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Abstract

Geometric representation of query embed-
dings (using points, particles, rectangles and
cones) can effectively achieve the task of an-
swering complex logical queries expressed in
first-order logic (FOL) form over knowledge
graphs, allowing intuitive encodings. How-
ever, current geometric-based methods depend
on the neural approach to model FOL oper-
ators (conjunction, disjunction and negation),
which are not easily explainable with consider-
able computation cost. We overcome this chal-
lenge by introducing a symbolic modeling ap-
proach for the FOL operators, emphasizing the
direct calculation of the intersection between
geometric shapes, particularly sector-cones in
the embedding space, to model the conjunc-
tion operator. This approach reduces the com-
putation cost as a non-neural approach is in-
volved in the core logic operators. Moreover,
we propose to accelerate the learning in the re-
lation projection operator using the neural ap-
proach to emphasize the essential role of this
operator in all query structures. Although em-
pirical evidence for explainability is challeng-
ing, our approach demonstrates a significant
improvement in answering complex logical
queries (both non-negative and negative FOL
forms) over previous geometric-based models.

1 Introduction

Answering complex logical queries is a fundamen-
tal task of knowledge graphs (KGs) (Bollacker
et al., 2008; Vrandečić and Krötzsch, 2014; Speer
et al., 2017; Fellbaum, 2010; Lehmann et al., 2015;
Mitchell et al., 2018) for various purposes of in-
dividuals and businesses. Conventional methods,
such as Hartig and Heese (2007); Schmidt et al.
(2010), have been well-studied on complete KGs.
However, these methods face challenges in incom-
plete and largely-scaled KGs, as conventional meth-
ods cannot traverse graphs via missing connections.
Time complexity is another challenge as it grows
exponentially during the traversal process. Modern

approaches, such as Hamilton et al. (2018); Ren
et al. (2020), use query embeddings (QEs) meth-
ods that can answer complex logical queries with-
out the need of path traversal in graphs. The QEs
methods first transform a complex logical query
into a machine-readable format: (1) converting a
query in natural textual form into first-order logic
(FOL) form (including conjunction ∧, disjunction
∨, negation ¬ and existential quantification ∃ op-
erator) and (2) decomposing it into a computation
graph (including relation projection operator). For
example, Fig. 1 depicts the process of turning a
complex logical query “Which universities do the
Nobel Prize winners of Australian citizens work
in?” into a computation graph. This FOL query is
then projected in the embedding space, required for
the modeling process to learn to answer the query.

Among different approaches in representing
queries in the embedding space, geometric-based
approaches have had renewed interests since the
work in point embeddings (Hamilton et al., 2018).
Following works have expanded this approach us-
ing hyper-boxes (Ren et al., 2020), sets of points as
particles (Bai et al., 2022), hyperboloids (Choud-
hary et al., 2021b) and 2D-cones (Zhang et al.,
2021). These works commonly resort to set oper-
ators over shapes that can handle the conjunction,
only a few Zhang et al. (2021) can handle the nega-
tion. Nevertheless, existing geometric-based meth-
ods depend on the neural approach to model the
conjunction operator. This approach is not easily
explainable, counter-intuitive and does not take full
advantage of the properties that these geometric
representations are intended to be used for.

We highlight in this paper the essential role the
projection operator plays in all complex query em-
bedding methods. This operator is often learned
through training neural architectures together with
the logical operators in an end-to-end fashion. The
semantic role of this operator is to obtain a mean-
ingful representation of a predicate (relation) in
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Which universities do the Nobel Prize winners of Australian citizens work in?

𝑞 = 𝑉?  ⋅ ∃𝑉: Win(Nobel Prize, 𝑉) ∧ Citizen(Australia, 𝑉) ∧ University(𝑉?,𝑉)

Nobel
Prize

Australia
𝑷(Citizen−1)

𝑷(University)𝑪(𝒙,𝒚)
Conjunction

𝑷(Win−1)

Anchor nodes

Intermediates

Answer nodes

FOL query 

Natural query 

Computation
Graph

Who are the Nobel Prize winners?

