
Findings of the Association for Computational Linguistics: ACL 2023, pages 11575–11589
July 9-14, 2023 ©2023 Association for Computational Linguistics

Few-shot Joint Multimodal Aspect-Sentiment Analysis Based on
Generative Multimodal Prompt

Xiaocui Yang1,2, Shi Feng1, Daling Wang1, Qi Sun2,3, Wenfang Wu1, Yifei Zhang1,
Pengfei Hong2, Soujanya Poria2

1Northeastern University, 2Singapore University of Technology and Design,
3Nanjing University of Science and Technology

{yangxiaocui, wenfang}@stumail.neu.edu.cn,
{fengshi, wangdaling, zhangyifei}@cse.neu.edu.cn,

{pengfei_hong, sporia}@sutd.edu.sg, 319106003718@njust.edu.cn

Abstract

We have witnessed the rapid proliferation of
multimodal data on numerous social media
platforms. Conventional studies typically re-
quire massive labeled data to train models for
Multimodal Aspect-Based Sentiment Analysis
(MABSA). However, collecting and annotating
fine-grained multimodal data for MABSA is
tough. To alleviate the above issue, we per-
form three MABSA-related tasks with quite a
small number of labeled multimodal samples.
We first build diverse and comprehensive mul-
timodal few-shot datasets according to the data
distribution. To capture the specific prompt for
each aspect term in a few-shot scenario, we pro-
pose a novel Generative Multimodal Prompt
(GMP)1 model for MABSA, which includes
the Multimodal Encoder module and the N-
Stream Decoders module. We further intro-
duce a subtask to predict the number of aspect
terms in each instance to construct the multi-
modal prompt. Extensive experiments on two
datasets demonstrate that our approach outper-
forms strong baselines on two MABSA-related
tasks in the few-shot setting.

1 Introduction

The Multimodal Aspect-Based Sentiment Analy-
sis (MABSA) task has garnered significant atten-
tion in recent times, as evidenced by several recent
studies (Chandrasekaran et al., 2021; Zhang et al.,
2022a; Zhu et al., 2022; Gandhi et al., 2023). In
the literature, MABSA is typically divided into
three subtasks: Multimodal Aspect Term Extrac-
tion (MATE), Multimodal Aspect-oriented Sen-
timent Classification (MASC), and Joint Multi-
modal Aspect-Sentiment Analysis (JMASA) (Wu
et al., 2020a; Zhang et al., 2021a; Yu and Jiang,
2019; Khan and Fu, 2021; Ju et al., 2021; Ling
et al., 2022). Given a text-image pair, MATE aims
to extract all the aspect terms mentioned in the
text, MASC focuses on detecting the sentiment

1https://github.com/YangXiaocui1215/GMP.

corresponding to each extracted aspect term, and
JMASA is designed to extract aspect terms and
their corresponding sentiments jointly. Previous
studies on Multimodal Aspect-Based Sentiment
Analysis (MABSA) primarily focus on leveraging
extensive training data (full training datasets), with
some works resorting to additional data to improve
performance (Ju et al., 2021; Ling et al., 2022).
However, collecting and annotating such massive
multimodal data for MABSA is time-intensive and
laborious (Zhou et al., 2021). Moreover, in real-
world applications, only a limited amount of la-
beled data is commonly available. To address
this challenge, PVLM (Yu and Zhang, 2022) and
UP-MPF (Yu et al., 2022) introduce prompt-based
learning into Multimodal Aspect-oriented Senti-
ment Classification (MASC) in a few-shot scenario.
Based on limited sentiment categories (three cat-
egories), PVLM and UP-MPF convert MASC to
masked language modeling (MLM) tasks. How-
ever, the prerequisite of MASC is that the aspect
terms are known, which requires aspect term ex-
traction in advance, typically performed by Mul-
timodal Aspect Term Extraction (MATE) or Joint
Multimodal Aspect-Sentiment Analysis (JMASA).
Both JMASA and MATE tasks are challenging due
to the unknown and varying number of aspect items
in each sample, as well as the distinct content of
each aspect. Therefore, applying MLM in the few-
shot setting is unsuitable for JMASA and MATE
tasks, as depicted in Fig. 1. This paper addresses
the challenges of JMASA, MASC, and MATE in a
text-image few-shot setting, and to the best of our
knowledge, there are no dedicated studies dealing
with JMASA and MATE tasks in the multimodal
few-shot scenario.

