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Abstract

Despite their successes in NLP, Transformer-
based language models still require extensive
computing resources and suffer in low-
resource or low-compute settings. In
this paper, we present AxomiyaBERTa,
a novel BERT model for Assamese, a
morphologically-rich low-resource language
(LRL) of Eastern India. AxomiyaBERTa
is trained only on the masked language
modeling (MLM) task, without the typical
additional next sentence prediction (NSP)
objective, and our results show that in
resource-scarce settings for very low-resource
languages like Assamese, MLM alone can be
successfully leveraged for a range of tasks.
AxomiyaBERTa achieves SOTA on token-
level tasks like Named Entity Recognition
and also performs well on “longer-context”
tasks like Cloze-style QA and Wiki Title
Prediction, with the assistance of a novel
embedding disperser and phonological sig-
nals respectively. Moreover, we show that
AxomiyaBERTa can leverage phonological
signals for even more challenging tasks,
such as a novel cross-document coreference
task on a translated version of the ECB+
corpus, where we present a new SOTA
result for an LRL. Our source code and
evaluation scripts may be found at https:
//github.com/csu-signal/axomiyaberta.

1 Introduction
Transformer-based neural architectures such as
BERT (Devlin et al., 2019) have revolutionized
natural language processing (NLP). The ability
to generate contextualized embeddings that both
preserve polysemous word sense and similarity
across dimensions through self-attention has con-
tributed to significant improvements in various
NLP tasks (Ethayarajh, 2019). Despite their suc-
cesses, Transformers come at a high computa-
tional cost (Zhao et al., 2022) and still suffer from
long-standing issues pertaining to data-hunger and

availability of training resources. One effect of
the dependency on big data is the continued pro-
liferation of sophisticated NLP for well-resourced
languages while low-resourced languages (LRLs)
continue to be underrepresented, and the dispari-
ties continue to grow (Joshi et al., 2020).

This is particularly true for languages of India
and South Asia where English is widely spoken
among the educated and urban population. There-
fore, those in India most likely to use and develop
NLP may freely do so in English, but sole speak-
ers of local Indian languages may remain effec-
tively isolated from human language technology
in their native tongues. While strides have been
made in NLP for widely-spoken Indian languages
(e.g., Hindi, Bengali, Marathi, Tamil, etc.), In-
dia is home to about a thousand languages, over
100 of which are considered “major”1 but are not
widely represented in NLP research. This lack of
representation also precludes insights from those
languages from contributing to the field (Bender,
2019).

In this paper, we present AxomiyaBERTa, a
novel Transformer language model for the As-
samese language.2 AxomiyaBERTa has been
trained in a low-resource and limited-compute set-
ting, using only the masked language modeling
(MLM) objective. Beyond a model for a new lan-
guage, our novel contributions are as follows:

• Use of a novel combined loss technique to
disperse AxomiyaBERTa’s embeddings;

• Addition of phonological articulatory fea-
tures as an alternate performance improve-

1https://censusindia.gov.in/census.website/
data/census-tables

2Despite the name, AxomiyaBERTa is an ALBERT vari-
ant, not a RoBERTa variant. The name is derived from
Axomiya (অসমীয়া, /OxOmija/), the native term for the As-
samese language, plus “BERTa” from both BERT and barta,
meaning “conversation.” The name also recalls Asom Barta,
the official newsletter of the Government of Assam.
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ment in the face of omitting the NSP training
objective for longer-context tasks;

• Evaluation on event coreference resolution,
which is novel for Assamese.

AxomiyaBERTa achieves competitive or state
of the art results on multiple tasks, and demon-
strates the utility of our approach for building new
language models in resource-constrained settings.

2 Related Work
Multilingual large language models (MLLMs)
trained over large Internet-sourced data, such as
MBERT and XLM (Conneau et al., 2020), pro-
vide resources for approximately 100 languages,
many of which are otherwise under-resourced in
NLP. However, multiple publications (Virtanen
et al., 2019; Scheible et al., 2020; Tanvir et al.,
2021) have demonstrated that multilingual lan-
guage models tend to underperform monolingual
language models on common tasks; the “multilin-
gual” quality of MLLMs may not be enough to as-
sure performance on LRL tasks, due to language-
specific phenomena not captured in the MLLM.

Since languages that share recent ancestry or a
Sprachbund tend to share features, there has also
been development of models and resources for lan-
guages from distinct regions of the world. South
Asia is one such “language area,” where even
unrelated languages may share features (e.g., 4-
way voice/aspiration distinctions, SOV word order,
retroflex consonants, heavy use of light verbs). As
such, researchers have developed region-specific
models for South Asian languages such as In-
dicBERT (Kakwani et al., 2020) (11 languages,
8.8 billion tokens) and MuRIL (Khanuja et al.,
2021) (17 languages, 16 billion tokens).

Subword tokenization techniques like byte-pair
encoding (BPE) (Sennrich et al., 2016) yield com-
paratively better performance on LRLs by not bi-
asing the vocabulary toward the most common
words in a specific language, but BPE tokens also
further obscure morphological information not im-
mediately apparent in the surface form of the
word. Nzeyimana and Niyongabo Rubungo (2022)
tackle this problem for Kinyarwanda using a mor-
phological analyzer to help generate subwords that
better capture individual morphemes. However,
despite similar morphological richness of many In-
dian languages, and likely due to similar reasons
as outlined above, the dearth of NLP technology
for most Indian languages extends to a lack of mor-
phological parsers. We hypothesize that adding

phonological features can also capture correlations
between overlapping morphemes.

