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Abstract

Recently, binaural audio synthesis (BAS) has
emerged as a promising research field for its
applications in augmented and virtual realities.
Binaural audio helps users orient themselves
and establish immersion by providing the brain
with interaural time differences reflecting spa-
tial information. However, existing BAS meth-
ods are limited in terms of phase estimation,
which is crucial for spatial hearing. In this
paper, we propose the DopplerBAS method
to explicitly address the Doppler effect of the
moving sound source. Specifically, we calcu-
late the radial relative velocity of the moving
speaker in spherical coordinates, which further
guides the synthesis of binaural audio. This
simple method introduces no additional hyper-
parameters and does not modify the loss func-
tions, and is plug-and-play: it scales well to
different types of backbones. DopperBAS dis-
tinctly improves the representative WarpNet
and BinauralGrad backbones in the phase er-
ror metric and reaches a new state of the art
(SOTA): 0.780 (versus the current SOTA 0.807).
Experiments and ablation studies demonstrate
the effectiveness of our method.

1 Introduction

Binaural audio synthesis (BAS), which aims to
render binaural audio from the monaural counter-
part, has become a prominent technology in ar-
tificial spaces (e.g. augmented and virtual real-
ity) (Richard et al., 2021, 2022; Leng et al., 2022;
Lee and Lee, 2022; Parida et al., 2022; Zhu et al.,
2022; Park and Kim, 2022). Binaural rendering
provides users with an immersive spatial and so-
cial presence (Hendrix and Barfield, 1996; Gao and
Grauman, 2019; Huang et al., 2022; Zheng et al.,
2022), by producing stereophonic sounds with ac-
curate spatial information. Unlike traditional single
channel audio synthesis (van den Oord et al., 2016;
Chen et al., 2021), BAS places more emphasis on

∗ Equal contribution.

accuracy over sound quality, since humans need
to interpret accurate spatial clues to locate objects
and sense their movements consistent with visual
input (Richard et al., 2021; Lee et al., 2022).

Currently, there are three types of neural net-
works (NN) to synthesize binaural audio. Firstly,
Richard et al. (2021) collects a paired monaural-
binaural speech dataset and provides an end-to-end
baseline with geometric and neural warping tech-
nologies. Secondly, to simplify the task, Leng et al.
(2022) decompose the synthesis into a two-stage
paradigm: the common information of the binau-
ral audio is generated in the first stage, based on
which the binaural audio is generated in the sec-
ond stage. They also propose to use the generative
model DDPM (Ho et al., 2020) to improve the
audio naturalness. Thirdly, to increase the gener-
alization capability for the out-of-distribution au-
dio, Lee and Lee (2022) renders the speech in the
Fourier space. These non-linear NN-based meth-
ods outperform the traditional digital signal pro-
cessing systems based on a linear time-invariant
system (Savioja et al., 1999; Zotkin et al., 2004;
Sunder et al., 2015).

However, these NN methods still have room for
improvement in accuracy, especially phase accu-
racy. Richard et al. (2022) claims that the correct
phase estimation is crucial for binaural rendering 1.
Actually, the previous works tend to view the scene
“statically”, and only take into account the series of
positions and head orientations. This motivates us
to propose DopplerBAS, which facilitates phase
estimation by explicitly introducing the Doppler
effect (Gill, 1965; Giordano, 2009) into neural net-
works. Specifically, 1) we calculate the 3D velocity
vector of the moving sound source in the Cartesian
coordinates and then decompose this 3D velocity
vector into a velocity vector in the spherical coor-

1Our ears can discriminate interaural time differences as
short as 10µs (Brown and Duda, 1998; Richard et al., 2021;
johansson et al., 2022).
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dinates relative to the listener; 2) According to the
Doppler effect, we use the radial relative velocity
as an additional condition of the neural network, to
incentivize the model to sense the moving objects.
We also analyze the efficacy of different types of
velocity conditions through extensive experiments.