Prior few-shot text classification tasks with
limited classification labels have manually de-
signed general prompts for the entire dataset to
mine knowledge from pre-trained language models
(PLM) (Shin et al., 2020; Hosseini-Asl et al., 2022;
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Zhang et al., 2022b). However, in the case of Joint
Multimodal Aspect-Sentiment Analysis (JMASA)
and Multimodal Aspect Term Extraction (MATE),
where the content of each aspect term is unknown
and assorted, manual prompts are infeasible for
aspect extraction. To address this challenge, we
propose a novel Generative Multimodal Prompt
(GMP) model for few-shot Multimodal Aspect-
Based Sentiment Analysis (MABSA), which in-
cludes the Multimodal Encoder (ME) module and
the N-Stream Decoders (NSD) module. It is crucial
to sample diverse and comprehensive data to build
practical few-shot datasets in the multimodal few-
shot setting. We construct few-shot training and de-
velopment datasets by sampling data with combina-
tions of different sentiments in instances, according
to the data distribution, as shown in Table 1. Since
the number of aspect terms in JMASA and MATE
is unknown and vital, we leverage the Multimodal
Encoder (ME) and Aspect-Num Decoder (AND)
to predict the number of aspect terms as a subtask.
The clues required for each aspect of an instance
may vary. We generate aspect-oriented prompts for
each aspect (aspect-level) using the ME and Aspect-
oriented Prompt Decoder (APD). Similarly, we use
the ME and Sentiment-oriented Prompt Decoder
(SPD) to generate sentiment-oriented prompts. As
the sentiment categories in all datasets are lim-
ited, we only reserve the instance-level sentiment
prompts. The caption of the image modality is
also captured as the image prompt. Lastly, specific
multimodal prompts for different tasks are con-
structed based on the image caption, the predicted
number of aspect terms, aspect prompts, and senti-
ment prompts. We feed the multimodal embedding
with the multimodal prompt into the Multimodal
Encoder-Decoder based BART model (Lewis et al.,
2020) to generate triplet sequences. Our main con-
tributions are summarized as follows:

• We propose a novel Generative Multimodal
Prompt (GMP) model to handle Joint Multimodal
Aspect-Sentiment Analysis (JMASA), Multi-
modal Aspect Sentiment Classification (MASC),
and Multimodal Aspect Term Extraction (MATE)
in the multimodal few-shot setting. To our knowl-
edge, we are the first to focus on JMASA and
MATE tasks in a multimodal few-shot scenario.

• To tackle the challenge of unknown number of
multimodal aspect terms and construct effective
multimodal prompts, we employ multitasking
and build the few-shot dataset by taking into ac-

count the distribution of sentiment categories for
each dataset.

• We conduct extensive experiments on the con-
structed few-shot datasets, and our results demon-
strate that our proposed model outperforms
strong baselines on JMASA and MASC in the
few-shot setting.

2 Related Work

2.1 Multimodal Aspect Sentiment Analysis

In contrast to coarse-grained sentiment analysis
(sentence-level) (Yang et al., 2021b; Li et al., 2022),
MABSA requires not only extracting aspect terms,
but also recognizing the corresponding sentiment
associated with each aspect. Early research focuses
on different subtasks, including Multimodal As-
pect Term Extraction (MATE) (Sun et al., 2020; Yu
et al., 2020; Wu et al., 2020b; Zhang et al., 2021b;
Chen et al., 2022) and Multimodal Aspect Senti-
ment Classification (MASC) (Yang et al., 2021a;
Yu and Jiang, 2019; Khan and Fu, 2021). More
recently, Ju et al. (Ju et al., 2021) propose Joint
Multimodal Aspect-Sentiment Analysis (JMASA),
which jointly performs aspect term extraction and
sentiment classification. Yang et al. (Yang et al.,
2022b) introduce Cross-Modal Multitask Trans-
former (CMMT) for MABSA. VLP (Ling et al.,
2022) further extends this by resorting to addi-
tional pre-training data and designing multiple pre-
training tasks to enhance JMASA performance.
However, few works specifically address MABSA
in the few-shot scenario. Although VLP has con-
ducted low-resource experiments, it includes over
17,000 pre-training data and utilizes the full devel-
opment dataset, which violates our starting point
of adopting few-shot data.

2.2 Few-shot Learning with Pre-trained
Language Model

Prompt-based language modeling is applied to
solve different few-shot tasks with PLM in Nat-
ural Language Process (NLP) due to its powerful
representation (Liu et al., 2021), such as text clas-
sification (Shin et al., 2020; Hosseini-Asl et al.,
2022), text regression (Gao et al., 2021), and text
generation (Li and Liang, 2021). Existing works
introduce Multimodal Prompt-based Fine-tuning
(MPF) methods into multimodal settings by MLM,
like Frozen (Tsimpoukelli et al., 2021), PVLM (Yu
and Zhang, 2022), and UP-MPF (Yu et al., 2022).
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Figure 1: Examples of prompts for MASC and JMASA in a few-shot setting are shown. For MASC, the prompts
consist of two triplets for the MABSA task, with aspect terms ‘Kanye’ and ‘#Grammy’ shown in the upper part.
The manual general prompt for the entire dataset can be efficient when the label space is limited, such as ‘Negative’,
‘Positive’, and ‘Neutral’, as shown in the middle part with the yellow box representing the manual prompt for
few-shot MASC in UP-MPF (Yu et al., 2022). However, the manual prompt is infeasible for few-shot JMASA, as
each aspect term is unknown and could be any phrase from the vocabulary, as shown by the red crosses. Hence,
we generate a prompt for each aspect based on the multimodal context, as shown in the green box, where ‘AP’
represents Aspect-oriented Prompt and ‘n’ represents the number of aspect terms for an instance. ‘Vocabulary’
refers to the vocabulary of the Pre-trained Language Model (PLM).

Different from few-shot MASC (PLVM and UP-
MPF), we simultaneously extract aspect terms and
perform sentiment detection for each aspect in the
multimodal few-shot scenario.