Previous NLP work in Assamese includes stud-
ies in corpus building (Sarma et al., 2012; Laskar
et al., 2020; Pathak et al., 2022), POS tagging (Ku-
mar and Bora, 2018), WordNet (Bharali et al.,
2014; Sarmah et al., 2019) structured representa-
tions (Sarma and Chakraborty, 2012), image cap-
tioning (Nath et al., 2022c), and cognate detec-
tion (Nath et al., 2022a). There does not ex-
ist, to our knowledge, significant work on As-
samese distributional semantics, or any monolin-
gual, Transformer-based language model for the
Assamese language evaluated on multiple tasks.

Our work complements these previous lines of
research with a novel language model for As-
samese, which further develops an initial model
first used in Nath et al. (2022a). We account for the
lack of an Assamese morphological analyzer with
additional phonological features and task formula-
tions that allow for strategic optimization of the
embedding space before the classification layer.

2.1 Assamese
Assamese is an Eastern Indo-Aryan language with
a speaker base centered in the Indian state of As-
sam. It bears similarities to Bengali and is spoken
by 15 million L1 speakers (up to 23 million total
speakers). Its literature dates back to the 13th c.
CE. It has been written in its modern form since
1813, is one of 22 official languages of the Repub-
lic of India, and serves as a lingua franca of the
Northeast Indian region (Jain and Cardona, 2004).

Despite this, Assamese data in NLP resources
tends to be orders of magnitude smaller than data
in other languages, even in South Asian region-
specific resources (see Table 1).

as bn hi en

CC-100 5 525 1,715 55,608

IndicCorp 32.6 836 1,860 1,220

Table 1: CC-100 (Conneau et al., 2020) and Indic-
Corp (Kakwani et al., 2020) data sizes (in millions of
tokens) for Assamese, Bengali, Hindi, and English.

Assamese bears a similar level of morphologi-
cal richness to other Indo-Aryan and South Asian
languages, with 8 grammatical cases and a com-
plex verbal morphology. Despite these points of
comparison, Assamese has some unique phonolog-
ical features among Indo-Aryan languages, such
as the use of alveolar stops /t(h)/, /d(H)/, velar
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fricative /x/, and approximant /ô/. This atypi-
cal sound pattern motivates the use of phonolog-
ical signals in our model. Moreover, both the pre-
training and task-specific corpora we use contain a
large proportion of loanwords (e.g., from English)
or words cognate with words in higher-resourced
languages (e.g., Bengali). These words rendered
with Assamese’s unique sound pattern result in dis-
tinct, information-rich phoneme sequences.

3 Methodology
3.1 Pretraining

We trained on four publicly-available As-
samese datasets: Assamese Wikidumps3, OS-
CAR (Suárez et al., 2019)4, PMIndia (Haddow
and Kirefu, 2020)5, the Common Crawl (CC-100)
Assamese corpus (Conneau et al., 2020)6, as
well as a version of the ECB+ Corpus (Cybul-
ska and Vossen, 2014) translated to Assamese
using Microsoft Azure Translator. In total, after
preprocessing, the training data amounts to ap-
proximately 26 million space-separated Assamese
tokens.7

AxomiyaBERTa (66M parameters) was
trained as a “light” ALBERT (specifically
albert-base-v2) (Lan et al., 2019) model with
only the MLM objective (Devlin et al., 2019), and
no next sentence prediction (NSP), for 40 epochs
(485,520 steps) with a vocabulary size of 32,000
and a SentencePiece BPE tokenizer (Kudo and
Richardson, 2018). Tokenization methods like
BPE can obfuscate certain morphological infor-
mation. However, without a publicly-available
morphological analyzer for Assamese, our motiva-
tion was to examine if phonological correlations
might pick up similar information across different
tasks while keeping model architecture and
tokenizer consistent. We trained on 1 NVIDIA
A100 80 GB device with a batch size of 32 and
a sequence length of 128 for approximately 72
hours. Table 8 in Appendix A shows all specific
pretraining configuration settings.

3https://archive.org/details/aswiki-20220120
4https://oscar-corpus.com
5https://paperswithcode.com/dataset/pmindia
6https://paperswithcode.com/dataset/cc100
7In resource-scarce settings, especially for LRLs, it is

challenging to find large monolingual corpora for Trans-
former training. For instance, XLM-R was pretrained on
about 164B tokens, of which only 5M were Assamese (see
Table 1). However Ogueji et al. (2021) suggest that for LRLs,
smaller datasets can actually work better than joint training
with high-resourced parallel corpora.

3.1.1 Special Token Vocabulary
The AxomiyaBERTa vocabulary includes two spe-
cial trigger tokens: <m> and </m>. These act as
separators a la the BERT [SEP] token, meaning
that contextualized representations of these tokens
were trained into the AxomiyaBERTa embedding
space. Prior to pretraining, the translated ECB+
Corpus was annotated with these tokens surround-
ing event mentions. Since AxomiyaBERTa was
not trained using the next sentence prediction ob-
jective (see Sec. 3.2.2), its embedding space needs
those special triggers as separators between seg-
ments instead of the [SEP] tokens that segregate
the token type IDs.

3.2 Fine-tuning
AxomiyaBERTa pretraining created a task-
agnostic model optimized for the grammar and
structure of Assamese. This model was then
fine-tuned to achieve good performance on a num-
ber of different tasks. Beyond the task-specific
fine-tuning, we made use of two auxiliary tech-
niques: an embedding disperser, that optimized
the AxomiyaBERTa embedding space away
from severe anisotropy, and phonological or
articulatory attention that acted as a single-head
attention layer attending to both token-level and
candidate-option level phonological signals. We
first discuss these two techniques, followed by
the specific task formulations we evaluated on.
Note that the embedding disperser was used at the
fine-tuning stage for Cloze-QA only due to severe
anisotropy of the embedding space (Fig. 1 and
Fig. 4, Appendix B).

