Race, Gender, and Age Biases in Biomedical Masked Language Models

Michelle YoungJin Kim
Michigan State University
kimmic16@msu.edu

Junghwan Kim
University of Michigan
kimjhj@umich.edu

Kristen Marie Johnson
Michigan State University
kristenj@msu.edu

Abstract

Biases cause discrepancies in healthcare services. Race, gender, and age of a patient affect interactions with physicians and the medical treatments one receives. These biases in clinical practices can be amplified following the release of pre-trained language models trained on biomedical corpora. To bring awareness to such repercussions, we examine social biases present in the biomedical masked language models. We curate prompts based on evidence-based practice and compare generated diagnoses based on biases. For a case study, we measure bias in diagnosing coronary artery disease and using cardiovascular procedures based on bias. Our study demonstrates that biomedical models are less biased than BERT in gender, while the opposite is true for race and age.

1 Introduction

Social biases based on race, gender, and age cause healthcare disparities. Namely, the race, gender, and age of a patient affect the treatment decisions of physicians. For instance, African American patients with coronary artery disease are less likely than White American patients to undergo cardiac catheterization, a life-saving procedure that corrects clogged arteries or irregular heartbeats (Whittle et al., 1993; Ferguson et al., 1997). Research also shows that physicians estimate a lower probability of coronary artery disease for women and younger patients. Hence, African American women are less likely to be referred for cardiac catheterization than White American men (Schulman et al., 1999).

In an attempt to identify and eliminate healthcare disparities, implicit bias has been studied in-depth in real-world patient-provider interactions in both the emergency department (Dehon et al., 2017) and medical assessment of physicians on computer-simulated patients (Hirsh et al., 2015). Despite such efforts, these stereotypes continue to prevail and are unconsciously reflected in clinical notes and biomedical texts.

Following the recent releases and success of pre-trained models in various domains, researchers introduced pre-trained models trained on large-scale biomedical corpora (Beltagy et al., 2019; Lee et al., 2019; Li et al., 2022). When fine-tuned, these models achieve outstanding results on NLP tasks such as named entity recognition, text classification, relation extraction, and question answering. While these competitive open-sourced models can solve challenging biomedical tasks and contribute to the improvement of the scientific domain, they can also amplify social biases in healthcare.

To identify such stereotypes, we examine social biases existing in the biomedical pre-trained models. We define bias as a tendency to associate a particular group with an illness in generated sentences and examine, given a bias, with which illness a model associates more. First, prompts are manually curated based on evidence-based practice and compare generated diagnoses based on biases. For a case study, we measure bias in diagnosing coronary artery disease and using cardiovascular procedures based on bias. Our study demonstrates that biomedical models are less biased than BERT in gender, while the opposite is true for race and age.

In summary, our contributions are: (1) We in-
vestigate biases in biomedical masked language models with manually curated prompts. The experimental results show that BERT is less biased than the biomedical models in race and age and that each model associates distinct illnesses with a patient regardless of the bias. (2) We study whether the models associate a specific illness and a treatment with a particular bias. We use two bias metrics and demonstrate the challenges in measuring bias.

2 Method

We investigate the influences of biases on the biomedical pre-trained language models by identifying associations between generated tokens and biased terms. First, we curate prompts grounded on evidence-based medicine. Next, we compare the diagnosis predictions of a model based on race, gender, and age biases.

2.1 Prompt Curation

We manually curate prompts for diagnosis prediction of pre-trained models. Questions from PICO are re-written in a sentence format and used as prompts. PICO, which stands for Patient (or Population), Intervention, Comparison (or Control), and Outcome, is a framework of well-built questions from evidence-based practice. For the purpose of our research, we utilize questions on the age, sex, and race of a patient. See Appendix A for the full list of prompts.

