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Abstract

Despite the versatility of pre-trained language
models (PLMs) across domains, their large
memory footprints pose significant challenges
in federated learning (FL), where the training
model has to be distributed between a server
and clients. One potential solution to bypass
such constraints might be the use of parameter-
efficient fine-tuning (PEFT) in the context of
FL. However, we have observed that typical
PEFT tends to severely suffer from heterogene-
ity among clients in FL scenarios, resulting
in unstable and slow convergence. In this pa-
per, we propose Client-Customized Adaptation
(C2A), a novel hypernetwork-based FL frame-
work that generates client-specific adapters by
conditioning the client information. With the ef-
fectiveness of the hypernetworks in generating
customized weights through learning to adopt
the different characteristics of inputs, C2A can
maximize the utility of shared model parame-
ters while minimizing the divergence caused by
client heterogeneity. To verify the efficacy of
C2A, we perform extensive evaluations on FL
scenarios involving heterogeneity in label and
language distributions. Comprehensive evalu-
ation results clearly support the superiority of
C2A in terms of both efficiency and effective-
ness in FL scenarios1.

1 Introduction

The advent of large-scale pre-trained language
models (PLMs) for natural language processing
(NLP) has led to exceptional performance across
a broad spectrum of domains. However, the high
memory requirements for PLMs impede their ap-
plicability to resource-constrained environments.
These challenges are particularly evident in feder-
ated learning (FL), where model weights are trans-
mitted between the server and clients to preserve
data privacy (Konečný et al., 2016; McMahan et al.,

∗These authors contributed equally to this work.
1Our code is available at https://github.com/

yeachan-kr/c2a
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Figure 1: Conceptual illustration of the existing PEFT
modules (A) and the client-customized adaptation (H).
The proposed method learns to generate the client-
customized PEFT modules rather than fitting a single
global module to all clients.

2017). While recent FL studies have expanded the
application of PLMs in various tasks, such as text
classification (Zhu et al., 2020; Qin et al., 2021;
Weller et al., 2022), language modeling (Chen et al.,
2019), and question answering (Chen et al., 2021),
communicating the training model among clients
requires huge computational resources and band-
width, presenting a significant challenge in terms
of practicality.

Parameter-efficient fine-tuning (PEFT) approach
is thereby a promising strategy for reducing com-
munication costs in FL. Through tuning only a
small fraction of parameters, such as adapter-based
tuning (Houlsby et al., 2019; Hu et al., 2022; Ma-
habadi et al., 2021a), bias tuning (Zaken et al.,
2022), and prompt-tuning (Lester et al., 2021),
PEFT approaches significantly enhance the mem-
ory efficiency in centralized scenarios. However,
the feasibility of PEFT in decentralized scenarios
has not been well explored.

Hence, we investigate the applicability of typical
PEFT approaches in FL scenarios. Specifically, we
measure the performance and client drifts (Karim-
ireddy et al., 2020; Li et al., 2021) of PEFT ap-
proaches in FL. Our discoveries are as follows: (1)
typical PEFT approaches show large performance
degradation in FL scenarios as the degree of non-
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IID increases; (2) these approaches usually suffer
from large client drifts in non-IID scenarios, re-
sulting in slow convergence and detrimental model
performance. The above observations reveal that
adopting PEFT in FL is not trivial, and posing the
necessity to address large client drift.

To overcome the identified limitations, we pro-
pose a novel hypernetwork-based FL framework,
Client-Customized Adaptation (C2A), that lever-
ages the information of different data distributions
on clients. Our key idea is to generate the adapter
parameters tailored to each client via hypernet-
works by taking the information of client data dis-
tribution, rather than naively fitting a single global
adapter to all heterogeneous data distributions (Fig-
ure 1). By learning to adopt the different data dis-
tributions to generate adapters for each client, C2A
enables robust training for various non-IID con-
ditions while sharing knowledge among clients.
Moreover, in order to manage the large number
of parameters associated with hypernetworks, we
introduce factorized hypernetworks, thereby signif-
icantly reducing the number of parameters without
sacrificing the performance.

We carefully design the experimental setting to
verify the efficacy of C2A on realistic FL scenarios,
considering on both label and language heteroge-
neous. The experimental results show clearly that
C2A can be robust to the heterogeneity of clients,
thereby leading to the state-of-the-art results on
diverse non-IID setups. In addition, our framework
shows a significant enhancement in training effi-
ciency across a range of downstream tasks. Finally,
we demonstrate that our C2A successfully miti-
gates the large client drifts among local clients in
non-IID scenarios. A summary of our main contri-
butions is as follows:

• We investigate the effectiveness of PEFT
among various FL scenarios. To the best of
our knowledge, our work is one of the few
researches for adapting PEFT in FL.