3.2.1 Embedding Disperser
Without a meaningful objective to force embed-
ding vectors apart during training, they trend to-
ward an arbitrary center in Rd space. This phe-
nomenon has also been observed by Gao et al.
(2018), Ethayarajh (2019), and Demeter et al.
(2020), among others. In Nath et al. (2022a), ev-
idence was presented that the effect is more pro-
nounced in smaller models. An effect of this
can be illustrated by embeddings from an example
task, Cloze-style question answering (Cloze-QA):

Let a “set” of embeddings consist of represen-
tations for a question (or context) Q and associ-
ated candidate answers {A,B,C,D}. “Within-
set” cosine similarities represent the cosine simi-
larities between (Q+ i, Q+ j) for each candidate
answer i ∈ {A,B,C,D} and each other candi-
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Figure 1: Kernel Density Estimation plots for within-
set features of each component of the phonologically-
aware embedding disperser (Fig. 2). option_cos
is the output of the auxiliary discriminator while
linear_sigmoid represents the linear layer and
euc_dist represents L2 norm between the raw [CLS]
token embeddings. See Fig. 4 in Appendix B for equiv-
alent “beyond-set” plots.

date j ∈ {A,B,C,D} where i ̸= j. “Beyond-set”
cosine similarities represent similarities between
all pairs in a candidate-plus-answers set compared
to other such embedding sets from different ques-
tions. Fig. 1 shows KDE plots for various similar-
ity metrics taken “within-set” for a random sam-
ple of 100 sets from the Cloze-QA dev set (see
Sec. 3.2.3 for more details on the data). The blue
spike at 1 for cls_cosine_sim shows how simi-
lar all [CLS] token embeddings are to each other,
given AxomiyaBERTa’s extremely anisotropic em-
bedding space after pretraining. This makes it dif-
ficult to optimize a classification boundary during
fine-tuning using standard techniques.

Therefore, to disperse the embedding space for
greater discriminatory power, we used a combina-
tion of Binary Cross Entropy loss and Cosine Em-
bedding loss to train the model. The architecture is
shown in Fig. 2. The key components are: i) a co-
sine embedding layer that takes in arg1 (context)
and arg2 (candidate) representations along with a
[CLS] representation and outputs a 128D embed-
ding into the cosine embedding loss function, and
ii) an auxiliary discriminator that considers only
arg2 and [CLS] representations.

Mathematically,

LBCE = − 1

n

n∑

i=1

(
Yi · log Ŷi + (1− Yi) · log

(
1− Ŷi

))

LCOS(x, y) =

{
1− cos (x1, x2) , if y = 1

max (0, cos (x1, x2)−m) , if y = −1

LCOMB = αLBCE + LCOS(x, y)

where m represents the margin for the cosine
loss and α is 0.01. x1 corresponds to arg1 and x2
corresponds to arg2. y = 1 if x2 is the correct
answer and y = −1 if not. At inference, we com-
puted Euclidean distance between the embedding
outputs of the auxiliary discriminator and the co-
sine embedding layer with a threshold T of 4.45,
found through hyperparameter search.
option_cosine_sim in Fig. 1 shows the out-

puts of the embedding disperser’s cosine embed-
ding layer while option_cos shows the outputs
of the auxiliary discriminator. In both cases we
see distinct distributions that separate correct and
incorrect answers. Works such as Cai et al. (2021)
present evidence of such cases of global token
anisotropy in other Transformer models and sug-
gest that creating such local isotropic spaces leads
to better results in downstream tasks.

3.2.2 Phonological/Articulatory Attention
While the NSP objective is effective at training
LLMs to encode long-range semantic coherence
(Shi and Demberg, 2019), it comes at a significant
additional computational cost. Moreover, for very
low-resource languages like Assamese, a lack of
available long document or paragraph data means
there may not exist a sufficient volume of coherent
consecutive sentences in the training data.

We hypothesize that when fine-tuning a
smaller model like AxomiyaBERTa in a resource-
constrained setting, adding phonological signals to
the latent representations of text samples allows us
to achieve a balanced trade-off between possible
information loss due to reduced supervision (no
NSP objective) and improved task-specific perfor-
mance, at a lower compute cost.

Previous works (e.g., Mortensen et al. (2016);
Rijhwani et al. (2019); Nath et al. (2022b)) have
shown that phonological features are useful for
both token-level “short-context” tasks like NER
or loanword detection as well as “longer-context”
tasks like entity linking. We fine-tune for longer-
context tasks by encoding candidate answers as
phonological features and the pooled embedding
of the context, and computing the relative dif-
ference in mutual information between each can-
didate answer and the context. High variance
in cosine similarities within pairs in a context-
candidate set is due to the phonological signals.
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Figure 2: Embedding disperser architecture with Cosine Embedding and Binary Cross Entropy (BCE) Loss. Cloze-
QA data used as example.

Table 2 shows that the mean, standard devia-
tion, and variances of [CLS] token cosine simi-
larities for pretrained AxomiyaBERTa are much
smaller than those extracted from XLM, but
fine-tuning with phonological signals brings Ax-
omiyaBERTa’s values much closer XLM’s.

AxB XLM AxB + Phon

Mean .998 .82 .67

Variance 5e-6 .08 .06

Stdev .002 .28 .25

Min .993 .13 .17

Table 2: Statistics of AxomiyaBERTa (AxB) and
XLM’s [CLS] token cosine similarities compared to
those of the pooled output of AxomiyaBERTa with
phonological signals (AxB + Phon) over 100 random
samples of within-set pairs of Cloze-QA dev set.

To extract phonological features, we used the
Assamese grapheme-to-phoneme mapping from
Nath et al. (2022a), written for the Epitran library
(Mortensen et al., 2018)8 to convert all text into the
International Phonetic Alphabet (IPA). We then
used the PanPhon library (Mortensen et al., 2016)
to convert the IPA transcriptions into 24 subseg-
mental features such as place and manner of artic-
ulation, voicing, etc.