The format of prompts is “[Bias] [Prompt] [Diagnosis].” An exemplary sentence is “A woman is diagnosed with pneumonia.” We mask the [Diagnosis] to observe the differences in generated tokens of each model. In the provided example, the word “pneumonia” is masked. Nouns and pronouns that identify race, gender, and age bias fill the [Bias] section of the sentence. For example, to reflect the age bias, we choose the words “a young person” and “a junior” to represent the younger age group and the words “an old person” and “a senior” for the older age group. We use the word “person” to avoid the influences of gender-specific words such as “woman” and “man.” As for gender-biased words, we adopt the binary classification of gender and use gender-specific pronouns and nouns. Finally, we use the five minimum categories of race set by the OMB to choose words that reflect racial bias1: White American, African/Black American, American Indian, Asian, and Native Hawaiian. The full list of the chosen nouns can be found in Appendix A.

2.2 Diagnosis Prediction

Given a prompt, a pre-trained model generates tokens to fill in the mask with scores. We sum the scores of each token in all the prompts of a given bias. For comparison, we explore the following biomedical pre-trained models:

- **BioBERT** (Lee et al., 2019) is a BERT (Devlin et al., 2019) trained on PubMed abstracts with 4.5 billion words and PubMed Central full-text articles with 13.5 billion words.

- **ClinicalBERT** (Alsentzer et al., 2019) is BioBERT (Lee et al., 2019) trained on approximately 2 million clinical texts from the MIMIC-III v1.4 database (Johnson et al., 2016).

- **Clinical-Longformer** (Beltagy et al., 2020) is Longformer (Beltagy et al., 2020) trained for 200,000 steps with batch size of 6×3 on 2 million clinical notes extracted from the MIMIC-III dataset.

As a baseline, we compare these models to a pre-trained BERT (Devlin et al., 2019). See Appendix D for the details of the implementation.

3 Experimental Results

We compare the prediction results among biomedical language models (LMs) and analyze the association between illnesses and biases. As shown in Table 1, the top 3 diagnosis predictions of each model show high overlaps across different biases. BioBERT predicts “malaria” as the top 1 diagnosis and “cancer” as the top 3 for both the young and old age groups. As for racial biases, “malaria,” again, has the highest prediction score across races, and “tuberculosis” scores second for African American, American Indian, and Asian and scores third for the other two races. (See Appendix B for the figures that compare the percentage of top 7 diagnoses.)

To better quantify overlaps within biases, we measure the text overlap scores of each model, and the results are shown in Table 2. The text overlap scores are computed by first counting the number of matching words and then normalizing the counts to a value between 0 and 1. For normalization, we

Table 1: Top 3 Diagnoses On Group.

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Race</th>
<th>Model</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BERT</td>
<td>cancer, depression, cancer, pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BioBERT</td>
<td>cancer, tuberculosis, depression, pneumonia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIBERT</td>
<td>pneumonia, anxiety, HIV, diabetes, cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CliLong</td>
<td>dementia, hypertension, pneumonia, hypertension</td>
</tr>
</tbody>
</table>

The model names are written on the leftmost column, where “CliBERT” and “CliLong” stands for ClinicalBERT and Clinical Longformer, respectively. As for the races, the capital letters in the header symbolize White American (W), African/Black American (B), American Indian (I), Asian (A), and Native Hawaiian (H).

Table 2: Text Overlap Scores in Diagnosis Prediction.

<table>
<thead>
<tr>
<th>Model</th>
<th>Age</th>
<th>Gender</th>
<th>Race</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>BioBERT</td>
<td>0.815</td>
<td>0.909</td>
<td>0.685</td>
<td></td>
</tr>
<tr>
<td>ClinicalBERT</td>
<td>0.857</td>
<td>0.857</td>
<td>0.681</td>
<td></td>
</tr>
<tr>
<td>ClinicalLongformer</td>
<td>0.778</td>
<td>0.9</td>
<td>0.68</td>
<td></td>
</tr>
</tbody>
</table>

The scores represent the overlaps in generated tokens.

Table 3: Text Overlap Scores Among Races in BioBERT.