3 Our Proposed Model

In Joint Multimodal Aspect-Sentiment Analysis
(JMASA), our goal is to extract aspect terms and
classify sentiment corresponding to each aspect.
However, due to the varying number of aspect
terms in each instance and each diverse aspect term,
a different prompt is needed for each aspect in the
few-shot setting. To address this, we propose a
Generative Multimodal Prompt (GMP) for few-
shot JMASA, as illustrated in Fig. 2. Leveraging
BART, we generate aspect-oriented prompts for
each aspect based on the multimodal context, as
well as instance-level sentiment-oriented prompts.

3.1 Task Formulation

In this paper, we assume access to a pre-trained
language model M, such as BART, that we
wish to fine-tune for the aspect-sentiment se-
quence generation task using labeled data. For
the few-shot multimodal training dataset Dtrain,
we select K training examples based on sen-
timent categories for each dataset, resulting in
Dtrain = (T j , Ij , Aj , Sj , Oj)j = 1K , where
T = [t1, t2, ..., tlt ] is the text modality with lt as
the text length; I is the image modality; A =
[a1, ..., an] is the aspect list; S = [s1, ..., sn]
is the sentiment list corresponding to A; and
O = [(x1b , x

1
e, s

1), ..., (xnb , x
n
e , s

n)] is our output,
which represents the index-sentiment list, e.g.,

O = [(5, 5, POS), (13, 14, NEU)] for the in-
stance in Fig. 3. Here, n denotes the number
of aspects, xkb and xke represent the beginning
and end indices of the kth aspect term, and sk ∈
{POS,NEG,NEU} denotes the sentiment label.
For Ddev, we select the same size of data as the few-
shot training dataset, i.e., |Ddev| = |Dtrain|. Our
task is to generate O in the few-shot multimodal
setting. Following the formulation in (Yan et al.,
2021; Ling et al., 2022), we define the outputs of
the three subtasks as follows2:

• JMASA: O = [(xb1, x
e
1, s1), ..., (x

b
n, x

e
n, sn)].

• MASC: O = [(xb1, x
e
1, s1), ..., (x

b
n, x

e
n, sn)].

• MATE: O = [(xb1, x
e
1), ..., (x

b
n, x

e
n)].

3.2 Generative Multimodal Prompt
GMP consists of two main modules: the Multi-
modal Encoder module and the N-Stream Decoders
module.

3.2.1 Multimodal Encoder
In this section, we design the multimodal encoder
to capture multimodal representations. We start by
extracting image representations using NF-ResNet
(Brock et al., 2021), and then project them to the
text modality space for the image modality, I .

V = Reshape(WiResNet(I) + bi)

= [v1, ..., vk, ..., vli ], vk ∈ Rdt ,
(1)

where V is reshaped image representation, Wi ∈
Rdv×dnt , bi ∈ Rdnt , and nt = li × dt. li, which is

2The underlined tokens are provided during inference.
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Figure 2: The framework of our proposed Generative Multimodal Prompt (GMP) for Few-shot MABSA consists of
two main modules: the Multimodal Encoder module (the green dashed box) and the N-Stream Decoders module
(the purple dashed box). For JMASA, we apply the multimodal embedding with the generative multimodal prompt
EP

J using the Multimodal Encoder module. Similarly, for MASC and MATE, we design separate multimodal
embeddings EP

S and EP
A respectively, as shown in Figure 5. The solid thick arrows (purple and gray) indicate

the sharing of parameters between two multimodal encoders, while the thick hollow arrow (pink) does not share
parameters with others. Special tokens such as img, /img, cap, /cap, bos, eos, prom, and /prom are used in the
multimodal embeddings. The embedding of “sentiment" is denoted as Esenti.

a hyperparameter, is the number of image slots that
reserve initial image representation, and dt repre-
sents the dimension of text embedding in BART.

Since BART is a pre-trained language model
(PLM) that does not involve pre-training on image
modality, we aim to alleviate the discrepancy issue
of image representation in PLM. To achieve this,
we further capture the image caption using ClipCap
(Mokady et al., 2021), denoted as C, which can be
regarded as the image prompt.

C = ClipCap(I). (2)

We utilize the BART model to obtain text embed-
dings for both the text input and the image caption.

ET = Embedding(T ), ET ∈ Rlt×dt ,

EC = Embedding(C), EC ∈ Rlcap×dt ,
(3)

where lcap is the length of image caption. The
multimodal embedding EM can be obtained, EM

= [Eimg, V , E/img, Eis, Ecap, EC , E/cap, Ebos,
ET , Eeos].

Finally, we feed EM into the BART Encoder to
obtain the multimodal representation. We argue
that subsequent decoders require specific informa-
tion, so we leverage different multimodal BART
Encoders for this purpose.

Ha
M = MBART a

E(EM ), Ha
M ∈ Rlm×d,

Hs
M = MBART s

E(EM ), Hs
M ∈ Rlm×d,

(4)

where lm = li + lcap + lt + ls, ls is the length of
special tokens, and d is the hidden dimension.

3.2.2 N-Stream Decoders

IIn this section, we utilize the encoded multimodal
representation from Eq. 4 to predict the num-
ber of aspect terms and generate aspect-oriented
and sentiment-oriented prompts using different de-
coders for each instance. The ‘N’ in ‘N-Stream’
varies depending on the task, with values of 3, 2,
and 1 for JMASA, MATE, and MASC, respectively.