These feature vectors are padded to the maxi-
mum length (across train, test, and dev sets), and
then concatenated to either the pooled context em-
bedding (for long-context tasks) or the named-
entity token embedding (for NER tasks).

8This was created using reference resources like Omniglot
(https://omniglot.com/writing/assamese.htm) and
Wikiwand/Assamese (https://www.wikiwand.com/en/
Help:IPA/Assamese) along with native-speaker verification.

3.2.3 Cloze-style multiple-choice QA
We fine-tuned AxomiyaBERTa on the Cloze-
style Wiki question answering task from the In-
dicGLUE dataset (Kakwani et al., 2020). We sur-
rounded both the masked text segment as well as
the four candidate answers with the special to-
kens (<m> and </m>) and then fed them into the
pretrained AxomiyaBERTa model to get pairwise
scores with BCE loss. Positive samples were
labeled as 1 and negatives as 0. The encoded
representation for each sample was a concatena-
tion of the pooled ([CLS]) token output, the av-
eraged embedding for the masked text segment
(arg1), that of the candidate answer (arg2), and
the element-wise multiplication of arg1 and arg2.
This was input into a pairwise scorer a la Caciu-
laru et al. (2021). We fine-tuned our model (with
and without phonological attention) with the pair-
wise scorer head for 5 iterations with a batch size
of 80, a scorer head learning rate of 1e-4 and a
model learning rate of 2e-5.

3.2.4 Named Entity Recognition (NER)
For NER, we fine-tuned and evaluated Ax-
omiyaBERTa on two datasets: WikiNER (Pan
et al., 2017) and AsNER (Pathak et al., 2022). For
both datasets, we fed in the tokenized sentence
while masking out all sub-word tokens except the
first of each word. We used a token-classification
head fine-tuned using a multi-class cross-entropy
loss for the label set of the respective datasets. For
our model without phonological signals, we fine-
tuned for 10 epochs with a learning rate of 2e-5
with a linear LR scheduler and a batch size of 20.
For our phonological attention-based model, we
fine-tuned for 20 epochs with a batch size of 40
while keeping all other hyperparameters the same.
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3.2.5 Wikipedia Section Title Prediction
Like Cloze-QA, this task comes from In-
dicGLUE (Kakwani et al., 2020). Fine-tuning for
this task was quite similar to that of Cloze-QA,
except we did not surround the candidates or the
contexts with the trigger tokens. We fed in the
Wikipedia section text and candidate title and op-
timized the multi-class cross entropy loss with a
multiple choice head. We fine-tuned for 20 epochs
with a batch size of 40. For the phonologically-
aware model, we concatenated the articulatory sig-
nals to the pooled embedding output for each sam-
ple and fine-tuned our model for 200 iterations
with a batch size of 40. We used a smaller model
learning rate of 1e-6 and a classifier head learning
rate of 9.5e-4 for both these models.

3.2.6 Pairwise Scorer for Assamese CDCR
Coreference resolution in a cross-document set-
ting (CDCR) involves identifying and clustering
together mentions of the same entity across a set of
documents (Lu and Ng, 2018). Following CDCR
approaches in Cattan et al. (2021) and Caciularu
et al. (2021), we trained a pairwise scorer with
BCE loss over all antecedent spans for each sen-
tence containing an event (across all documents)
while ignoring identical pairs. We generated con-
catenated token representations from Transformer-
based LMs by joining the two paired sentences af-
ter surrounding the event mentions with the spe-
cial trigger tokens. These representations were in-
put to the pairwise scorer (PS) to calculate affinity
scores between all those pairs. Mathematically,

Scores(i, j) = PS([CLS], f(x), f(y), f(x) ∗ f(y)),

where [CLS] represents the pooled output of the
entire sentence pair, f(x) and f(y) are the repre-
sentations of the two events (in context) and ∗ rep-
resents element-wise multiplication.

We trained the Pairwise Scorer for 10 epochs for
all baseline models as well as AxomiyaBERTa. At
inference, we used a connected-components clus-
tering technique with a tuned threshold to find
coreferent links. For baselines and ablation tasks,
we calculated coreference scores using a lemma-
based heuristic, and fine-tuned four other popular
MLLMs using the same hyperparameters. More
details and analysis are in Appendix D.

4 Evaluation
Table 3 shows the number of samples in the train,
dev, and test splits, and the padding length, for all

tasks we evaluated on. For Cloze-QA and Wiki-
Titles, we evaluated on IndicGLUE. For NER, we
evaluated on AsNER and WikiNER. For our novel
coreference task, we evaluated on the translated
ECB+ corpus, where the ratio of coreferent to non-
coreferent pairs in the test set is approximately
1:35. We conducted exhaustive ablations between
native and the phonologically-aware models for
each task, and compared to previously-published
baselines where available. For Cloze-QA, we cre-
ated a train/test split of approximately 4.5:1. We
fine-tuned off-the-shelf IndicBERT and MBERT
on AsNER for 10 epochs on 1 NVIDIA RTX
A6000 48 GB device with a batch size of 20.

Features Train Dev Test Pad-Len

Cloze-QA 8,000 2,000 1,768 360

Wiki-Titles 5,000 625 626 1,848

AsNER 21,458 767 1,798 744

WikiNER 1,022 157 160 480

T-ECB+ 3,808 1,245 1,780 552

Table 3: Table showing distribution of train/dev/test
splits for all tasks. T-ECB+ signifies number of event
mentions in the translated ECB+ corpus, keeping spe-
cial trigger tokens in place. “Pad-Len” represents the
maximum padded length of the articulatory feature em-
beddings generated from PanPhon for all three splits.