<table>
<thead>
<tr>
<th>Race</th>
<th>W</th>
<th>B</th>
<th>I</th>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.714</td>
<td>0.667</td>
<td>0.833</td>
<td>0.667</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.706</td>
<td>0.714</td>
<td>0.714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.667</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The capital letters in the header symbolize White American (W), African/Black American (B), American Indian (I), Asian (A), and Native Hawaiian (H).

Table 4: Text Overlap Scores Among Races in ClinicalBERT.

<table>
<thead>
<tr>
<th>Race</th>
<th>W</th>
<th>B</th>
<th>I</th>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.6</td>
<td>0.615</td>
<td>0.727</td>
<td>0.615</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.667</td>
<td>0.615</td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.75</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Text Overlap Scores Among Races in Clinical Longformer.

<table>
<thead>
<tr>
<th>Race</th>
<th>W</th>
<th>B</th>
<th>I</th>
<th>A</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.839</td>
<td>0.621</td>
<td>0.581</td>
<td>0.848</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.692</td>
<td>0.571</td>
<td></td>
<td>0.867</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0.538</td>
<td>0.643</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An interesting observation is that the three biomedical models, BioBERT, ClinicalBERT, and Clinical Longformer display the highest overlap scores in the gender bias and the lowest in the racial bias. On the contrary, the baseline BERT exhibits an opposite result: the gender bias has the least overlapping tokens. We infer that biomedical models are less likely to predict different diagnoses based on gender than BERT.

Finally, each model reveals a different tendency to predict an illness of a given patient. BioBERT predicts “malaria” with the highest scores across all biases except for the male bias. ClinicalBERT generates “pneumonia” most times except for Asians. As for Clinical Longformer, the top 1 diagnosis is...
“cancer” for age and gender biases and “diabetes” for racial bias. This observation suggests that each model associates a specific illness to all patients irrespective of bias and that a model choice determines the prediction of diagnosis.

Case Study. We study whether a well-documented association between biases and the use of cardiovascular procedures is observed in the biomedical models (Schulman et al., 1999; Chen et al., 2001). In particular, we look into two correlations: (1) the physicians assume that females and the young are less likely to have coronary artery disease than males and the old, respectively; (2) females and African Americans are less likely to receive cardiac catheterization than males and White Americans, respectively.

To identify those biased correlations in the models, we perform two experiments. First, we curate prompts and measure the token scores of mask prediction, which we denote as M-scores. Second, the bias metrics in CrowS-Pairs (CP) (Nangia et al., 2020) are adopted. We create a pair of stereotypical and anti-stereotypical sentences S, mask one unmodified token $u_i \in U$ at a time, and compute pseudo-log-likelihoods:

$$\text{score}(S) = \sum_{i=0}^{|	ext{C}|} \log P(u_i \in U|\bar{u}_{\text{modified}}, M, \theta),$$

where $U = \{u_0, \ldots, u_l\}$ are unmodified tokens and $M = \{m_0, \ldots, m_n\}$ are modified tokens in a sentence S. The details of the experiments can be found in Appendix C.

First, we examine the correlation between gender/age and coronary artery disease. As shown in Table 6, the female and the young have lower CP bias scores than the male and the old, respectively. This result aligns with the first correlation in clinical practice. In contrast, the M-scores of the male and the old are lower. Namely, the models are less likely to generate male- and old-biased words in a sentence with coronary artery disease.

Table 7 show the experimental results on the correlation between gender/race and the use of cardiac catheterization. The CP scores of the male and White American are lower than the female and African American, respectively. Once more, the M-score results are the opposite; the female and African American have lower M-scores.

M-scores and CP scores exhibit contrary results for the two experiments on the correlations. In the first experiment, the CP score results demonstrate a higher association between male/old patients and coronary artery disease, proving the first correlation manifested in the biomedical models. However, the M-scores reveal an opposing association, overturning the first correlation. In the second experiment, the M-scores align with the second correlation, while the CP scores do not. These results signify the importance of using more than one metric to measure bias and the challenges of measuring bias in LMs.

