Liu et al.
(2021) proposed a retrieval augmented method with
Graph Neural Network (GNN). Zhang et al. (2019)
proposed AST-based Neural Network (ASTNN)
for encoding the subtree. Lin et al. (2021) pro-
posed Tree-LSTM to represent the split AST for
code summarization. Li et al. (2021) leverage the
retrieve-and-edit framework to improve the perfor-
mance for code summarization. Allamanis et al.
(2018), Wang and Li (2021), and Wu et al. (2021)
tried to capture rich information using additional
graphs such as CFG and PDG. But, these ap-
proaches considered only the structural informa-
tion of the AST without considering the sequential
information of the code token.

Hybrid Approaches Alon et al. (2019) leveraged
the unique syntactic structure of programming lan-
guages by sampling paths in the AST of a code snip-
pet. LeClair et al. (2019) proposed ast-attendgru
model that combines code with structure from AST
Also, Choi et al. (2021) proposed a model that
combines Graph Convolution Network and Trans-
former using AST. Wu et al. (2021) incorporated a
multiview graph matrix into the transformer model.
Shi et al. (2021) tried to hierarchically split and

reconstruct ASTs using Recursive Neural Network
for learning the representation of the complete AST.
Wan et al. (2018) used a deep reinforcement learn-
ing framework to consider an AST structure and
code snippets. Gong et al. (2022) proposed a struc-
tural position method to augment the structural cor-
relations between code tokens. But, they encoded
two types of representations independently without
correlation and did not consider merging them.

Zhang et al. (2020) proposed a retrieval-based ap-
proach using syntactic and semantic similarity for
source code summarization. Liu et al. (2021) pro-
posed a hybrid GNN using a retrieval augmented
graph method. Wei et al. (2020) proposed a com-
ment generation framework using AST, similar
code, and exemplar from code. Choi et al. (2023)
proposed a self-attention network that adaptively
learns the structural and sequential information of
code. But, they tried to model the code using more
code information through retrieval methods.

5 Conclusion

In this paper, we proposed BLOCSUM, BLOck
scope-based source Code SUMmarization via
shared block representation that utilizes block-
scope information by representing various struc-
tures of the code block. We designed two methods
using the fact that a code block is a fundamental
structural component of the source code. We pro-
pose the first method, the shared block position
embedding, for effectively representing the struc-
ture of the code block and merging a correlation
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between the code and the AST encoders. Further-
more, we developed to reconstruct simple yet effec-
tive AST variants to learn rich information such as
block and global dependencies of the source code.
Experimental results demonstrated the effective-
ness of BLOCSUM and confirmed the importance
of block-scope information in the code.

Limitations

In this paper, we conducted an experiment on code
summarization using two benchmark datasets, the
Java dataset (Hu et al., 2018b) and the Python
dataset (Wan et al., 2018). BLOCSUM may need
to be tested for its generalizability to other program
languages. We chose two program languages (Java
and Python) that were easily parsed to map the
block position of Code and AST. We believe that
since other programming languages have similar
syntactic structures, BLOCSUM should be able to
achieve similar performance on them as well.

Ethics Statement

This paper proposes block scope-based source code
summarization via shared block representation that
utilizes block-scope information by representing
various structures of the code block, which is bene-
ficial to increase the efficiency of developers. The
research conducted in this paper will not cause
any ethical issues or have any negative social ef-
fects. The data used is all publicly accessible and
is commonly used by researchers as a benchmark
for program and language generation tasks. Our
proposed method does not introduce any ethical or
social bias or worsen any existing bias in the data.
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A Statistics of Experiment Datasets

For obtaining ASTs of the Java and Python dataset,
we use the javalang1 and ast2 library, respectively.
Also, we tokenize the source code and the AST to
subtokens as the form CamelCase and snake-case .

Dataset Java Python

Train 69,708 55,538
Valid 8,714 18,505
Test 8,714 18,502

Unique non-leaf nodes in ASTs 106 54
Unique leaf nodes in ASTs 57,372 101,229

Unique tokens in summaries 46,895 56,189

Avg. nodes in AST 131.72 104.11
Avg. tokens in summary 17.73 9.48

Table 6: Statistics of Java dataset (Hu et al., 2018b)
and Python dataset (Wan et al., 2018). For obtaining
their corresponding ASTs, we use the javalang and ast
libraries, respectively.