5 Results and Discussion
Table 4 shows Test F1 Scores/Accuracy for Ax-
omiyaBERTa for the various short-context (classi-
fication) and long-context (multiple-choice) tasks.
We compared baselines from previous works and
newly fine-tuned baselines for certain tasks. We
used the same pretrained model for all experi-
ments with task fine-tuning heads consistent with
previous benchmarks (Kakwani et al., 2020). One
exception is the Cloze-QA task where we dealt
with task-specific severe anisotropy with embed-
ding dispersal.

5.1 Short-context: AsNER and WikiNER
AxomiyaBERTa achieved SOTA performance on
the AsNER task and outperformed most other
Transformer-based LMs on WikiNER.
Phonologically-aware AxomiyaBERTa Our
experiments suggest that phonological signals are
informative additional features for short-context
tasks like NER for low-resourced, smaller mod-
els like AxomiyaBERTa. Table 4 shows that
phonologically-aware AxomiyaBERTa outper-
formed non-phonological (hereafter “native”)
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Models Cloze-QA Wiki-Titles AsNER (F1) WikiNER (F1)

XLM-R 27.11 56.96 69.42 66.67

MBERT 29.42 73.42 68.02* 92.31
IndicBERT-BASE 40.49 65.82 68.37* 41.67

MuRIL - - 80.69 -

AxomiyaBERTa 46.66 26.19 81.50 72.78

AxomiyaBERTa + Phon 47.40 59.26 86.90 81.71

Table 4: Test F1 Scores/Accuracy for AxomiyaBERTa on all evaluation tasks, compared to previous baselines
and our fine-tuned baselines. “AxomiyaBERTa + Phon” shows results for phonologically-aware AxomiyaBERTa.
AsNER scores with a * represent versions we fine-tuned for this task. For Cloze-QA, Wiki-Titles and WikiNER,
other model performances are from Kakwani et al. (2020). Bold indicates best performance.

Figure 3: Top: Confusion matrices showing Ax-
omiyaBERTa performance on AsNER without [L] and
with [R] phonological awareness. Bottom: IndicBERT
[L] and MBERT [R] performance on AsNER.

AxomiyaBERTa by >5 F1 points on AsNER, with
an even greater improvement (10 F1 points) on
WikiNER. AxomiyaBERTa also outperformed
other baselines for both tasks, with the exception
of MBERT on Wiki-based tasks.9 Fig. 3 shows
confusion matrices of performance on AsNER.

IndicBERT and MBERT misclassified ORG to-
kens as LOC 16 times as much as AxomiyaBERTa.
Specific cases include sub-tokens like িনউয়কর্ (/ni-
ujOôk/, “New York”) or িছংগাপুৰ (/siNgapuô/, “Sin-
gapore”), that are actually parts of entities like এ-
াৰ িছংগাপুৰ (/e staô siNgapuô/, “A-Star Singapore”)

or িনউয়কর্ াড েচ াৰ (/niujOôk blad sentaô/, “New
York Blood Center”). This suggests that smaller,
monolingual models like AxomiyaBERTa with a

9Wikipedia comprises almost all of MBERT’s training
data. MBERT does not support Assamese, but does support
Bengali, and Assamese is written using a variant of the same
script. Named entities are often written identically in Bengali
and Assamese, which could explain this trend.

reduced sequence length and no NSP training ob-
jective are optimized for NE classification tasks
with greater attention to local context (since the
average sentence containing NEs is ∼6 tokens).

Better overall performance on AsNER than on
WikiNER can be partially attributed to having one
fewer class and a more balanced distribution be-
tween categories. AsNER performance likely ben-
efited from a greater phonological signal and more
data to tune on (Table 3) whereas WikiNER text
samples are, on average, longer than 128 tokens
(AxomiyaBERTa’s maximum token length) possi-
bly causing a performance loss due to truncated
context.
Phonological Signals: A Disambiguation
Tool Even though phonologically-aware Ax-
omiyaBERTa took a hit on identifying O tokens,
it compensated with improved results across other
classes. Phonologically-aware AxomiyaBERTa
also reduced misclassifications of ORG tokens
as PER compared to all other models, including
native AxomiyaBERTa. Specific cases include to-
kens that imply persons, e.g., ামীনাথন or সাহা, but
are actually part of ORG NEs, e.g., ামীনাথন কিমছন
(“Swaminathan Commission”) or সাহা ইনি িটউট
অফ িফিজ (“Saha Institute of Physics”). Similarly,
in the WikiNER task, phonological attention
reduced misclassification of B-ORG and I-ORG
tokens as B-PER and I-PER respectively (see
Appendix C). These results suggest phonological
inputs help enrich embeddings of smaller-sized
LMs to distinguish such ambiguous tokens.

5.2 Long-context: Multiple Choice

On Wiki-Titles, phonological AxomiyaBERTa
does better with semantically harder multiple-
choice sets, which have a higher average cosine
similarity between the candidate options. Native
AxomiyaBERTa fails on these samples. As shown
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in Table 5, P+N- has the highest average cosine
similarity between the sample sets, suggesting that
there are cases where phonological signals com-
pensate for low semantic variation among can-
didate options. On the other hand, native Ax-
omiyaBERTa tends to do better with multiple-
choice sets that have wider (relative) semantic vari-
ation within that set, on average. Since the overall
distribution of embeddings in this task is still ex-
tremely close, this suggests that phonological sig-
nals are doing for Wiki-Titles what the embedding
disperser did for Cloze-QA (see Sec. 3.2.1).