• We propose Client-Customized Adaptation
(C2A), a novel hypernetwork-based frame-
work that strengthens the robustness of
adapter concerning FL heterogeneity.

• We demonstrate that C2A works quite well on
various non-IID scenarios while preserving
the benefits of efficiency in PEFT.

2 PEFT in FL Scenario

2.1 Background of FL

The goal of federated learning is to collaboratively
train a single global model without sharing any pri-
vate data between clients. To this end, FL proceeds
through the communication of training models be-
tween clients and the server in a round-by-round
manner. For each round, the server first distributes
a single global model θ to a set of sampled clients,
participating clients then perform local optimiza-
tion on their own data. Upon the completion of
the optimization, the server again aggregates all
locally-trained models to update the global model.
Formally, let the dataset of the i-th client be Di, the
above process for updating the global model can
be formulated as follows:

θ̃ =
K∑

i=1

αi · L(Di; θ), (1)

where L(Di; θ) is the function that returns the
trained model based on the given dataset and the ini-
tial model, K is the number of participating clients,
and αi is the contributing factor of the client i to
build a global model, which is typically determined
by the dataset size of each client, i.e., αi =

|Di|∑
i |Di| .

While there are various aggregation methods, we
focus on FedAvg due to its wide applicability in
the FL community (Karimireddy et al., 2020; Li
et al., 2021; Luo et al., 2021).

However, utilizing cumbersome PLMs for the
communication process of FL poses two challenges.
Firstly, the function L(·) requires high computing
resources due to the large number of trainable pa-
rameters associated with PLMs. Secondly, in the
aggregation step (i.e., weighted summation), sig-
nificant network bandwidth is required to transmit
and receive the models. Therefore, it is crucial to
find an optimal solution that can mitigate these
constraints, providing a more efficient and less
resource-intensive mechanism for FL with PLMs.

2.2 Impact of Heterogeneity on PEFT

To verify the applicability of PEFT in federated
context, we conduct a preliminary investigation
in which only small components (e.g., adapters,
prompt embeddings, biases) are fine-tuned on local
data and subsequently shared between clients. The
experimental configuration comprises 100 clients
engaged in the task of multilingual news classifica-
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Figure 2: Sensitivity analysis of PEFT methods in fed-
erated context in terms of data heterogeneity and di-
vergence from the global model. PT indicates prompt-
tuning (Lester et al., 2021), and the dotted line indicates
full fine-tuning method.

tion2 (Liang et al., 2020).
We first examine the robustness of PEFT on

heterogeneous data distribution between clients,
which is common in real-world scenarios. We re-
port the test accuracy of the global model with
respect to the increasing heterogeneity3. The over-
all results are depicted in Figure 2(a). In the non-
federated scenario (i.e., IID), the existing PEFT
methods manage to achieve strong performances
comparable to that of the full fine-tuning. How-
ever, as the level of heterogeneity increases, the
performances of the PEFT methods significantly
lag behind that of the full fine-tuning. This verifies
that PEFT methods exhibit greater susceptibility to
heterogeneity than full fine-tuning.

To gain a deeper understanding of the suscepti-
bility, we further analyze the local optimization of
the PEFT methods. Specifically, we measure the
CKA similarity (Kornblith et al., 2019) of the logits
between the training model and the global model
on the IID and non-IID setups. Figure 2(b) shows
the results. Comparing between IID and non-IID
setups, all PEFT methods noticeably deviate from
the global model on non-IID. This indicates that
the model gradually converges to the client optima

2Further details for the experiment in Section 4.3.
3The increasing heterogeneity implies the corresponding

degree of skewness deterioration towards certain classes

while drifting apart from the global model’s optima,
which are believed to be more generalized (Li et al.,
2021). This observation aligns with prior results
(Luo et al., 2021), and we suspect that such devia-
tion attributes the slow and unstable convergence.

3 C2A: Client-Customized Adaptation

In this section, we elaborate on the proposed frame-
work in detail. The core strategy is to generate
customized PEFT modules tailored to each client
to mitigate the negative impact of heterogeneity
among clients. To achieve this, we first derive la-
tent vectors to represent the data distribution of
each client (Section 3.2). The resulting embed-
dings are then conditioned on the hypernetworks
so as to generate parameters of the PEFT modules
tailored to each client (Section 3.3). Regarding on
the large number of parameters induced from hy-
pernetworks, we effectively factorize the weights
of the hypernetworks (Section 3.4).