Aspect-Num Decoder (AND). In the JMASA
task, the number of aspects in each instance is sig-
nificant but unknown, so we predict the number of
aspects based on the multimodal context using the
Aspect-Num BART Decoder as a subtask. Specifi-
cally, we input the multimodal encoder output Ha

M

and the special token bos into the Aspect-Num De-
coder, which then predicts the number of aspects
np ∈ R5 as follows3:

handn = AND(Ha
M ;Ebos),

np = Softmax(MLP (handn )).
(5)

3Twitter 2017 dataset contains only 3 instances with more
than 5 aspects. Therefore, we set "aspect-num" as 5 in the
AND module to accommodate the maximum number of aspect
terms in an instance.
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Figure 3: An example of triplet sequence generation for
the JMASA task.

We leverage the cross-entropy loss for the subtask,

Lc = −
K∑

j=1

nj
glog(n

j
p), (6)

where nj
g represents the label for the number of

aspect terms. It’s worth noting that in the MASC
task, the gold number of aspect terms is provided
to the model, and thus, this subtask is not required
for MASC.

P k
a = MLP k([hapd1 , hapd2 ]), (7)

where k is the kth group of aspect of an instance,
P k
a ∈ R2×d. The generative aspect-oriented

prompt AP = [P 1
a , ..., P

np
a ] ∈ R2np×d.

Aspect-oriented Prompt Decoder (APD).
Prompts for few-shot multimodal classification
tasks can be manually designed for specific
datasets due to limited categories, as demonstrated
in PVLM (Yu and Zhang, 2022) and UP-MPF (Yu
et al., 2022). However, each text-image pair carries
different context information, and the aspects of
the text are diverse. Therefore, in the few-shot
setting, we need to capture various cues for each
aspect. Inspired by this, we design our model to
generate aspect-oriented prompts based on the
multimodal context. Specifically, we first generate
an instance-level prompt based on the encoded
multimodal representation. The final output of
the JMASA task is a triplet sequence, where the
first two positions of each triplet represent the
beginning and ending indices for each aspect
term. We set two aspect slots for each generated
aspect-oriented prompt, resulting in an instance-
level prompt length of 2np. The decoder takes the
encoder outputs Ha

m and previous decoder outputs
hapd< (lap− 1) as inputs to compute the current

hidden state.

hapdlap
= APD(Ha

M ; (hapd<(lap−1))), (8)

where we feed the bos into APD as the beginning
token and lap = 2.
Sentiment-oriented Prompt Decoder (SPD).
The sentiment corresponding to each aspect is re-
lated to each instance. Similar to APD, we gener-
ate the sentiment-oriented prompt based on mul-
timodal context. For JMASA, the last position
in each triplet of the output sequence predicts the
sentiment. We set one sentiment slot for each gen-
erated sentiment-oriented prompt, i.e., the length
of the instance-level prompt is np.

Ps = hspd1 = SPD(Hs
M ;Ebos), (9)

where we feed the bos into SPD as the begin-
ning token. As the sentiment categories are lim-
ited, they share a common label space. Therefore,
we do not generate corresponding sentiment cues
for each aspect. Instead, Ps is repeated np times
to form the generative sentiment-oriented prompt
SP = [P 1

s , ..., P
np
s ] ∈ Rnp×d, where d represents

the dimensionality of the prompt.

3.3 Multimodal Embedding with Prompt
We construct the multimodal prompt for differ-
ent tasks, including JMASA, MASC, and MATE,
based on the text-image pair, aspect-oriented
prompts, sentiment-oriented prompts, and predic-
tion of the number of aspect terms. For JMASA,
we design multimodal embedding with a genera-
tive multimodal prompt, denoted as EP

J , as shown
in Fig. 2. Similar to EP

J , we separately design
multimodal embedding with prompt for MASC
and MATE, e.g, EP

S and EP
A as Fig. 5 shows in

Appendix A.

3.4 Triplet Sequence Generation
We next feed the multimodal embedding with
prompt into the Encoder-Decoder model to gen-
erate the triplet sequence. We take the JMASA task
as an example, as Fig. 3 shows.

HP
J = MBART J

E(E
P
J ), H

P
J ∈ RlJ×d, (10)

where lJ is the length of EP
J . Then, we use the

BART decoder to get the last hidden state,

hdJt = BART J
D(H

P
J ; Ô<t), (11)

where t is the tth step and Ô<t is the output of the
previous t steps. Following (Yan et al., 2021), we
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predict the token probability distribution Pt with
hdJt ∈ Rd, as follows:

Pt = Predict([ET ;ES ]h
dJ
t ), (12)

where Pt ∈ Rlt+lc ; ES is the embedding of the
sentiment label set, and its length is lc = 3.

We employ cross-entropy loss for our sequence
generation task.

Lg = −
K∑

j=1

Ojlog(P j). (13)

3.5 Multitask Training

We optimize our main task and subtask.

L = Lg + λLc, (14)

where λ is the hyperparameter to control the con-
tribution of each task.

4 Experiments

We conduct experiments on two groups of few-
shot multimodal datasets built according to the
distribution of sentiment categories from Twitter-
15 (15) and Twitter-17 (17) (Zhang et al., 2018;
Lu et al., 2018). We compare our model with
numerous approaches on three tasks, including
Multimodal Aspect Term Extraction (MATE), Mul-
timodal Aspect-oriented Sentiment Classification
(MASC), and Joint Multimodal Aspect-Sentiment
Analysis (JMASA).