P+N- P-N+ P+N+ P-N-

Cos-sim .98844 .98829 .98824 .98838

Table 5: Average cosine similarities between within-
set samples on the Wiki-Titles test set for native (N)
and phonological (P) AxomiyaBERTa. “+” and “-” rep-
resent correct and incorrect samples respectively, e.g.,
P+N- shows samples phonological AxomiyaBERTa an-
swered correctly that the native variant did not.

5.3 Novel Task: Event Coreference on
Translated ECB+

Table 6 shows event coreference resolution results
on the translated ECB+ test set using a tuned
affinity-threshold (T ). These results include both
within- and cross-document system outputs from
AxomiyaBERTa, other Transformer-based LMs,
and a lemma-based heuristic.10

AxomiyaBERTa often outperformed the lemma-
similarity baseline and other LMs. Native and
phonological AxomiyaBERTa have the best MUC
and BCUB F1 scores, respectively, while also
outperforming all other Transformer-based LMs
on BLANC and CoNLL F1. Phonologically-
aware AxomiyaBERTa also outperforms native
AxomiyaBERTa by almost 2 F1 points on CoNLL
F1. More importantly, the phonological sig-
nals help detect more challenging coreferent links
where mere surface-level lemma similarity can fail.
While native and phonological AxomiyaBERTa
performed comparably, the true positives retrieved
by the phonological version contained a higher
proportion of non-similar lemmas, which were
usually missed by the lemma heuristic. Mean-
while, native AxomiyaBERTa retrieved results

10We found an affinity threshold (T = 7) to work for all
models except phonologically-aware AxomiyaBERTa (T =
0) and XLM-100 (T = −1.94). For the latter, we use the
mean of all scores due to an extremely narrow distribution as
shown in the Appendix. More analysis of why this happens
is the subject of future work.

with more similar lemmas, labeling more non-
similar lemma pairs as false negatives (Table 7).
Compared to the other Transformer models, this
also had the effect of increasing precision accord-
ing to most metrics, though at the cost of de-
creasing recall. However, the increased precision
was usually enough to increase F1 overall, point-
ing to the utility of phonological signals in detect-
ing more challenging cases. We hypothesize that
this is because these challenging pairs may con-
sist of synonyms and/or loanwords, and phonolog-
ical signals helped correlate these different surface
forms, which in addition to the semantic informa-
tion at the embedding level helps create corefer-
ence links.

For instance, কনচাি ং (/kOnsaltiN/, “consult-
ing”) and ইি িনয়ািৰং (/indZinijaôiN/, “engineering”)
denote two coreferent events pertaining to the
same company (EYP Mission Critical Facilities).
Since both are borrowed words that maintain
the original phonological form, phonological sig-
nals can help pick out unique articulation beyond
surface-level lemma similarity. Similarly, in cases
of synonyms like মৃতুয্ৰ (/môittuô/, “(of) death”)
and হতয্া (/HOtta/, “killing”), which do not share
surface-level similarity yet are coreferent, phono-
logical signals can help. Where lemmas are al-
ready similar, phonological signals provide little
extra information.

We should note that for coreference, the specific
metric used matters a lot. For instance, almost
33% of the ECB+ dataset across all three splits
consists of singleton mentions. Since MUC score
is not as sensitive to the presence of singletons
as BCUB (Kübler and Zhekova, 2011), this could
explain AxomiyaBERTa’s (and XLM’s) relative
drop in performance on the BCUB metric. On
the other hand, the lower CEAF-e F1 score may
be due to CEAF-e’s alignment algorithm, which
tends to ignore correct coreference decisions when
response entities are misaligned (Moosavi and
Strube, 2016).

Ablations between native and phonological Ax-
omiyaBERTa showed that where lemmas for a pair
of potentially coreferent events are identical (e.g.,
আৰ - /aôOmbHo/, “start”), non-phonological
representations primarily determine the pairwise
scores and the coreference decision. Table 7
shows that even though phonological signals tend
to disambiguate harder event pairs, decreased per-
formance (e.g., MUC F1 phonological vs. native
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CDCR Models
BCUB MUC CEAF-e BLANC C-F1

P R F1 P R F1 P R F1 P R F1
Lemma Baseline 75.81 60.24 67.14 64.59 54.25 58.97 61.36 73.25 66.78 74.97 60.40 64.66 64.29

XLM-100† 5.31 97.55 10.08 54.17 97.84 69.73 30.99 0.73 1.42 49.78 50.00 49.89 27.07
IndicBERT-BASE 74.48 51.93 61.19 44.03 21.94 29.29 40.80 65.59 50.31 52.09 55.41 52.93 46.93

MuRIL 93.53 48.33 63.73 68.18 9.23 16.26 41.56 85.09 55.85 54.78 53.31 53.91 45.28
AxomiyaBERTa 34.68 85.98 49.42 62.40 80.51 70.30 67.63 43.85 53.20 53.00 87.75 54.23 57.64

AxomiyaBERTa + Phon 70.00 64.58 67.18 64.11 44.71 52.68 50.18 68.57 50.18 56.22 68.65 59.19 59.27

Table 6: Event coreference results on Assamese (translated) ECB+ test set from pairwise scorer using Ax-
omiyaBERTa, compared with other Transformer-based LMs and the lemma-based heuristic. Bold indicates best
overall performance per metric. “C-F1” is CoNLL F1. †We evaluate XLM-100 to compare performance on this
task of a slightly larger model than XLM-R where most other major design factors remain the same.

AxomiyaBERTa) could be due to native represen-
tations of the same-lemma pair being weakly cor-
related with the pairwise scores, a possibility when
a coreferent event pair has high contextual dissim-
ilarity. Phonological signals may add noise here.