𝑞 = 𝑉?  ⋅ ∃𝑉?: Win(Nobel Prize,𝑉?)

Nobel
Prize

𝑷(Win−1)

Atomic Query (1-Path Query) Complex Logical Query (Tree -like query)

ip

Figure 1: Comparison between an atomic query (with a Projection operator) and a complex logical query (with
Projection plus Intersection operators, referred to as an ip structure, having three atomic queries and a conjunction).

FOL, which operates as a function converting a
domain of input embeddings into a range of out-
puts. These are fundamentally different from the
roles of the logical operators, in which geometric
approaches can be modelled as set operators. More-
over, little work highlights the importance of the
neural approach in learning the relation projection.

We address the first issue by introducing a novel
symbolic operator in geometry for answering the
conjunctive queries. Specifically, we directly cal-
culate the intersection of geometric shapes in the
embedding space (see an example in Fig. 2 and
more details in Sec. 4.2). We use cone embed-
dings (Zhang et al., 2021) as a key geometric repre-
sentation in our approach, since conic shapes were
shown to be effective in modeling all FOL opera-
tors. By directly calculating intersection, our ap-
proach can reduce the computational cost of model-
ing the conjunction operator, as there is no need to
incorporate expensive neural training in this logic
operator, as compared with other geometric-based
models (Hamilton et al., 2018; Ren et al., 2020;
Choudhary et al., 2021b; Zhang et al., 2021). Fur-
ther, classifying types of geometric intersection
(partial, complete and none type) can improve the
explainability in modeling conjunction operator
(see Sec 4.2). To highlight the importance of rela-
tion projection (finding tail entities from a source
entity via a relation) in complex logical query em-
beddings, we propose a general framework of mod-
eling this operator, called relation projection net-
work (RPN) (see Fig. 3). The RPN can enhance the
learning in the relation projection operation, due
to its high frequency and its dominance in diverse
query structures (see Fig. 6).

Overall, we introduce Simplified Cone
Embeddings (SConE) for modeling the relation
projection and logical operators in complex queries.
Our contributions are: (1) introducing a symbolic
modeling for the conjunction operator in FOL
query, (2) proposing a general framework using

RPN to improve the learning of relation projection
operator in both atomic and complex logical
queries and (3) surpassing model performance of
previous state-of-the-art geometric-based models
for both non-negation and negation queries.

2 Related Work

Atomic query answering for knowledge graph
completion The atomic query has a given head
concept (vh) and a relation (r), and the answer-
ing task is to find the projected tail concept (vt).
Using geometric-based methods to answer atomic
queries (or path queries) without complex logi-
cal operators has been well-studied since the ap-
pearance of knowledge graph embeddings, notably,
translation-based methods (Bordes et al., 2013) and
rotation (Sun et al., 2019; Zhang et al., 2020a).
Further, Nickel and Kiela (2017); Balažević et al.
(2019) proposed hyperbolic space (non-Euclidean
geometry) over a Poincaré ball while others (Gao
et al., 2020) used 3D shapes. However, these mod-
els are limited in answering complex queries involv-
ing FOL logical operators (e.g. Fig. 1 and Fig. 6).

Complex logical query answering for multi-hop
reasoning The complex logical query has atomic
queries with logical operators (see Fig. 1). Dif-
ferent methods addressing this task are geometry-
based embeddings (points Hamilton et al. (2018),
boxes Ren et al. (2020), hyperboloids Choudhary
et al. (2021b), cones Zhang et al. (2021), parti-
cles Bai et al. (2022), distribution-based embed-
dings (Ren and Leskovec, 2020; Choudhary et al.,
2021a; Huang et al., 2022; Yang et al., 2022; Long
et al., 2022), auxiliary enrichment methods (Hu
et al., 2022) using entity and relation type knowl-
edge, logic-based methods (Arakelyan et al., 2021;
Chen et al., 2022; Zhu et al., 2022; Xu et al.,
2022) using fuzzy logic to model the logical oper-
ators, neural-based methods (Kotnis et al., 2021;
Liu et al., 2022; Amayuelas et al., 2022) and oth-
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Expression: 𝑷 𝑪 𝑷 Nobel Prize, Win−1 ,𝑷 Australia, Citizen−1 ,University
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Which universities do the Nobel Prize winners of Australian citizens work in?