4.1 Few-shot Datasets

To construct few-shot datasets for few-shot
Multimodal Aspect-Based Sentiment Analysis
(MABSA), it is important to select a few diverse
samples that provide comprehensive coverage of
the different sentiment categories. We sample
data based on the distribution of sentiment cate-
gories in instances to create few-shot datasets. The
statistics of the different datasets are presented in
Table 1. For each dataset, we randomly sample
three groups of few-shot training and development
datasets based on three different seeds, such as [42,
87, 100], and each split is run 3 times. We report
the average performance and standard deviation
over 9 (3 × 3) times of training for a more robust
evaluation.

4.2 Implementation Details

We utilize BART-Base with 140M parameters as
our Pretrained Language Model (PLM), denoted as
M, and NF-ResNet-50 as our visual encoder. The
number of epochs is set to 70, and the batch size is
set to 4 for all tasks. The learning rates (lr) are set
to 6.5e-5 for JMASA and MATE tasks, and for the
MASC task, we set lr to 8e-5 and 7.5e-5 for Twitter-
15 and Twitter-17, respectively. All models are
implemented using PyTorch and the experiments
are run on an A6000 GPU. Following (Ling et al.,
2022), we evaluate our model on three subtasks
of MABSA and use Micro-F1 score (F1), Preci-
sion (P), and Recall (R) as the evaluation metrics
to measure the performance. For MASC, we also
use Accuracy (Acc) to compare fairly with other
approaches. GMP has 169.3M/155.6M/154.9M pa-
rameters for JMASA/MATE/MASC, respectively,
and during training, all parameters are updated.
The training time for GMP up to 70 epochs is
50/50/25 minutes for JMASA/MATE/MASC.

4.3 Baselines

To ensure a comprehensive comparison, we thor-
oughly evaluate our model against various ap-
proaches across different tasks.

Models for Joint Multimodal Aspect-Sentiment
Analysis (JMASA). We first apply text-based ap-
proaches to perform Joint Aspect-Sentiment Anal-
ysis (JASA) with the following models: BART
(Yan et al., 2021) adapts JASA to an Encoder-
Decoder model. D-GCN (Chen et al., 2020) pro-
poses directional graph convolutional networks for
JASA. SpanABSA (Hu et al., 2019) applies an
extraction-then-classification framework using a
span-based labeling scheme. Next, we accomplish
JMASA and MATE using multimodal approaches
with the following models: JML (Ju et al., 2021)
performs JMASA by introducing auxiliary cross-
modal relation detection. CMMT (Yang et al.,
2022b) proposes a multi-task learning framework
that leverages two unimodal auxiliary tasks. VLP
(Ling et al., 2022), which designs multiple Vision-
Language pre-training tasks, is the state-of-the-art
(SOTA) model for JMASA. However, since VLP
introduces additional 17,000+ pre-training data,
which violates our motivation to use few-shot data,
we also present results for NVLP, which does not
perform the pre-training task.

Models for Multimodal Aspect Sentiment Classi-
fication (MASC). We reproduce multimodal ap-
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Datasets POS NEU NEG {POS, NEU} {NEG, NEU} {POS, NEG} {POS, NEU, NEG} All

15-Train 32/526 64/1084 16/214 16/178 8/79 2/13 0/7 138/2,101
15-Dev 32/162 64/375 16/71 16/69 8/44 2/6 0/0 138/727
15-Test 167 335 68 73 28 2 1 674

17-Train 32/534 32/328 16/150 32/535 16/153 2/26 2/20 132/1,746
17-Dev 32/177 32/109 16/49 32/180 16/50 2/7 2/5 132/577
17-Test 178 107 39 171 70 8 14 587

Table 1: Statistics on two datasets. POS: Positive, NEU: Neutral, NEG: Negative. For A/B, B represents the number
of original data, and A represents the number of few-shot data. {Senti-1, Senti-2} means that both Senti-1 and
Senti-2 simultaneously exist in the instance, and there can be more than one of each sentiment. For both datasets,
the percentage of the constructed few-shot dataset accounts for about 7% of the overall training data.

Modality Model Twitter-15 Twitter-17
P R F1 P R F1

Text
BART 47.03 (±2.00) 41.90 (±3.80) 44.28 (±2.91) 48.59 (±1.90) 44.97 (±1.95) 46.70 (±1.81)

D-GCN 42.02 (±2.71) 40.07 (±2.03) 40.95 (±2.18) 45.66 (±1.09) 45.81 (±1.41) 44.89 (±1.58)
SpanABSA 48.52 (±0.84) 39.80 (±2.19) 43.71 (±1.60) 51.67 (±1.53) 48.44 (±0.75) 49.98 (±0.67)

Text
-Image

JML 48.51 (±1.14) 41.59 (±2.56) 44.77 (±1.97) 50.13 (±0.41) 48.65 (±0.10) 49.38 (±0.25)
CMMT 29.85 (±1.37) 36.23 (±2.05) 32.65 (±0.07) 39.64 (±0.51) 47.83 (±2.14) 43.34 (±1.12)
NVLP 46.04 (±0.82) 42.40 (±0.25) 44.14 (±0.47) 50.66 (±2.09) 45.92 (±1.10) 48.16 (±1.28)
VLP 46.56 (±0.94) 49.08 (±1.64) 47.77 (±0.73) 51.32 (±0.19) 52.22 (±0.52) 51.76 (±0.21)
GMP 51.67 (±2.01) 47.19 (±1.46) 49.33 (±1.71) 54.28 (±1.08) 53.31 (±1.71) 53.79 (±1.31)