Naturally, DopplerBAS can be applied to differ-
ent neural binaural renderers without tuning hyper-
parameters. We pick two typical recent backbones
to demonstrate the effectiveness of our method: 1)
WarpNet (Richard et al., 2021), a traditional neu-
ral network optimized by reconstruction losses; 2)
BinauralGrad (Leng et al., 2022), a novel diffu-
sion model optimized by maximizing the evidence
bound of the data likelihood. Experiments on Warp-
Net and BinauralGrad are representative and could
show the generalizability of our proposed Doppler-
BAS on other conditions based on gains on these
two models. The contributions of this work can be
summarized as follows:

• We propose DopplerBAS, which distinctly
improves WarpNet and BinauralGrad in the
phase error metric and produces a new state
of the art performance: 0.780 (vs. the current
state of the art 0.807).

• We conduct analytical experiments under var-
ious velocity conditions and discover that: 1)
NN does not explicitly learn the derivative
of position to time (velocity); 2) The veloc-
ity condition is beneficial to binaural audio
synthesis, even the absolute velocity in the
Cartesian coordinates; 3) The radial relative
velocity is the practical velocity component,
which obeys the theory of the Doppler effect.

2 Method

In this work, we focus on the most basic BAS
scenario where only the monaural audio, the se-
ries of positions and head orientations are pro-
vided (Richard et al., 2022; Leng et al., 2022),
rather than other scenarios where extra modali-
ties (Xu et al., 2021) are present. Note that scenar-
ios with extra modalities present are different tasks.
Also, as demonstrated in this paper, our proposed
DopplerBAS is plug-and-play and can be easily in-
tegrated into other more complex scenarios. In this
section, we will introduce the Doppler Effect as
the preliminary knowledge, and then introduce the
proposed method DopplerBAS. We will describe
how to calculate and decompose the velocity vec-

tor, and how to apply this vector to two different
backbones.

2.1 Doppler Effect

The Doppler effect (Gill, 1965) is the change in
frequency of a wave to an observer, when the wave
source is moving relative to it. This effect is orig-
inally used in radar systems to reveal the charac-
teristics of interest for the target moving objects
(Chen et al., 2006). It can be formulated as:

f =

(
c

c± vr

)
f0, (1)

where c, vr, f0 and f are the propagation speed of
waves, the radial relative velocity of the moving
sound source, the original frequency of waves and
the received frequency of waves, respectively.
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Figure 1: We illustrate the top view where the height
dimension is omitted for simplicity. The sound source
is moving in the x-y plane with the velocity vxy. This
velocity is decomposed into the radial velocity vr rela-
tive to one ear (e.g., the right ear).

2.2 DopplerBAS

We do not directly apply Eq. (1) in the fre-
quency domain of audio, because some previous
works (Lee and Lee, 2022) show that modeling
the binaural audio in the frequency domain de-
grades the accuracy although it could benefit the
generalization ability. Different from modeling the
Doppler effect in the frequency domain, we calcu-
late the velocity of interest and use it as a condition
to guide the neural network to synthesize binau-
ral audio consistent with the moving event. In the
receiver-centric Cartesian coordinates, we define
p⃗s and p⃗e as the 3D position of the moving sound
source s and one ear of the receiver e respectively
(e.g., the right ear, as shown in Figure 1). The
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Model Wave L2 (×10−3 ) ↓ Amplitude L2 ↓ Phase L2 ↓ PESQ ↑ MRSTFT ↓
DSP (Leng et al., 2022) 1.543 0.097 1.596 1.610 2.750
WaveNet (Leng et al., 2022) 0.179 0.037 0.968 2.305 1.915
NFS (Lee and Lee, 2022) 0.172 0.035 0.999 1.656 1.241

WarpNet∗ (Richard et al., 2021) 0.164 0.040 0.805 1.935 2.051
WarpNet∗ + DopplerBAS 0.154 0.036 0.780 2.161 2.039

BinauralGrad∗ (Leng et al., 2022) 0.133 0.031 0.889 2.659 1.207
BinauralGrad∗ + DopplerBAS 0.131 0.030 0.869 2.699 1.202

Table 1: The comparison regarding binaural audio synthesis quality. For WarpNet∗ and BinauralGrad∗, we
reproduced the results using their official codes (Section 3.1).

position vector p⃗ = (px, py, pz) of s relative to e
is:

p⃗ = (px, py, pz) = p⃗s − p⃗e.