3.1 Adapter Architecture

We start with defining the structure of the PEFT
modules to be generated. While lots of differ-
ent modules have been proposed, we focus on
Adapter (Houlsby et al., 2019), given its versa-
tility across domains, such as vision-and-image
(Sung et al., 2022) and audio (Hou et al., 2021),
as well as its demonstrated efficacy in performing
given tasks. The adapter consists of down- and up-
projection functions that are interleaved between
self-attention layers and feed-forward layers within
every block of the PLMs. The adapting process can
be formulated as:

Al(x) = UlGeLU(Dlx) + x (2)

where Dl ∈ Rr×d and Ul ∈ Rd×r are the weights
for the down- and up-projection in the l-th layer of
PLMs, respectively, d is the hidden dimension of
PLMs, and r is the bottleneck dimension.

3.2 Construction of Client Embeddings

To represent the characteristics of the clients, we
consider two different types of information: 1) la-
bel embeddings and 2) context embeddings.

Label Embeddings The label embedding plays
a role in conveying the explicit information of class
distribution on each client. Since mini-batches are
generally sampled by uniform distribution, the la-
bel distributions on mini-batches can sufficiently

1161



𝑈! 𝐷!

𝑈" 𝐷"

Client Data Distribution Customized AdaptersClient-conditional HyperNetworks

Federated Clients

Client 
Embeddings

𝐹 𝑆

Factorized
HyperNetworks

𝜎

𝜎

Input sequences

Client A

Classes

Clients

Client B

Client A

Client B

… …

Figure 3: Overview of the proposed framework, denoted as Client-Customized Adaptation (C2A). To perform
customized adaptation, C2A takes into account the client information as a form of label and context. Based on the
client embeddings, the factorized hypernetworks generate adapters that are specialized for each client.

represent the data distributions of clients. Thus we
construct label embeddings from the label distribu-
tions of the mini-batches. Let the mini-batches of
the client i be B ⊂ Di, the label embeddings can
be derived as follows:

L(B) = WLavg([y1; ...; y|B|]) + bL, (3)

where yi is a one-hot label vector for the instance
xi, [ ; ] denotes the concatenating function, avg(·)
denotes the average pooling within mini-batches,
WL ∈ RC×t and bL ∈ Rt are the linear transfor-
mation weights and biases for the number of classes
C and t is the dimensionality of input embeddings.
It is important to note that, since the labels for test
data are not accessible, we opt for a uniform distri-
bution for the inference phase to generate adapters
that are not biased toward dominant classes.

Context Embeddings Considering the contex-
tual information in data can also provide an en-
hanced understanding of each client by taking a
more comprehensive viewpoint (e.g., languages,
text styles). Specifically, the contextual informa-
tion is extracted from every layer, so as to generate
layer-specialized adapters. Inspired by the sentence
embeddings (Li et al., 2020), context embeddings
are extracted by averaging word vectors over the
lengths with ℓ2 normalization. Let the resulting vec-
tors of the sample xj from the l-th layer of PLMs
be f l(xj), the context embeddings of the l-th layer
are derived as follows:

F l(B) = WFmax([f l(x1); ...; f
l(x|B|)]) + bF ,

(4)
where max(·) denotes the max-pooling across the
batch, and WF ∈ Rd×t and bF ∈ Rt are the linear
transformation weights and biases, respectively.

Client Embeddings The comprehensive client
embeddings I l

B are constructed by summing up
two types of embeddings. Additionally, we add
layer-index embeddings into the client embeddings
of each layer, further encouraging the generator
to encode more diverse layer-wise information
(Van Aken et al., 2019; de Vries et al., 2020).

3.3 Client-conditional HyperNetworks
Based on the client embeddings, we tailor adapters
to each heterogeneous client. Drawing inspiration
from the concept of hypernetworks (Ha et al., 2017)
that generates parameters based on given input em-
beddings, we introduce the client-conditional hy-
pernetworks, which generate adapter parameters
by taking the client embeddings I l

B as inputs. For-
mally, the parameters of the adapters (i.e., U l, Dl)
are generated by following the function of hyper-
networks:

(Ul
B,Dl

B) := h(IB) = (WU ,WD)I l
B, (5)

where I is the input embeddings with dimension-
ality t, W l

D ∈ R(r×d)×t,W l
U ∈ R(d×r)×t are the

weights for the hypernetworks. Note that the hyper-
networks are shared between different layers with
the layer-specific information that are encoded to
the input embeddings.