Table 2: Average results of different models in terms of Precision (P), Recall (R), and F1 for MABSA.

proaches that are trained in full MSA datasets from
published paper for MASC. TomBERT (Yu and
Jiang, 2019) models the intra-modality and inter-
modality dynamics to improve the performance of
MASC. CapTrBERT (Khan and Fu, 2021) con-
structs an auxiliary sentence, which is the transla-
tion of the image, to provide multimodal informa-
tion to a language model. KEF (Zhao et al., 2022)
exploits adjective-noun pairs extracted from the im-
age to improve the visual attention capability and
sentiment prediction capability of the fine-grained
MSA task FITE (Yang et al., 2022a), the state-
of-the-art model for fine-grained MSA, leverages
facial information from the image modality.

Additionally, we adapt and evaluate models orig-
inally designed for few-shot text classification
tasks for multimodal aspect-based sentiment clas-
sification. LM-BFF (Gao et al., 2021) designs dif-
ferent text prompts based on each specific dataset
and text demonstrations to solve few-shot text clas-
sification tasks. LM-SC (Jian et al., 2022) further
introduces supervised contrastive learning based on
LM-BFF to few-shot text tasks. GFSC (Hosseini-
Asl et al., 2022) converts the classification task into
a generation task and solves text classification tasks
in the few-shot setting through a pre-trained gener-
ation model, namely GPT2 (Radford et al., 2018).
Recently, a few multimodal sentiment classifica-
tion models in the few-shot setting have emerged.
PVLM (Yu and Zhang, 2022) proposes a prompt-

based vision-aware language modeling approach
to MASC in a few-shot scenario. UP-MPF (Yu
et al., 2022) applies a unified pre-training for mul-
timodal prompt-based fine-tuning model, which is
the state-of-the-art model for few-shot MASC.

4.4 Experimental Results and Analysis

4.4.1 Results of JMASA
Table 2 presents the results of JMASA on few-
shot multimodal datasets, and several key obser-
vations can be made. We can make the following
observations. First, multimodal models generally
outperform unimodal models. Among the multi-
modal models, JML and VLP, which leverage addi-
tional data for relation detection and pre-training,
respectively, achieve better performance compared
to NVLP, which does not involve pre-training tasks,
indicating the effectiveness of pre-training tasks in
improving model performance. When consider-
ing the amount of data used by the models, it is
more reasonable to compare our model with NVLP.
Our model consistently outperforms NVLP across
both datasets, indicating its superior performance.
Notably, our model also outperforms the second-
best model, VLP, by a significant margin, with
1.56 and 2.03 absolute percentage points in terms
of F1 on Twitter-15 and Twitter-17, respectively.
The superior performance of our model can be at-
tributed to several factors. First, the generative
multimodal prompt, which is based on the multi-
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Modality Model Twitter-15 Twitter-17

Text

BART 65.57 (±3.07) 64.12 (±1.47)
LM-BFF∗ 64.87 (±0.40) 52.08 (±0.54)
LM-SC∗ 65.47 (±1.74) 57.51 (±2.95)
GFSC∗ 60.75 (±1.07) 61.72 (±0.16)

Text
-Image

TomBERT 61.78 (±3.27) 59.97 (±2.30)
CapTrBERT 58.76 (±0.25) 56.48 (±1.61)

JML-SC 60.36 (±0.90) 61.62 (±0.45)
CMMT-SC 43.75 (±2.90) 51.94 (±2.11)

KEF 55.81 (±3.74) 46.50 (±0.075)
FITE 63.11 (±0.53) 60.89 (±1.40)
NVLP 63.84 (±1.49) 62.72 (±2.95)
VLP 59.34 (±1.35) 60.24 (±1.61)

PVLM∗ 64.54 (±1.81) 61.45 (±2.31)
UP-MPF∗ 63.71 (±3.62) 62.02 (±0.40)

GMP 67.06 (±0.55) 66.20 (±1.12)

Table 3: Results of different models in terms of Acc for
MASC on two datasets. “∗” means that the model is
proposed for the few-shot task.

modal context, enables the model to capture practi-
cal knowledge for each sample from the pre-trained
language model. Second, the subtask information
provides valuable clues for constructing the multi-
modal prompt, leading to improved performance
in few-shot multimodal sentiment classification.
4.4.2 Results of the MASC
The results of the MASC task on few-shot mul-
timodal datasets, in terms of accuracy (Acc), are
presented in Table 3, while the corresponding F1 re-
sults are shown in Table 6 from Appendix B.1. The
models with “∗” are specifically introduced for few-
shot scenarios. Several key observations can be
made from the results. We can obtain the following
observations. In the multimodal few-shot setting,
1) Our model demonstrates the best performance in
the multimodal few-shot setting, indicating its supe-
riority over other models in handling the challenges
of limited labeled data. 2) Prompt-based methods
outperform robust multimodal models, highlighting
the effectiveness of prompt-based methods in low-
resource scenarios. This suggests that leveraging
prompt engineering techniques, such as our gen-
erative multimodal prompt, can lead to improved
performance in few-shot MSA. 3) BART, which
uses only the text modality, performs better than
most multimodal models, indicating the strong per-
formance of our base model. This suggests that
the pre-trained language model, BART, provides a
solid foundation for our multimodal model.
4.4.3 Results of MATE
Table 4 presents the results of the MATE task.
Among the models, VLP achieves the best per-
formance in MATE, although it deviates from our