Then s’s velocity 2 can be calculated as:

v⃗ = (vx, vy, vz) = (
dpx
dt

,
dpy
dt

,
dpz
dt

).

Next, we build the spherical coordinate system us-
ing the ear as the origin, and decompose v⃗ into the
radial relative velocity v⃗r by:

v⃗r =
p⃗ · v⃗
∥p⃗∥ · r̂, (2)

where r̂ ∈ R1 is the radial unit vector.
Finally, we add v⃗r as the additional condition to

the network: The original conditions in monaural-
to-binaural speech synthesis are Co ∈ R7 =
(x, y, z, qx, qy, qz, qw), of which the first 3 repre-
sent the positions and the last 4 represent the head
orientations. We define the new condition C ∈
R9 = (x, y, z, qx, qy, qz, qw, vr−left, vr−right),
where vr−left and vr−right represent the radial ve-
locity of source relative to the left and right ear
respectively, which are derived from Eq. (2). We
then apply C to WarpNet and BinauralGrad back-
bones, as follows.

2.2.1 WarpNet
WarpNet consists of two blocks: 1) The Neural
Time Warping block to learn a warp from the
source position to the listener’s left ear and right ear
while respecting physical properties (Richard et al.,
2021). This block is composed of a geometric warp
and a parameterized neural warp. 2) The Tempo-
ral ConvNet block to model subtle effects such as
room reverberations and output the final binaural

2This velocity is the same in all the Cartesian coordinate
systems relatively stationary to the receiver.

audio. This block is composed of a stack of hyper-
convolution layers. We replace the original Co with
C for the input of parameterized neural warp and
for the condition of hyper-convolution layers.

2.2.2 BinauralGrad
BinauralGrad consists of two stages: 1) The “Com-
mon Stage” generates the average of the binau-
ral audio. The conditions for this stage include
the monaural audio, the average of the binaural
audio produced by the geometric warp in Warp-
Net (Richard et al., 2021), and Co. 2) The “Spe-
cific Stage” generates the final binaural audio. The
conditions for this stage include the binaural audio
produced by the geometric warp, the output of the
“Common Stage”, and Co. BinauralGrad adopts
diffusion model for both stages, which is based
on non-causal WaveNet blocks (Oord et al., 2016)
with a conditioner block composed of a series of
1D-convolutional layers. We replace Co with C as
the input of the conditioner block for both stages.

3 Experiments

In this section, we first introduce the commonly
used binaural dataset, and then introduce the train-
ing details for WarpNet-based and BinauralGrad-
based models. After that, we describe the evalua-
tion metrics that we use to evaluate baselines and
our methods. Finally, we provide the main results
with analytical experiments on BAS.

3.1 Setup

Dataset We evaluate our methods on the stan-
dard binaural dataset released by Richard et al.
(2021). It contains 2 hours of paired monaural
and binaural audio at 48kHz from eight different
speakers. Speakers were asked to walk around a
listener equipped with binaural microphones. An
OptiTrack system track the positions and orienta-
tions of the speaker and listener at 120Hz, which
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are aligned with the audio. We follow the original
train-validation-test splits as Richard et al. (2021)
and Leng et al. (2022) for a fair comparison.

Training Details We apply DopplerBAS on
two open-source BAS systems WarpNet and Bin-
auralGrad. We train 1) WarpNet and War-
Net+DopplerBAS on 2 NVIDIA V100 GPUs with
batch size 32 for 300K steps, and 2) BinauralGrad
and BinauralGrad+DopplerBAS on 8 NVIDIA
A100 GPUs with batch size 48 for 300K steps 3.

Evaluation Metrics Following the previous
works (Leng et al., 2022; Lee and Lee, 2022), we
adopt 5 metrics to evaluate baselines and our meth-
ods: 1) Wave L2: the mean squared error between
waveforms; 2) Amplitude L2: the mean squared
errors between the synthesized speech and the
ground truth in amplitude; 3) Phase L2: the mean
squared errors between the synthesized speech and
the ground truth in phase; 4) PESQ: the percep-
tual evaluation of speech quality; 5) MRSTFT: the
multi-resolution spectral loss.