3.4 Factorization of HyperNetworks
While customized adapters can be generated from
the aforementioned hypernetworks, hypernetworks
typically comprise a relatively large number of pa-
rameters. We thus factorize the proposed hyper-
networks into two smaller weights. Moreover, the
resultant matrices from the factorized components
are ℓ2 normalized, such that the generated parame-
ters are not biased towards any of the local major-
ity classes in the client’s data distribution (Zhong
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et al., 2021). Formally, the up-projection weights
in Eq. (5) are reconstructed by two factorized com-
ponents as follows:

Ul
B = WUIB = σ(FUSU )IB (6)

where FU ∈ Rd×s and SU ∈ Rs×(r×t) indicate the
factorized components from WU with latent factor
s, σ(·) denotes the Frobenius normalization.

For factorization, the latent factor s plays a cru-
cial role in determining the complexity and expres-
sivity of the resulting adapters. To allow for a larger
dimensionality of latent factors, the two projection
weights are tied similarly as if the tied auto-encoder
(Alain and Bengio, 2014), i.e., Dl

B = U l
B
⊤. This

strategy enables to halve the memory requirements
without compromising the task accuracy.

3.5 Aggregation Phase for C2A
Upon the completion of the training phase on each
client data, the respective trained models are trans-
mitted back to the centralized server to update the
global model (Eq. (1)). Considering that the train-
ing models for C2A are hypernetworks, each client
sends the parameters associated with the hypernet-
works and the layer-index embeddings to the server
in order to update the global hypernetworks.

4 Evaluation

In this section, we evaluate the efficacy of our C2A
on two realistic FL scenarios: 1) heterogeneity in
label distributions, and 2) heterogeneity in both
label and language distributions.

4.1 Datasets
To simulate the two challenging scenarios, we
mainly consider two text classification datasets,
20Newsgroup (Lang, 1995) and XGLUE-NC
(Liang et al., 2020), which have recently served as
benchmarks for evaluating FL for NLP (Lin et al.,
2022; Weller et al., 2022).

20Newsgroup The dataset comprises 18,000
news posts that pertain to 20 distinct topics. Given
its larger categorical space (i.e., 20 labels) than the
typical sentiment analysis datasets, it is favored to
the verification for the important factor of the label
distribution heterogeneity scenarios.

XGLUE-NC The dataset includes 10,000 posts
written in multiple languages that pertain to 10
news categories. This diversity in languages
adds an extra layer of complexity to the FL. The

dataset comprises five languages: English, Span-
ish, French, German, and Russian. Furthermore,
due to the varying categorical distribution between
languages (e.g., the English dataset is skewed to-
wards Sports, while the French dataset is skewed
toward News), the distribution shifts among clients
are naturally introduced to the dataset.

4.2 Non-IID Client Partitioning
Building upon the two datasets, we adopt two non-
IID partitioning strategies to inject heterogeneity
into the label and language distributions.

Label Distribution. Following the benchmark
setup (Lin et al., 2022), we apply Dirichlet distribu-
tion Dir(β) to the datasets in reorganizing the data
into the non-IID label distribution circumstance.
The value β controls the degree of non-IID, the
smaller the β, the more likely the clients in holding
examples from only one class. Thus, we eventually
construct a FL dataset respecting the label hetero-
geneity scenarios.

Language Distribution. Following the language
setup in (Weller et al., 2022), we randomly divide
clients into five distinct groups, with each group
being exclusively dedicated to a specific language.
Subsequently, we split the dataset of each language
in the same manner with the strategy of non-IID
label distribution, which is more challenging and
not even being explored in previous works.

4.3 Federated Learning Setup
Baselines and Implementations Following the
previous work (Lin et al., 2022), we use the uncased
version of DistilBERT 4 (Sanh et al., 2019) with
66M parameters. We compare C2A with six strong
baselines, which include Adapter (Houlsby et al.,
2019), LoRA (Hu et al., 2022), Compacter (Ma-
habadi et al., 2021a), Prompt-tuning (Lester et al.,
2021), BitFit (Zaken et al., 2022), and AdaMix
(Yaqing Wang and Gao, 2022), to encompass a
broad range of PEFT methods. These modules
are optimized by AdamW (Loshchilov and Hutter,
2019) with the searched learning rate ranging from
{2e-4, 3e-4, 4e-4, 5e-4}.