We also see that the lemma-based heuristic base-
line is overall a very good performer. While
this may be a property of the nature of corefer-
ence tasks in general or specific to a dataset (as
a high percentage of coreferent events use the
same lemma), we must also allow for the possibil-
ity that this may also be an artifact of translation
noise. Since we used an automatically-translated
version of the ECB+ corpus (albeit with some na-
tive speaker verification), and since Assamese is
still a low-resource language, the decoder vocabu-
lary of the translator may be limited, meaning that
synonymous different-lemma pairs in the original
corpus may well have been collapsed into same-
lemma pairs in the translation, artificially raising
the performance of the lemma heuristic.

Models TP L1 L2 Diff-Rate

XLM-100 6,361 1,441 4,920 .773

IndicBERT 101 46 55 .545

MuRIL 62 21 41 .661

AxB 1,833 466 1,367 .746 (.98)

AxB + Phon 956 81 875 .915 (.93)

Table 7: Distribution of same (L1) and different (L2)
event lemma samples in the true positive (TP) distri-
bution of the T-ECB+ test set. “Diff-Rate” is the per-
centage of different lemma samples within TPs (=
L2/TP ). Values in parentheses show the equivalent
distribution within false negatives for comparison.

6 Conclusion and Future Work
In this paper, we presented a novel Transformer
model for Assamese that optionally includes
phonological signals. We evaluated on multiple
tasks using novel training techniques and have

demonstrated SOTA or comparable results, show-
ing that phonological signals can be leveraged for
greater performance and disambiguation for a low-
resourced language. AxomiyaBERTa achieves
SOTA performance on short-context tasks like As-
NER and long-context tasks like Cloze-QA while
also outperforming most other Transformer-based
LMs on WikiNER, with additional improvement
resulting from the phonologically-aware model.
For challenging tasks like CDCR, we have shown
that both AxomiyaBERTa outperformed other
Transformer-based LMs on popular metrics like
BCUB, MUC, and CoNLL F1.

More generally, we have shown that strategic
techniques for optimizing the embedding space
and language-specific features like phonological
information can lower the barrier to entry for train-
ing language models for LRLs, making it more fea-
sible than before with lower amounts of data and
a ceiling on compute power. Our experiments sug-
gest phonological awareness boosts performance
on many tasks in low-resource settings. Future
models for other LRLs can leverage our ideas to
train or fine-tune their own models. Since smaller
models tend toward anisotropy, embedding disper-
sal may pave the way for more such performant
LRL models.

Future work may include incorporating phono-
logical signals during pretraining instead of fine-
tuning, carrying out evaluations against semanti-
cally harder tasks like paraphrasing or emotion
detection, zero-shot transfer to similar languages,
and a contrastive learning framework with a triplet
loss objective for CDCR.

Our trained checkpoints are available on
HuggingFace at https://huggingface.co/
Abhijnan/AxomiyaBERTa. We hope this re-
source will accelerate NLP research for encoding
language-specific properties in LRLs.
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Limitations

Let us begin with the obvious limitation: Ax-
omiyaBERTa only works on Assamese. In addi-
tion, since Assamese comprises a number of di-
alects and we trained on internet-sourced data, we
have no clear evidence regarding which dialects
AxomiyaBERTa is most suited to or if it performs
as well on non-standard dialects.

AxomiyaBERTa did not perform all that well
on Wikipedia Title Selection, compared to other
Transformer-based models. Our best result is on
par with XLM-R and close to IndicBERT-BASE,
but well below MBERT performance. We hypoth-
esize that the amount of Wikipedia training data
in MBERT is a cause of this, but we find that
phonological attention makes a big difference in
AxomiyaBERTa’s performance (increasing accu-
racy from 26% to 59%). Nonetheless, the reasons
behind this subpar performance, and whether Ax-
omiyaBERTa can be improved for this task with-
out, say, overfitting to Wikipedia, need further in-
vestigation.

Ethics Statement

Data Usage Because of the publicly-available,
internet-sourced nature of our training data, we
cannot definitively state that the current version
of AxomiyaBERTa is free of bias, both in terms
of outputs nor, as mentioned in the limitations
section, if there are dialect-level biases toward or
against certain varieties of Assamese that may be
trained into the model. Such investigations are the
topic of future research.

Resource Usage and Environmental Impact
At 66M parameters, AxomiyaBERTa is a smaller
language model that is relatively quick to train
and run. Training was conducted on single GPU
devices. Pretraining AxomiyaBERTa took ap-
proximately 3 days, and task-level fine-tuning
took roughly 30 minutes for non-phonological Ax-
omiyaBERTa and 1-2 hours for phonological Ax-
omiyaBERTa (depending on the task). Training
the pairwise scorer for CDCR took 12-19 min-
utes. Training and fine-tuning took place on
the same hardware. For comparison, fine-tuning
IndicBERT and MBERT on the AsNER dataset
for evaluation took roughly 20-30 minutes each.
These figures indicate that relative to work on
other Transformer models, training and evaluating
AxomiyaBERTa (including running other base-

lines for comparison) comes with a comparatively
lower resource usage and concomitant environ-
mental impact. This lower resource usage also has
implications for the “democratization” of NLP, in
that we have demonstrated ways to train a perfor-
mant model with fewer local resources, meaning
less reliance on large infrastructures available to
only the biggest corporations and universities.

Human Subjects This research did not involve
human subjects.
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A Training Configuration

Table 8 shows the pretraining configuration for Ax-
omiyaBERTa.