3.2 Main Results and Analysis

Main Results We compare the following sys-
tems: 1) DSP, which utilizes the room impulse
response (Lin and Lee, 2006) to model the room
reverberance and the head-related transfer func-
tions (Cheng and Wakefield, 2001) to model
the acoustic influence of the human head; 2)
WaveNet (Richard et al., 2021; Leng et al., 2022),
which utilizes the WaveNet (Oord et al., 2016)
model to generate binaural speech; 3) NFS, which
proposes to model the binaural audio in the Fourier
space; 4) WarpNet (Richard et al., 2021), which
proposes a combination of geometry warp and neu-
ral warp to produce coarse binaural audio from the
monaural audio and a stack of hyper-convolution
layers to refine coarse binaural audio; 5) WarpNet +
DopplerBAS, which applies DopplerBAS to Warp-
Net; 6) BinauralGrad (Leng et al., 2022), which
proposes to use diffusion model to improve the au-
dio naturalness; 7) BinauralGrad + DopplerBAS,
which applies DopplerBAS to BinauralGrad.

The results are shown in Table 1. “+ Doppler-
BAS” could improve both WarpNet and Binaural-
Grad in all the metrics, especially in the Phase L2
metric. WarpNet + DopplerBAS performs best in
the Phase L2 metric and reaches a new state of the

3Following the recommended training steps in their official
repository.

No. Model W. L2 Amp. L2 Phase L2

1 WarpNet 0.164 0.040 0.805

2 +Spherical v⃗† 0.154 0.036 0.780
3 +Cartesian v⃗ 0.164 0.038 0.790
4 +Zeros 0.159 0.038 0.806
5 +Time series 0.163 0.039 0.822

Table 2: Analysis Experiments. “W. L2” means Wave
L2 ·103; “Amp. L2” means Amplitude L2; † means our
method: DopplerBAS. Best scores over the correspond-
ing baseline are marked in bold.

art 0.780. BinauralGrad + DopplerBAS obtains the
best Wave L2, Amplitude L2, PESQ and MRSTFT
score among all the systems. These results show
the effectiveness of DopplerBAS.

Analysis We conduct analytical experiments for
the following four velocity conditions. “Spheri-
cal v⃗ ”: the velocity conditions introduced in Sec-
tion 2.2 are calculated in the spherical coordinate
system; “Cartesian v⃗ ”: the velocity conditions
are calculated in the Cartesian coordinate system;
“Zeros”: the provided conditions are two sequences
of zeros; “Time series”: the provided conditions
are two sequences of time. The results are shown
in Table 2, where we place WarpNet in the first
row as the reference. We discover that: 1) Radial
relative velocity is the practical velocity compo-
nent, which obeys the theory of the Doppler effect
(row 2 vs. row 1); 2) The velocity condition is
beneficial to binaural audio synthesis, even for the
absolute velocity in the Cartesian coordinates (row
3 vs. row 1); 3) Just increasing the channel number
of the condition Co (Section 2.2) by increasing the
parameters in neural networks without providing
meaningful information could not change the re-
sults (row 4 vs. row 1); 4) The neural networks
do not explicitly learn the derivative of position to
time (row 5 vs. row 1). These points verify the
rationality of our proposed method.

4 Conclusion

In this work, we proposed DopplerBAS to address
the Doppler effect of the moving sound source in
binaural audio synthesis, which is not explicitly
considered in previous neural BAS methods. We
calculate the radial relative velocity of the mov-
ing source in the spherical coordinate system as
the additional conditions for BAS. Experimental re-
sults show that DopplerBAS scales well to different
types of backbones and reaches a new SOTA.
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Limitations

The major limitation is that we test our method
only on a binaural speech dataset, in which there is
a person moving slowly while speaking. Because
this person moves slowly, the Doppler effect is
not so obvious. We will try to find or collect a
sound dataset of a source moving at high speed,
such as a running man, flying objects, or vehicles,
and further, analyze the experimental phenomena
at different speeds of the moving source.

Ethics Statement

The immersive experience brought by space audio
may make people indulge in the virtual world.
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