Modality Model Twitter-15 Twitter-17

Text BART 66.67 (±3.17) 70.12 (±1.73)

Text
-Image

JML-MATE 71.95 (±4.30) 82.14 (±1.20)
CMMT-MATE 73.19 (±2.50) 82.50 (±0.59)
NVLP-MATE 65.95 (±1.83) 71.52 (±0.26)
VLP-MATE 77.61 (±0.25) 83.35 (±0.53)

GMP 73.65 (±1.35) 79.95 (±0.43)

Table 4: Results of different models in terms of F1 for
MATE on two datasets.

initial goal of applying low-resource data due to
its reliance on additional data and multiple pre-
training tasks on the MVSA-Multiple Dataset (Niu
et al., 2016). Similarly, JML also leverages addi-
tional data to enhance its performance. An interest-
ing observation is that MASC performs poorly in
VLP when compared to NVLP, despite VLP show-
ing better performance on the MATE and JMASA
tasks compared to NVLP. We hypothesize that the
pre-training task of VLP may be more aligned with
the MATE task, which in turn may have an impact
on the performance of MASC.

4.5 Ablation Experiments

We performed ablation experiments on the GMP
model to assess the effectiveness of different mod-
ules. The results, as shown in Table 5, indicate
that the complete GMP model consistently the best
performance across all tasks. First, we remove
the image modality (w/o Image) and built genera-
tive prompts based only on the text modality. The
model’s performance in all tasks is adversely af-
fected, indicating that the image modality is crucial
for achieving high performance in few-shot MSA
tasks. Next, we only remove the image caption
(w/o Caption) and retain the initial image features
to evaluate the effectiveness of the image prompt.
The results show that the image prompt contributes
to the overall performance of the model, indicating
its utility in capturing important information from
the image modality. We also conduct experiments
where we remove the multitask module (w/o Mul-
titask) and set the number of aspect terms to 5 for
each instance in the JMASA and MATE tasks. The
performance of the models is affected, indicating
that the subtask-specific modules are effective in
capturing aspect-related information and improv-
ing performance. To verify the utility of the genera-
tive multimodal prompt, we remove the multimodal
prompt (w/o Prompt) and use only the original text-
image representation. The model’s performance
degraded, indicating that our proposed multimodal
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Task Model Twitter-15 Twitter-17

JMASA

w / GSPrompt 47.11 (±3.12) 52.43 (±1.35)
w/o Multitask 47.70 (±1.41) 49.77 (±1.69)

w/o Image 44.71 (±1.64) 50.25 (±1.97)
w/o Caption 47.31 (±1.12) 52.11 (±1.16)
w/o Prompt 47.55 (±1.54) 51.20 (±1.71)

w/o GAPrompt 48.05 (±1.38) 48.81 (±4.98)
GMP 49.33 (±1.71) 53.79 (±1.31)

MATE

w/o Multitask 73.46 (±0.94) 79.02 (±1.16)
w/o Image 68.54 (±0.99) 74.41 (±3.19)

w/o Caption 72.06 (±1.52) 78.91 (±1.49)
w/o Prompt 72.55 (±0.93) 79.01 (±0.90)

w/o GAPrompt 71.62 (±0.71) 78.74 (±0.94)
GMP 73.65 (±1.35) 79.95 (±0.43)

MASC

w/ DSPrompt 64.48 (±3.47) 64.17 (±1.31)
w/o Image 65.09 (±1.66) 65.68 (±0.67)

w/o Caption 64.81 (±3.60) 66.01 (±1.69)
w/o Prompt 62.75 (±1.18) 64.34 (±1.76)

w/o GSPrompt 65.03 (±1.49) 63.57 (±2.29)
GMP 67.06 (±0.55) 66.20 (±1.12)

Table 5: Ablation experiment results in terms of F1 on
two tasks, including JMASA, MATE, and in terms of
Acc on MASC. “w/” indicates “with” and “w/o” indi-
cates “without”.

prompt is beneficial in providing valuable cues for
the sentiment analysis task. We further remove
the generative aspect prompt (w/o GAP) to assess
the importance of GAP. Interestingly, we observe
that using generated sentiment prompts (GSP) re-
sulted in better performance in the MASC task
(w/o GSP), whereas we obtain the opposite result
in the JMASA task (w/ GSP). This suggests that
the generated aspect prompt provides sufficient in-
formation to the model, and GSP may introduce
redundant information in the JMASA task. How-
ever, in the MASC task, GSP provides effective
cues for sentiment classification. We further exper-
iment with different generated sentiment prompts
(w DSPrompt) and find that the performance sig-
nificantly decrease. There are two possible reasons
for this observation. First, the sentiment categories
in our dataset are limited. When using generated
sentiment prompts for each aspect, it may introduce
noise and irrelevant information to MASC. Second,
the generated prompts for each aspect provide suf-
ficient information to guide the model in capturing
aspect-related sentiment information.