Limitations. In this study, the prediction scores of generated tokens are aggregated to determine the rankings of diagnosis in Table 1 and Figures 2, 3, and 4. We choose this summation metric because bias as defined in this paper is a tendency to associate a particular group with an illness in generated sentences. However, we acknowledge the limitations of aggregated scores in reflecting comprehensive model behaviors for different sub-populations (Blodgett et al., 2020).

In addition, we recognize that the change in prompts can affect experimental results. For our experiments, prompts based on PICO were curated and used to examine the association between illnesses and biases. Yet a choice of a prompt greatly affects the performance of a model (Liu et al., 2023). Hence, if different prompts are adopted, the experimental results can differ.

Finally, our definition of bias in biomedical models is based on papers that study the effects of bias on healthcare outcomes (Blair et al., 2011; Hall et al., 2015). We are not claiming that statistical differences in health conditions based on race, gender, or age are not meaningful. Yet studies show that patients with the same health conditions get different treatments due to a healthcare provider’s (implicit) bias (Green et al., 2007; Sabin and Greenwald, 2012). A perfect dissociation between race, gender, or age and a patient’s health conditions is impossible. Still, to study bias as explicitly defined for this work, we design prompts that provide a patient’s race, gender, or age, not their health conditions and question whether the biomedical models are affected by the given information.

4 Conclusion

We explore whether biases in clinical practice are reflected in pre-trained biomedical LMs. The tendency in diagnosis predictions of the models is analyzed, and the overlaps in the predictions across biases are compared. As a case study, we measure bias in associating coronary artery disease with gender/age and cardiovascular procedures with gen-
Table 6: Correlation Scores Between Gender/Age and Coronary Artery Disease. M-score is a prediction score of masked tokens, and CP stands for CrowS-Pairs.

<table>
<thead>
<tr>
<th>Gender</th>
<th>M-score CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>8.58e-05 -65.072</td>
</tr>
<tr>
<td>Male</td>
<td>6.08e-05 -64.076</td>
</tr>
<tr>
<td>Young</td>
<td>7.29e-06 -74.702</td>
</tr>
<tr>
<td>Old</td>
<td>4.19e-06 -68.8</td>
</tr>
</tbody>
</table>

Table 7: Correlation Scores Between Gender/Race and Cardiac Catheterization. M-score is a prediction score of masked tokens, and CP stands for CrowS-Pairs.

<table>
<thead>
<tr>
<th>Gender/race</th>
<th>M-score CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>4.14e-06 -80.631</td>
</tr>
<tr>
<td>Male</td>
<td>9.62e-06 -80.864</td>
</tr>
<tr>
<td>White</td>
<td>9.07e-08 -89.210</td>
</tr>
<tr>
<td>Black</td>
<td>2.50e-08 -87.816</td>
</tr>
</tbody>
</table>

Ethics Statement

We acknowledge that the biases discussed in this paper are not comprehensive and do not include every sociocultural bias. Also, our experimental analyses are not rigid conclusions about the stereotypes presented and propagated within models and do not imply a superiority of one model over another.

References

Alistair E Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and...
A Prompts

Table 8 shows the full list of prompts used for our experiments. A chosen model predicts tokens that can fill [MASK]. The scores for each token are aggregated to assess the prediction score of the token. For each prompt, nouns and pronouns that represent race, gender, or age bias fill [X]. The following nouns were used for each bias:

- **Age:**
 - Young: “young person,” “junior.”
 - Old: “old person,” “senior.”

- **Gender:**
 - Female: “woman,” “female,” “she.”
 - Male: “man,” “male,” “he.”

- **Race:**

B Top 7 Diagnoses

We display the top 7 diagnoses in each bias category as bar charts. Figure 2 is the result of the age bias, Figure 3 is the result of the gender bias, and Figure 4 is the result of the racial bias. A bar chart displays the proportions of diagnoses within a category of bias. Each color in a bar chart represents different diagnoses, as shown in the legend on the right side of each figure.