Figure 2: An example of modeling relation projection operators (P) (using the neural approach) and conjunction
operator (C) (using the symbolic approach) of the complex logical query structure (ip) via an expression consisting
of three (P) and one (C) (as shown in Fig. 1). Dot lines are semantic center axis (α) of sector-cones.

ers (Sun et al., 2020). Although the logic-based
methods are explainable in modeling FOL op-
erators (a learning-free), other methods such as
geometric-based embeddings are challenging to in-
terpret this process, since these rely on the neural
approach to model the conjunction operator. We
provide a symbolic modeling approach for han-
dling the conjunction to improve explainability in
geometric-based models.

3 Preliminaries

3.1 First-Order Logic queries over KGs

Given a set of entities (v ∈ V) and a set of re-
lations (r ∈ R), a knowledge graph (KG) G =
{(vh, r, vt)} is a set of triples, each includes a head
entity (vh), a relation (r) and a tail entity (vt).

Given a knowledge graph, a complex FOL
query is a formula consisting of: constants, quan-
tified bound variables (V1, . . . , Vn) and free vari-
ables (V?) (target), in addition to relation symbols
R(Vi, Vj) and logic connectives (∃,∧,∨,¬). An
entity of KG (v ∈ V) maps to each constant or
variable. Each R(Vi, Vj) maps to a binary function
whether a relation exists between (Vi) and (Vj).
Logic connectives are conjunction (∧), disjunc-
tion (∨), negation (¬) and existential quantifica-
tion (∃)1 (see an example of FOL query mapped to
the (ip) structure in Fig. 1, and more query struc-
tures in Fig. 6). Given this example, the goal of
a FOL query answering is to find the answers (or
free variables) such that the formula is true.

3.2 Query Embeddings

Cone parameterization. We adopt the same def-
initions and propositions in Zhang et al. (2021), to
define a two-dimensional sector-cone using two

1Universal quantification (∀) rarely appears in the real
situation, this connective is therefore excluded.

variables: (1) angle α ∈ [−π, π) represents the an-
gle between the semantic center axis and the posi-
tive x−axis, and (2) aperture β ∈ [0, 2π] represents
the aperture of the sector cone (see an example with
pink sector-cone in Fig. 2).

Query Embeddings representation. Given a
complex logical query (q), we represent its embed-
ding (q) as a Cartesian product of two-dimensional
sector-cones in the embedding space using two
variables: semantic center axis αq ∈ [−π, π)d and
aperture βq ∈ [0, 2π]d, where d is the embedding
dimension. Next, given a semantic entity (v), we
represent its embedding (v) as a Cartesian prod-
uct of cones embedding using semantic center axis
αv ∈ [−π, π)d and zero aperture defined by:

q = (αq,βq), v = (αv,0) (3.1)

3.3 Operators in First-Order Logic queries

We decompose the symbolic representation of the
complex logical query (q) using a computation
graph, a tree-like query (see Fig. 1). This graph has
vertexes and links where each vertex represents a
set of entities and each link represents a modeling
process of either of two types: relation projection
operator (P) or any FOL operators (conjunction
(C), disjunction (D) and negation (N )):

• Relation Projection (Projection): P(x, r)
computes the projection from the input (x)
as a head entity to the set of tail entities via
relation (r). Otherwise, P(x, r−1) computes
the projection from the input (x) as a tail en-
tity to the set of head entities via (r).

• Conjunction (Intersection): C(x1,x2) com-
putes the intersection of each geometric ele-
ment in one set of entities (x1) and the corre-
sponding element in the other entity set (x2).
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• Disjunction (Union): D(x1,x2) computes
the union of each geometric element in one
set of entities (x1) and the corresponding ge-
ometric element in the other entity set (x2).

• Negation (Complement): N (x) computes
the complement of each geometric element
in the set of entities (x).