4.6 Hyperparameters Setting

The hyperparameter experiments of JMASA are
shown in Fig. 4. The hyperparameter experiments
on other tasks are in Appendix B.2.

Hyperparameters li and λ on JMASA. In or-
der to effectively utilize image information through
NF-ResNet, we conduct experiments with different

settings of the hyperparameter li in Eq. 1, and the
results are shown in Fig. 4(a). We observe that our
GMP model achieves the best performance on both
datasets when the number of image slots, li, is set
to 4. When li is smaller, the image information is
not fully utilized, and the model’s performance is
compromised. On the other hand, retaining more
image features by setting a larger value for li re-
sults in redundant information being provided to
the model, which also leads to decreased perfor-
mance. When li was set to 0, GMP only utilized
the image prompt, i.e., the image caption C, and
discarded the initial image representation V . We
also employ the hyperparameter λ to balance the
contribution of the subtask, as shown in Fig. 4(b).
We find that the best value of λ varied across dif-
ferent datasets, with 0.1 being the optimal value
for Twitter-15 and 0.15 for Twitter-17. When λ
is set to a larger value, the model’s performance
dramatically drop. This is because a larger value
of λ biases the model towards the subtasks, and we
need to strike a balance among all tasks to achieve
optimal performance.
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(a) Comparisons of li.
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(b) Comparisons of λ.

Figure 4: F1 comparisons of different Hyperparameters
for JMASA.

5 Conclusion

We propose a novel Generative Multimodal Prompt
(GMP) for Multimodal Aspect-Based Sentiment
Analysis (MABSA) that includes JMASA, MASC,
and MATE in the multimodal few-shot scenario.
We further introduce a subtask to predict the num-
ber of aspect terms to form multitask training to
improve the performance of GMP. Experimental re-
sults show that our proposed approach outperforms
strong baselines on two subtasks of MABSA in the
few-shot setting. We provide a new direction for
related tasks of MABSA in the few-shot setting.
In future work, we plan to exploit the fine-grained
image features and achieve alignment between text
and image modality to improve the performance of
MABSA in the multimodal few-shot scenario.
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Limitations

Although our model has shown superior perfor-
mance, there are still a few limitations that could
be improved in future work.

• We create few-shot datasets from the perspec-
tive of the combination of sentiment cate-
gories without considering the distribution of
aspect items, such as the number of aspects in
each sample. It may affect the performance
of the model on the task of extracting aspects.
We should create more efficient datasets for
MABSA in the few-shot setting.

• As we put more emphasis on the performance
of the main task, the performance of the sub-
task of predicting the number of aspect terms
in each example may suffer. We will further
improve the accuracy of the subtask in future
work.

• We roughly exploit initial image features and
do not perform alignment between text and
image modalities. We plan to accomplish the
alignment of multiple modalities further to
improve the performance of MABSA in future
work.
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A Multimodal Embedding with Prompt

For the MASC task, we design multimodal embed-
ding with generative multimodal prompt, EP

S , as
Fig. 5(a) shows.

For the MATE task, we design multimodal em-
bedding with generative multimodal prompt, EP

A ,
as Fig. 5(b) shows.

B Experimental Results

B.1 F1 Results of MASC

The results of the MASC task in terms of F1 are
shown in Table 6.
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(b) The multimodal embedding with generative multimodal prompt for MATE.

Figure 5: Multimodal embeddings with the generative multimodal prompt for MASC and MATE.

B.2 Hyperparameters Setting

Hyperparameters li on MASC: We use the gold
number of aspect terms for the MASC task and
don’t use the subtask. Thus we only conduct ex-
periments on the hyperparameter li. Similar to
the JMASA task, our model achieves the best per-
formance on two datasets when li is 4, as Fig. 6
shows.

Modality Model Twitter-15 Twitter-17

Text

BART 57.21 (±4.62) 61.71 (±2.01)
LM-BFF∗ 58.27 (±1.46) 49.04 (±3.40)
LM-SC∗ 58.02 (±2.26) 55.97 (±2.54)
GFSC∗ 29.3 (±1.97) 40.91 (±4.46)

Text
-Image

TomBERT 43.16 (±8.08) 54.92 (±2.40)
CapTrBERT 26.55 (±0.98) 49.59 (±3.69)

JML-SC 44.77 (±2.10) 52.19 (±0.70)
CMMT-SC 45.52 (±0.85) 51.92 (±1.00)

KEF 43.54 (±0.24) 29.61 (±0.23)
FITE 58.97 (±0.34) 59.16 (±2.15)

NVLP 55.11 (±2.20) 59.37 (±4.09)
VLP 44.56 (±3.83) 56.09 (±2.43)

PVLM∗ 50.87 (±2.37) 59.62 (±1.81)
UP-MPF∗ 55.15 (±1.33) 60.46 (±1.08)

GMP 60.31 (±1.83) 64.20 (±1.63)

Table 6: Results of different models in terms of F1 for
MASC on two datasets.

Hyperparameters li and λ on MATE: Fig. 7
shows the hyperparameters of the MATE, including
li and λ. On both datasets, our model has the best
results when λ is 4. For the hyperparameter, li,
our model achieves the best performance when li
is 4 on the Twitter-15 dataset, and li is 3 on the
Twitter-17 dataset.
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