B Evaluation Metrics

BLEU(Papineni et al., 2002) is a Bilingual Evalu-
ation Understudy to measure the quality of gener-
ated code summaries. The formula for computing
BLEU is as follows:

BLEU = BP · exp
N∑

n=1

ωn log pn

where pn is the geometric average of the modified
n-gram precisions, ωn is uniform weights 1/N and
BP is the brevity penalty.

METEOR(Banerjee and Lavie, 2005) is used to
measure how closely the metric scores match the
human judgments about the quality of the transla-
tion. So unigram precision (P ) and unigram recall
(R) are computed and combined via a harmonic
mean. The METEOR score is computed as follows:

METEOR = (1− γ · fragβ) · P ·R
α · P + (1− α) · P

where frag is the fragmentation fraction. α, β,
and γ are three penalty parameters whose default
values are 0.9, 3.0, and 0.5, respectively.

ROUGE-L(Lin, 2004) is used to apply Longest
Common Subsequence in summarization evalua-
tion. ROUGE-L used LCS-based F-measure to es-
timate the similarity between two summaries X

1https://github.com/c2nes/javalang
2https://github.com/python/cpython/blob/master/Lib/ast.py

of length m and Y of length n, assuming X is a
reference summary sentence, and Y is a candidate
summary sentence, as follows:

Rlcs =
LCS(X,Y )

m
,Plcs =

LCS(X,Y )

n

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs

where β = Plcs/Rlcs and Flcs is the value of
ROUGE-L.

C Implementation Detail

We conducted experiments on Ubuntu 18.04 with
4 2080 Ti GPUs. The environment of the sever
supports python 3.9, Cuda 10.2, pytorch 1.9, and
pytorch geometric 1.7.

The average training and inference time for
BLOCSUM takes about 40 and 0.5 hours, respec-
tively. BLOCSUM has about 76 million parame-
ters.

Hyper-parameter Size

the maximum length of code tokens 200
the maximum length of AST nodes 200

the maximum length of summary tokens 50

Embedding dimension 512
The number of Code Encoder layers 6
The number of AST Encoder layers 6
The number of Code Decoder layers 6

Head of Attention 8

batch size 80
train epoch 100
early stop 5

learning rate 0.0005
learning decay 0.99

beam size 5

Table 7: Hyper-parameters of BLOCSUM.
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D Examples of Java and Python Datasets

Java Code @ Override public String toString() {
String result;
result=super.toString();
if (m_CapabilitiesFilter != null) {

initCapabilities();
if (m_Capabilities != null) {

if (m_Capabilities.supportsMaybe(m_CapabilitiesFilter) && !
m_Capabilities.supports(m_CapabilitiesFilter)) {
result="<html><font color=\"" + MAYBE_SUPPORT + "\">" + result + "</font></i><html>";

}
else if(!m_Capabilities.supports(m_CapabilitiesFilter)) {

result="<html><font color=\"" + NO_SUPPORT + "\">"+ result+ "</font></i><html>";
}}}

return result;
}

Ground Truth return a string representation of this tree node .
CodeBERT build a string representation of the buff .
BLOCSUM return a string representation of the capability .

Python Code def _get_codon_list(codonseq):
full_rf_table = codonseq.get_full_rf_table)
codon_lst = []
for (i, k) in enumerate(full_rf_table):

if isinstance(k, int):
start = k
try:

end = int(full_rf_table[(i+1)])
except IndexError:

end = (start + 3)
this_codon = str(codonseq[start:end])
if (len(this_codon) == 3:

codon_lst.append(this_codon)
else:

codon_lst.append(str(this_codon.ungap()))
elif (str(codonseq[int(k):(int(k) + 3 )]) == ’—’):

codon_lst.append(’—’)
else:

codon_lst.append(codonseq[int(k):(int(k) + 3)]))
return codon_lst

Ground Truth list of codon accord to full rf table for count .
CodeBERT get cod ne .
BLOCSUM get list that contain the codon in list .
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