C Case Study

Table 9 shows the prompts for the first experiment of a case study in Section 3. We observe the prediction scores of the nouns and pronouns, defined in Appendix A.

As for the second experiment, we use the prompts in Table 9 and fill the mask with biased words to create stereotypical and anti-stereotypical sentences. Some exemplary sentences are “A woman has coronary artery disease,” “A young person does not have coronary artery disease,” “A man needs cardiac catheterization,” and “A White American does not need cardiac catheterization.” We refer the readers to Nangia et al., 2020 for the details of the CP metric.

D Implementation Details

For all models, PyTorch was used for implementation. All experiments are conducted on an Nvidia
Figure 2: Top 7 Diagnoses in the Age Bias.

Figure 3: Top 7 Diagnoses in the Gender Bias.

Manual Prompts

[MASK] has coronary artery disease.
[MASK] does not have coronary artery disease.
[MASK] needs cardiac catheterization.
[MASK] does not need cardiac catheterization.

Table 9: Case Study Prompts. Prompts used for experiments on the case study of associations between biases and coronary artery disease/cardiac catheterization.
Quatro RTX 5000, 16 GB memory GPU in a machine with Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz. We use the following pre-trained models from Hugging Face:

- BERT: bert-base-cased
- BioBERT: dmis-lab/biobert-base-cased-v1.2
- ClinicalBERT: emilyalsentzer/Bio_ClinicalBERT
- Clinical Longformer: yikuan8/Clinical-Longformer

The default parameters of the pre-trained models are used. The experiments use the models trained on English corpora and are based on English prompts and results.
ACL 2023 Responsible NLP Checklist

A For every submission:

- A1. Did you describe the limitations of your work?
 Section 3.

- A2. Did you discuss any potential risks of your work?
 Ethics Statement.

- A3. Do the abstract and introduction summarize the paper’s main claims?
 Abstract and Section 1.

- X A4. Have you used AI writing assistants when working on this paper?
 Left blank.

B ✔️ Did you use or create scientific artifacts?

Sections 2 and 3.

- ✔️ B1. Did you cite the creators of artifacts you used?
 Sections 2 and 3, and Appendix D.

- ✔️ B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
 Sections 2 and Appendix D.

- ✔️ B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided that it was specified? For the artifacts you create, do you specify intended use and whether that is compatible with the original access conditions (in particular, derivatives of data accessed for research purposes should not be used outside of research contexts)?
 Sections 2 and Appendix D.

- X B4. Did you discuss the steps taken to check whether the data that was collected / used contains any information that names or uniquely identifies individual people or offensive content, and the steps taken to protect / anonymize it?
 Not applicable. Left blank.

- ✔️ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic phenomena, demographic groups represented, etc.?
 Appendix D.

- X B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits, etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the number of examples in train / validation / test splits, as these provide necessary context for a reader to understand experimental results. For example, small differences in accuracy on large test sets may be significant, while on small test sets they may not be.
 Not applicable. Left blank.

C ✔️ Did you run computational experiments?

Section 3.

- ✔️ C1. Did you report the number of parameters in the models used, the total computational budget (e.g., GPU hours), and computing infrastructure used?
 Appendix D.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing assistance.
C2. Did you discuss the experimental setup, including hyperparameter search and best-found hyperparameter values?
Appendix D.

C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary statistics from sets of experiments), and is it transparent whether you are reporting the max, mean, etc. or just a single run?
Section 3.

C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE, etc.)?
Section 3 and Appendix D.

D X Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

D1. Did you report the full text of instructions given to participants, including e.g., screenshots, disclaimers of any risks to participants or annotators, etc.?
No response.

D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students) and paid participants, and discuss if such payment is adequate given the participants’ demographic (e.g., country of residence)?
No response.

D3. Did you discuss whether and how consent was obtained from people whose data you’re using/curating? For example, if you collected data via crowdsourcing, did your instructions to crowdworkers explain how the data would be used?
No response.

D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

D5. Did you report the basic demographic and geographic characteristics of the annotator population that is the source of the data?
No response.