Local Optimization and Aggregation We as-
sign 100 clients for each dataset and randomly se-
lected 25% of the clients to join the local optimiza-
tion in each round. During the local optimization,

4In multi-lingual FL scenarios, we adopt the multi-lingual
version of DistilBERT with 134M parameters
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Table 1: Evaluation results of test accuracy (%) on 20Newsgroup. The best and second best results are highlighted
in boldface and underlined, respectively.

Methods Params (%) Non-Fed
Federated scenario

β = 5.0 β = 1.0 β = 0.1

Full Fine-tuning 100% 85.8 77.6 77.2 66.8

Adapter (Houlsby et al., 2019) 0.455% 84.0 69.1 65.5 56.1
LoRA (Hu et al., 2022) 0.111% 84.3 69.5 67.7 56.6
Compacter (Karimi Mahabadi et al., 2021) 0.043% 83.2 65.9 62.8 50.1
Prompt-tuning (Lester et al., 2021) 0.024% 74.2 51.6 46.4 28.2
BitFit (Zaken et al., 2022) 0.078% 82.8 67.1 66.5 55.1
AdaMix (Yaqing Wang and Gao, 2022) 0.559% 84.7 68.7 65.3 54.5
C2A (ours.) 0.097% 83.9 71.6 70.4 61.0

Table 2: Evaluation results of test accuracy (%) on XGLUE-NC. The best and second best results are highlighted in
boldface and underlined, respectively.

Methods Params (%) Non-Fed
Federated scenario

β = 5.0 β = 2.0 β = 0.5

Full Fine-tuning 100% 87.6 84.5 83.7 80.7

Adapter (Houlsby et al., 2019) 0.225% 87.5 78.6 75.0 74.3
LoRA (Hu et al., 2022) 0.055% 87.8 80.4 78.4 74.6
Compacter (Karimi Mahabadi et al., 2021) 0.021% 87.3 75.9 73.4 71.0
Prompt-tuning (Li and Liang, 2021) 0.017% 85.6 61.2 60.6 58.0
BitFit (Zaken et al., 2022) 0.038% 87.3 78.4 76.8 72.1
AdaMix (Yaqing Wang and Gao, 2022) 0.277% 87.6 79.6 79.1 76.6
C2A (ours.) 0.049% 87.4 82.8 82.2 80.2

we use a batch size of 16 and 64 for 20Newsgroup
and XGLUE-NC, respectively. Each client per-
forms a single local epoch, and the server aggre-
gates the locally-trained model based on FedAvg
(McMahan et al., 2017).

4.4 Main Results
To thoroughly evaluate each baseline on various
FL setups, we start from a non-federated setup and
progressively increase the level of heterogeneity by
manipulating β. The results are shown in Table 1
(20Newsgroup) and Table 2 (XGLUE-NC).

The proposed method, C2A, achieves the state-
of-the-art performance for almost all setups. Specif-
ically, despite that AdaMix uses multiple adapters
for ensemble, our model improves the respective
performance by 3% on both datasets. It is also note-
worthy that while most PEFT approaches manage
to achieve fair performance in non-FL scenarios,
their performances significantly decrease as the
degree of heterogeneity increases. In contrast, our

C2A shows only marginal performance degradation
even for high degree non-IID settings. Moreover,
in the multilingual setting, C2A achieves a compa-
rable performance to full fine-tuning. These results
indicate that C2A is more resilient to heterogeneity
in decentralized scenarios.

5 Further Analysis on C2A

In order to gain a deeper understanding of the ben-
efits of C2A, we perform a series of analytical ex-
periments utilizing XGLUE-NC with a value of
β = 0.5, which represents the most challenging
setup within our experimentation.

5.1 Ablation Studies

We conduct ablation studies to explore the contribu-
tions brought by each component of C2A. Specifi-
cally, we focus on the effect of client embeddings,
which are composed of label embedding (LE), con-
text embedding (CE), and factorization. Detailed
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Table 3: Ablation studies for C2A. LE and CE represent
the label and the context embedding, respectively.

Methods Params (%) Accuracy (%)

C2A(ours) 0.049% 80.2

Client embedding
w/o LE 0.049% 78.4
w/o CE 0.049% 78.0
w/o LE,CE 0.049% 77.3

Factorization
w/o Factorization 0.106% 79.8
w/o Normalization 0.049% 78.8

results are presented in Table 3.