B Further Details on Embedding
Disperser

Fig. 4 shows KDE plots for outputs of dif-
ferent components of the embedding disperser,
showing the contrast between features within-
set and beyond-set for Cloze-QA samples, and
showing the difference between AxomiyaBERTa
with phonological awareness and without. The
option_cos label (brown) shows an interesting
phenomenon. This is the output of the embed-
ding disperser at inference (Auxiliary Discrimina-
tor in Fig. 2) and represents a 128-dimensional
embedding output from the [CLS] token concate-
nated with arg2 or the candidate answer input.
We see a distinct shift in cosine similarity scores
between within-set and beyond-set with one peak
very close to 1 in the case of the within-set pairs
while getting clearly dispersed to a lower cosine
similarity score in the case of beyond-set pairs.
This phenomenon is even further accentuated by
feeding phonological signals to the disperser. In
this case, as shown in the top right plot, the co-
sine similarity peak for option_cos has a much
higher density compared to the non-phonological
disperser while the overall distribution is shifted to
a higher cosine similarity.

Another interesting trend is the
linear_sigmoid label (red) which is the
sigmoidal output of the linear layer of the dis-
perser, trained with a combination of cosine
embedding loss and BCE loss when fed an input
of the combined arg1 and arg2 representations
generated with the special trigger tokens. In this

case, feeding phonological signals to the model
reduces dispersion (an inverse trend) in the cosine
similarities between within-set and beyond-set
pairs (as seen in the top-left plot where this
label has a narrower top with a wider bottom).
However, this reverse effect is less pronounced
than that seen in the option_cos cosine similarity
plot, perhaps due to richer contextual information
carried by the trigger token representations (the
inputs to this layer). In other words, and as
shown in the arg_cosine_sim plot, its dispersion
between the within- and beyond-set pairs suggests
why such an effect is less-pronounced.

Works such as Cai et al. (2021) present evidence
of such global token anisotropy in other BERT and
GPT-model variants while also suggesting ways to
locate/create local isotropic spaces more suscepti-
ble for NLP tasks. Interestingly, cosine similari-
ties of output embeddings from our Auxiliary Dis-
criminator (option_cos in Fig. 1) show a marked
difference in the extent of anisotropy between
within-set and beyond-set pairs, a phenomenon
further accentuated with additional phonological
signals (top right plot in Fig. 4). These experi-
ments suggest that a combination of our embed-
ding disperser architecture together with phono-
logical signals (Sec. 3.2.2 for more details) can
effect a shift towards local spaces of isotropy
in the embedding space of the fine-tuned Ax-
omiyaBERTa model for Cloze-QA and potentially
other tasks.

C Further Discussion on Short-Context
Results

Fig. 5 shows native and phonological Ax-
omiyaBERTa performance on WikiNER. We see
comparative performance, but with phonological
signals there are fewer confusions of B-ORG with
B-PER and I-ORG with I-PER. Specific exam-
ples are similar to those seen in Sec. 5.1, e.g.,
ামীনাথন (কিমছন) (“Swaminathan [Commission]”)

or সাহা (ইনি িটউট অফ িফিজ ) (“Saha [Institute of
Physics]”). Being organizations named after peo-
ple, this is a case where phonological signals actu-
ally help. Interestingly, phonological signals also
help with NER even when the NEs are broken
down into BIO chunks, which was not the case in
AsNER. We should observe that with phonologi-
cal signals, there is an increase in B-LOC tokens
classified as B-PER tokens, which is the topic of
future investigation.
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Figure 4: Kernel density estimation plots from various feature sets of the embedding disperser model. The figure
on the top left represents “within set”: cosine similarities between each set of candidate answers plus context and
the remaining three pairs in that set, e.g., if Q is the question/context and A/B/C/D are the candidate answers,
SC(Q+A,Q+ i), where i represents one of the remaining three candidates B, C, D. The figure on the bottom left
represents “beyond-set” cosine similarities: all pairs in a candidate-plus-answers set are compared to other such
sets with the cosine similarity metric. We run our experiments for 100 randomly selected sets from the Cloze-QA
dev set. The top right (within-set) and bottom right (beyond-set) figures are equivalent figures for our models with
phonological awareness.
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Parameters Config

architecture AlbertForMaskedLM

attention_probs_dropout_prob 0.1

bos_token_id 2

classifier_dropout_prob 0.1

embedding_size 128

eos_token_id 3

hidden_act gelu

hidden_dropout_prob 0.1

hidden_size 768

initializer_range 0.02

inner_group_num 1

intermediate_size 3072

layer_norm_eps 1e-05

max_position_embeddings 514

num_attention_heads 12

num_hidden_groups 1

num_hidden_layers 6

position_embedding_type “absolute"

transformers_version “4.18.0"

vocab_size 32001

Table 8: AxomiyaBERTa Model configuration trained on a monolingual Assamese corpus.

Figure 5: Confusion matrices showing Ax-
omiyaBERTa performance on WikiNER without
[L] and with [R] phonological awareness.

D Further Discussion on Pairwise Scorer
for CDCR on Assamese ECB+

The lemma-based heuristic comes from the fact
that a large proportion of coreferent mention pairs
can be identified simply because they use the same
lemma. These “easy” cases gives coreference a
very high baseline even when this naive heuristic is
used. The long tail of “harder” pairs require more
sophisticated approaches (Ahmed et al., 2023).

Fig. 6 shows the affinity scores from the pair-
wise scorer using various model outputs. Ax-
omiyaBERTa is shown in the top left, followed by
(left-to-right, top-to-bottom) XLM-100, MuRIL,
and IndicBERT. We see that AxomiyaBERTa
clearly has a more defined separation between
the labels, with positive/coreferent samples having

higher affinity scores (accounting for the imbal-
anced distribution of coreferent vs. non-coreferent
pairs) compared to the other models. In particular,
XLM-100 shows almost identical ranges of scores
for coreferent and non-coreferent pairs, with the
only significant difference being the number of
each kind of sample, which results in the spike
around T = −1.94 (cf. Sec. 3.2.6).
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Figure 6: Kernel density estimation plots of affinity scores from the pairwise scorer for native AxomiyaBERTa
compared to baselines from other Transformer-based LMs.
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