4 Modeling operators of FOL queries

We describe the modeling of relation projection
(4.1) and logical operators (4.2) in a complex FOL
query (q) (with its set of answer entities Vq ⊂ V)
over knowledge graphs in the following:

4.1 Modeling relation projection

This section is to model the relation projection op-
erator (P) (see Sec. 3.3) for Knowledge Graph
Embedding (KGE). Overall, given an atomic query
q = (v, r), we propose a relation projection net-
work (RPN) with two layers: (1) first transform-
ing the source entity using an ensemble of multi-
ple KGE techniques, (2) merging the outputs at
the second layer (called entanglement layer) to
produce the sector-cones embedding of the query
(see Fig. 3). We use two KGE techniques at the
first layer, called relation transformation and multi-
layer perceptron. As the relation projection task
is similar to KGE, one can select different models
in KGE such as TransE (Bordes et al., 2013) or
HAKE (Zhang et al., 2020b), then adapt these into
the first layer in principle.

Source entityv = (αv,βv)

Relation
Transformation

KGE layer 1: Multi-layer
Perceptron (MLP)

. . . Selective
Model (n)

[q1,q2, . . . ,qn]
Attention Mechanism

KGE layer 2 (entanglement layer):

Embedded queryq = (αq,βq)

r1 r2
rn

q1
q2

qn

Figure 3: (Up→Down): A general framework of RPN.

There are many models achieving KGE (Ji et al.,
2022), the ensemble selection is therefore not re-
stricted, but it should be efficient in model com-
plexity and computational cost. Fundamentally,
using one technique is sufficient; however, having
a general framework using multiple techniques is to
analyze the learning process from a broader view-
point. We select two KGE models as a simple case

to illustrate that it is possible to use multiple KGE
techniques.

Relation transformation Specifically, we
model an embedded relation r = (Wr,br)
requiring for the projection operation (P) by a
neural network as in (Chen et al., 2022), where Wr

denotes a weight matrix and (br) denotes a bias
vector. We transform a source entity v = (αv,βv)
into an embedded query (q) via this relation.
However, as our entity representation based on
sector-cones embeddings, which is different than
the fuzzy sets used in (Chen et al., 2022), we add
a concatenation operation of the semantic center
axis (αv) and the aperture (βv) to convert these
into a vector [v] ∈ R2d as follows:

qt = f(v) = LN(Wr[v] + br),

where LN is Layer Normalization (Ba et al., 2016).
We use the basic decomposition of (Schlichtkrull
et al., 2018) to define (Wr) and (br).

Multi-layer Perceptron (MLP) An alternative
way to model the relation projection is to use MLP.
We transform the entity (v) to query (q) via the
relation (r) by a mapping function (f) as follows:

qm = f(vr) = LN(MLP([vr])),

where MLP : R2d → R2d is to approximately
represent the mapping function f(x), vr is a trans-
lation embeddings of the source entity and the rela-
tion: vr = v+r. As the representation of the entity
and the relation r = (αr,βr) are sector-cones em-
bedding, we apply a concatenation operation as that
in the relation transformation technique to convert
(vr) to the vector embedding [vr] ∈ R2d.

Entanglement layer After transforming the en-
tity to the embedded query using the relation trans-
formation and the MLP, we introduce an entangle-
ment layer to merge the output from the first KGE
layer into one output. We use attention mechanism
in this layer:

q = (αq,βq) = s
(∑2

iA� [qt,qm]
)
,

where s(x) is a function to split the 2d-vector into
two d-vectors, each is for the semantic center axis
and the aperture embedding of the query,� denotes
Hadamard product, [, ] denotes an operator to stack
two 2d-vectors into a matrix in R2×2d and A ∈
R2×2d is an attention matrix as follows:

A = SoftMax (fa(qt,qm)) ,
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where the SoftMax(.) function applies over the
first dimension of the matrix. The fa(qt,qm) =
MLP([qt,qm]) is attention score function. We
also provide a scaling function to convert the se-
mantic center axis (αq) and the aperture (βq) into
their normal range (see Appendix B.1) as that in
ConE (Zhang et al., 2021).