Client Embedding. We observe that omitting ei-
ther of the embeddings does hurt the model perfor-
mance. Notably, comparing "w/o LE" to "w/o CE",
ablating context embedding leads to more signifi-
cant performance degradation. We suspect this is
because that context embedding can provide more
discriminating information of each client through
implicit representations, such as language types,
and text styles. Moreover, removing all the embed-
dings shows the worst performance, which demon-
strates that our C2A with the client embeddings
can generate more suitable adapters for each client.

Factorization. To examine the impact of factor-
ization, we first compare it with the C2A results
neglecting factorization. Despite using only half
the parameters, our model achieves comparable
performance as the model without factorization.
In addition, we observe that omitting normaliza-
tion significantly hurts performance. The results
demonstrate that our normalization alleviates the
performance drop by factorization.

5.2 Local Epochs vs. Communication Rounds

One of the crucial aspects in FL is communica-
tion efficiency. A simple way to achieve such ef-
ficiency is to reduce communication rounds while
increasing local epochs. However, the increased
local updates can result in greater susceptibility to
client drifts (Li et al., 2021). Thus we examine
the trade-off between local epochs and communica-
tion rounds, as shown in Figure 4. We compare
C2A with three baselines under the same num-
ber of model updates (local epochs × communica-
tion rounds). We observe that increasing the local
epochs leads to worse performance due to the detri-
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Figure 4: Evaluation results of the test accuracy with
different numbers of local epochs.

mental effect of client drift. Nevertheless, C2A
clearly outperforms the other baselines in all set-
tings. This further verifies the potency of C2A in
mitigating the negative effects of the drift caused
by excessive local updates, and shows that C2A
can be efficiently trained with only a few rounds of
communication.

5.3 Communication Cost for Target Accuracy

In FL scenarios, the communication between
clients typically continues until the model attains
a target accuracy or the allocated budgets are ex-
hausted. As such, attaining the target accuracy with
minimal communication rounds is crucial for re-
ducing the total costs in practical FL. To analyze
the baselines through the lens of such communica-
tion efficiency, we compare the number of required
communications to reach the targeted performance
for each baseline. The results are shown in Ta-
ble 4. Our proposed C2A consistently performs
the best over the baselines on all target accuracy.
Specifically, C2A reaches the targeted performance
approximately two times faster than the vanilla
adapter. These results show that C2A engages
fewer communication costs with less requirement
on the parameters and communication rounds.

5.4 Scalability of C2A

We evaluate whether C2A can be scaled to larger
PLMs. To this end, we adopt all PEFT baselines
to XLM-RoBERTa with 278M parameters. The
results are summarized in Table 5. We observe that
our C2A still outperforms the baselines by a large
margin. Specifically, our C2A achieves 3.1 points
improvement compared with the adapter model.
These results indicate that our approach can be
well generalized to larger models.
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Table 4: The number of communication rounds re-
quired to achieve the desired performance. The relative
speedup of each baseline is also compared to the vanilla
Adapter (Houlsby et al., 2019).

Methods Communication Rounds SpeedUp

Target accuracy = 70%

Adapter 13 ×1.00
LoRA 18 ×0.72
Compacter 19 ×0.68
Prompt-tuning 46 ×0.28
BitFit 18 ×0.72
AdaMix 12 ×1.10
C2A (ours.) 7 ×1.86

Target accuracy = 80%

Adapter 33 ×1.00
LoRA 44 ×0.75
Compacter 71 ×0.46
Prompt-tuning 100↑ ×0.33↓
BitFit 55 ×0.60
AdaMix 50 ×0.66
C2A (ours.) 18 ×1.83

5.5 Robustness to Client Drifts

In order to showcase the robustness of C2A in non-
IID scenarios, we employ CKA similarity to quan-
tify the drift from the global model. Figure 2 shows
that C2A is superior to other baselines in effectively
reducing client drift. This justifies our hypothesis
that creating tailored modules for each client is
more effective in non-IID scenarios compared to a
one-size-fits-all approach in training a single mod-
ule for all clients.

6 Related Work

6.1 Parameter-efficient Fine-tuning

Recent works on PEFT can be categorized into
two lines of work: (1) tuning a subset of the
existing parameters within the PLMs, including
head fine-tuning (Lee et al., 2019), and bias tun-
ing (Zaken et al., 2022), (2) tuning with a small
amount of additional trainable parameters, such
as adapters (Houlsby et al., 2019; Mahabadi et al.,
2021a; Yaqing Wang and Gao, 2022), prefix-tuning
(Li and Liang, 2021), prompt-tuning (Lester et al.,
2021), and low-rank adaption (Hu et al., 2022).
Previous studies showed that PEFT achieves com-
parable performance compared to fine-tuning using
only a small set of parameters. Given the advances
brought by previous studies focused on centralized
datasets, attention towards decentralized scenarios

Table 5: Evaluation results of test accuracy (%) with
XLM-RoBERTa (278M) (Conneau et al., 2019). Best
and second best results are highlighted in boldface and
underlined, respectively.

Methods Params (%) Test Accuracy (%)

Full Fine-tuning 100% 85.8

Adapter 0.217% 81.5
LoRA 0.106% 80.7
Prompt-tuning 0.008% 65.8
Compacter 0.021% 77.7
BitFit 0.037% 79.7
AdaMix 0.165% 79.1
C2A (ours.) 0.028% 84.6

in FL remains under-explored. Yet, we discover
that current PEFT approaches suffer from client
drifts on non-IID setup, resulting in serious per-
formance degradation in FL. Different from previ-
ous studies, we focus on improving the robustness
of PEFT in decentralized scenarios by generating
client-customized adapters.

6.2 Federated Learning for NLP

While much attention for FL has been focused on
the field of computer vision, recent efforts have
been done in applying FL to NLP tasks. For exam-
ple, FedNLP (Lin et al., 2022) introduced bench-
marks for evaluating FL methods and performed
systematic analysis in the context of PLMs. Weller
et al. (2022) examined FL in multilingual scenarios,
where each client uses different languages. Sim-
ilarly, several works attempted to extend the set-
ting toward diverse tasks. For example, Chen et al.
(2021) adopted FL for question answering, and Qin
et al. (2021) proposed an aspect-based sentiment
analysis method to enhance the performance under
the restriction of data isolation. However, to the
best of our knowledge, none of the prior works
has been done on tackling the training complexity
of FL on PLMs, which is directly related to the
practicality.

6.3 Hypernetworks in PEFT

Prior studies have demonstrated that utilizing hy-
pernetwork (Ha et al., 2017) is conducive to more
efficient fine-tuning for PLMs in centralized sce-
narios. For instance, Hyperformer (Mahabadi et al.,
2021b) and HyperPrompt (He et al., 2022) gener-
ated task-specific parameters by incorporating task-
specific and layer-specific information on multi-
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task learning. Moreover, for multi-lingual learning,
Hyper-X (Üstün et al., 2022) learned about the task
and language-specific embeddings for generating
adapters. While most previous works have been
conducted for improving the efficiency of PEFT
by utilizing the hypernetwork, they only focused
on multi-task or multi-lingual situations. Instead,
our work mitigates the client drifts issue of PEFT
in federated scenarios by incorporating the data
distributions of each client.

7 Conclusion

In this paper, we have observed significant perfor-
mance degradation for typical PEFT approaches
in decentralized scenarios. By carefully designed
analysis, we have also shown that typical PEFT
suffers from large client drifts, resulting in slow
convergence and performance degradation. To ad-
dress these issues, we have proposed C2A, a novel
hypernetwork-based FL framework, which gener-
ates client-customized adapters by incorporating
the data distribution of each client. Our experimen-
tal results show that C2A achieves state-of-the-art
results in various decentralized scenarios. More-
over, we have verified that C2A successfully mit-
igates the large client drift problem among local
clients in FL scenarios.

8 Limitations

While we show that C2A successfully improves
the effectiveness and efficiency of PEFT in FL, we
have mainly focused on improving the effective-
ness of the vanilla adapter. However, it is an open
question whether our framework can improve other
PEFT approaches, such as prompt tuning(Lester
et al., 2021), and LoRA (Hu et al., 2022). Although
we didn’t analyze whether our framework can gen-
erate parameters for alternative PEFT, one recent
approach reveals that hypernetworks can generate
parameters for various types of PEFT in multi-task
learning (He et al., 2022; Üstün et al., 2022). Like-
wise, as C2A generates parameters with hypernet-
work, we believe that C2A is highly expected to
improve the performance of any alternative PEFT
modules.

Ethics Statement

This study covers work that utilizes PLMs, which
have a wide variety of positive applications, such as
the application to summarization, or language un-
derstanding. At the same time, there are a number

of ethical concerns with PLMs in general, includ-
ing concerns regarding the generation of biased or
discriminative text (Bordia and Bowman, 2019),
the leakage of private information from training
data (Carlini et al., 2021), and the environmental
impact of training or tuning them (Strubell et al.,
2019).