4.2 Symbolic modeling of logical operators

In this section, we describe the modeling process
of all logical operators (C,N ,D) using symbolic
modeling only without neural-based methods, nat-
urally making use of the geometric properties of
sector-cone shapes in the embedding space. In
comparison with ConE (Zhang et al., 2021), this
model leveraged the neural approach to learn the
conjunction (C) while using non-neural approach
to model the disjunction and negation (D,N ).

Conjunction This aims to model the conjunction
C(q1, q2) of any pair of conjunctive queries, each
query qi = (αi, βi) is in the cone embedding space.
Assuming the embedding dimension (d = 1) as the
simplest case, each query is represented by a sector-
cone (see Eq. (3.1)). As the intersection of the
two conjunctive queries is also a sector-cone q∧ =
(α∧, β∧); therefore, one can directly calculate this
intersection from a symbolic geometric perspective
as follows:

β∧ =





u2 − l1,
β2,

0,

u1 − l2,
β1,

0,

α∧ =





u2 − β∧
2 , if c1

α2, if c2
l1 − |l1−u2|2 , if c3
u1 − β∧

2 , if c4
α1, if c5
l2 − |l2−u1|2 , if c6

(4.1)

where (ui, li) is the upper and lower bound for each
sector-cone (li ≤ αi ≤ ui). These calculations
are that (ui = αi +

βi
2 ) and (li = αi − βi

2 ); and
ci represents each conditional scenario regarding
relative position between the two sector-cones:

c1 := (u1 ≥ u2) ∧ (u2 ≥ l1) ∧ (l1 ≥ l2),
c2 := (u1 ≥ u2) ∧ (u2 ≥ l2) ∧ (l2 > l1),

c3 := (u1 ≥ l1) ∧ (l1 > u2) ∧ (u2 ≥ l2), (4.2)

c4 := (u2 ≥ u1) ∧ (u1 ≥ l2) ∧ (l2 ≥ l1),
c5 := (u2 ≥ u1) ∧ (u1 ≥ l1) ∧ (l1 > l2),

c6 := (u1 ≥ l2) ∧ (l2 > u1) ∧ (u1 ≥ l1).

Note that there are three types regarding calculat-
ing intersection of two sector-cones in Eq. (4.2):
(1) partial intersection (see c1, c4), (2) complete
intersection (see c2, c5) and (3) none intersection
(see c3, c6). Figure 4 shows these cases (c1, c2, c3)

𝑞2
𝑞1 ∧ 𝑞2

𝑞1

𝑞2

𝑞1 ∧ 𝑞2
𝑞1 ∧ 𝑞2

𝑞2

𝑞1

(𝑐1) Partial (𝑐2) Complete (𝑐3) None

𝑢1
𝑢2

𝑙1

𝑙2

𝑢1

𝑢2

𝑙1

𝑙2

𝑢1 𝑙1

𝑢2

𝑙2

Figure 4: Different scenarios intersection of two sector-
cones, purple & green region is for (q1) & (q2), and
orange region (axis only in c3) is for the intersection.

from one sector-cone to the other and vice versa
(c4, c5, c6). While the calculation of the partial and
complete intersection are based on natural repre-
sentation of geometric shapes, the calculation of
none intersection type is based on zero aperture
and middle semantic axis between the lower bound
of one sector-cone and the upper bound of the other.
The aperture in this situation is confidence, but the
semantic axis is uncertain as it can be any axes
between the mentioned bounds. We consider the
middle axis as a special case for none intersection
type (see further details in the following Eq. 4.3).

In general, to compute the intersection of (k)
conjunctive queries, assuming this computation
satisfies the associative and/or commutative law
for logic, we compute the intersection C(qi, qi+1)
of the first two arbitrary conjunctive queries,
then compute the intersection of C(qi, qi+1) and
the next conjunctive query (qi+2) to produce
C(C(qi, qi+1), qi+2), and iterate this process until
reaching the final conjunctive query (qk).