Our framework attempts to train PLMs with min-
imal changes made to their pre-existing parameters
in FL scenarios. Our work is believed to bring
some insights into the two ethical dimensions: pri-
vacy and environment. First, with respect to private
information leakage, although our work has not
addressed address the privacy issue in the pre-train
process, our FL framework can mitigate the data
privacy issues in the fine-tuning stages. In addition,
with respect to environmental impact, our work
may obviate the need for full fine-tuning, which
may also significantly reduce the cost in terms of
memory or deployed servers.

Acknowledgment

This work was supported by the Basic Research
Program through the National Research Founda-
tion of Korea (NRF) grant funded by the Korea
government (MSIT) (2021R1A2C3010430) and In-
stitute of Information & Communications Technol-
ogy Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2019-0-00079,
Artificial Intelligence Graduate School Program
(Korea University)).

References
Guillaume Alain and Yoshua Bengio. 2014. What regu-

larized auto-encoders learn from the data-generating
distribution. The Journal of Machine Learning Re-
search, 15(1):3563–3593.

Shikha Bordia and Samuel R. Bowman. 2019. Identify-
ing and reducing gender bias in word-level language
models. In Proc. the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 7934–7949.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úl-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.
In USENIX Security Symposium, pages 2633–2650.

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing
Fan, and Xueqi Cheng. 2021. Fedmatch: Federated
learning over heterogeneous question answering data.

1167



In Proc. the ACM Conference on Information and
Knowledge Management (CIKM), pages 181–190.

Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Françoise Bea-
ufays, and Michael Riley. 2019. Federated learning
of n-gram language models. In Proc. of the Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 121–130.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Wietse de Vries, Andreas van Cranenburgh, and Malv-
ina Nissim. 2020. What’s so special about bert’s
layers? a closer look at the nlp pipeline in mono-
lingual and multilingual models. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1273–1282.

David Ha, Andrew M. Dai, and Quoc V. Le. 2017. Hy-
pernetworks. In Proc. the International Conference
on Learning Representations (ICLR).

Yun He, Huaixiu Steven Zheng, Yi Tay, Jai Prakash
Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang
Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng,
and Ed H. Chi. 2022. Hyperprompt: Prompt-based
task-conditioning of transformers. In Proc. the Inter-
national Conference on Machine Learning (ICML),
pages 7934–7949.

Wenxin Hou, Han Zhu, Yidong Wang, Jindong Wang,
Tao Qin, Renjun Xu, and Takahiro Shinozaki. 2021.
Exploiting adapters for cross-lingual low-resource
speech recognition. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, pages 317–
329.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proc. the International Conference on Machine
Learning (ICML), pages 2790–2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In Proc. the International
Conference on Learning Representations (ICLR).

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Proc. the Advances
in Neural Information Processing Systems (NeurIPS),
pages 1022–1035.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. 2020. Scaffold: Stochastic
controlled averaging for federated learning. In Proc.

the International Conference on Machine Learning
(ICML), pages 5132–5143.
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Supplementary Appendix
A Impact of Structure

We analyze the effect with varied dimensions of the
client embeddings and factorization in C2A. The
detailed results are presented in Figure 5.

Effect of dimensions for client embeddings. To
investigate the effect of dimensions for client em-
beddings, we investigate the number of dimensions
in C2A ranging from 1,4,8, and 32, during training.
The results are shown in Figure 5(a). We observe
that using a larger dimension of embeddings for
adapters improves the training efficiency. Specif-
ically, the model using eight dimensions shows
the best performance. Thereby, we adopt a client
embedding size of 8 in all our models.

Effect of dimensions for factorization. Figure
5(b) represents the impact of latent dimensions for
adapters in C2A. The dimension of factorization
size 64 appears to be the best. Based on these
results, we use an embedding size of 64 in all our
models.

(a) (b)

Figure 5: Evaluation results of test accuracy on NC
dataset with the different number of dimensions for
client embedding and factorization.

B Implementation details for C2A

We implement C2A in Pytorch using four RTX
3090 GPUs for experiments with detailed hyper-
parameter configurations as follows. We set the
dimensionality of latent factors to s = 64 and client
embeddings size of eight in all our models. Besides,
for the low-rank dimension, we use a dimension of
16. We report the average results for all models of
four random fine-tunings.
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