𝑞2

𝑞1 ∨ 𝑞2

𝑞1 ∨ 𝑞2

𝑞1

𝑞2

𝑞

¬𝑞
𝑑𝑜

𝑑𝑐𝑜𝑛 |𝑑𝑎
𝑑𝑖

𝑞

𝑣

(a) Projection

𝑞1

(b) Union (c) Negation (d) Distance

Figure 5: Operators over two sector-cones.

Conjunction: Weight semantic axis for none
type intersection In the conjunction C(q1, q2)
with none type intersection (c3, c6), the equality
of axis intersection (α∧) of two sector-cones em-
beddings can be any axes between the upper bound
of one sector-cone and the lower bound of the other
sector-cone. In general, the equality to calculate
(α∧) in the cone embedding space (see Eq. 4.1) for
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the none type intersection is shown below:

α∧ =

{
δl1 + (1− δ)u2, if c3,
δl2 + (1− δ)u1, if c6,

(4.3)

where (δ ∈ [0, 1]) is a hyper-parameter to control
the spatial location of axis intersection regarding
that of the two mentioned bounds. Notice that, let
(δ = 0.5) as in Eq. (4.1), the semantic center axis
intersection (α∧) is in the middle between the two
bounds as a special case of equality in Eq. (4.3)
(see Appendix F for further analysis).

Negation This aims to model the negationN (q),
called q¬ = (α¬,β¬) of the embedded query q =
(α,β). In the cone embedding space, the semantic
center axis of (q¬) should be in opposite direction
via the O−axis regarding that of the (q) (see Fig. 5
(c)). In terms of the aperture, the summation of
both apertures of (q¬) and (q) should be close to
(2π) as follows:

α¬ =

{
α− π, if (α ≥ 0)

α+ π, if (α < 0)
β¬ = 2π − β.

Disjunction Similar to cone embedding Zhang
et al. (2021), we adapt the DNF technique in Ren
et al. (2020) to represent the disjunction operation
D(q1, q2) as disjunction of conjunctive queries (see
Fig 5 (b)). Hence, we can leverage (C,N ) oper-
ators above to have a set of embeddings of the
conjunctive queries. Those entities nearest to any
of these conjunctive queries in the cone embedding
space are considered to be the answers (see the
aggregated distance score in Eq. (4.5)).

4.3 Optimization
Distance score function We define a distance
score function d(v,q) of the embedding between:
the expected entity v = (α,0) and the query
q = (αq,βq) (as stated in Sec. 3.2). We use two
distance types: (dcon) for conjunctive queries and
(ddis) for disjunctive queries as (Ren et al., 2020;
Zhang et al., 2021). In (dcon), there are three terms:
an outside distance (do), an inside distance (di)
and a separated axis distance (da) (see Fig. 5 (d)),
which are defined by:

dcon(v,q) = (1− ψ)(do + λdi) + ψda, (4.4)

where λ ∈ (0, 1) is to encourage (v) to be cov-
ered by the sector-cone embedding (q). The hyper-
parameter (ψ) is to weight the effect of the out-
side with inside distance and the separated axis

distance (see Appendix C for more details). To
calculate (ddis), we use the DNF technique in Ren
et al. (2020), which obtains the minimum distance
in embeddings between: an expected entity and
each conjunctive query in DNF, over a (k) number
of conjunctive queries:

ddis(v,q) = min{dcon(v,qi)i:1→k}, (4.5)

Loss function During the optimization process,
we use the negative sampling loss (L) (Mikolov
et al., 2013a,b) as that in Ren and Leskovec (2020):
L = L1 + L2, where L1 = − log σ(γ − d(v,q))
involves a minimization of the distance d(v,q)
for a positive answer entity (v ∈ Vq), and L2 =
− 1
n

∑n
i log σ(d(v

′,q) − γ) involves a maximiza-
tion of the distance d(v′,q) for a number (n) of
negative answer entities (v′i:1→n /∈ Vq); σ(x) is
the activation function (e.g. sigmoid) and (γ) is a
positive margin as hyper-parameter.

5 Experiments

5.1 Experimental setups
Multi-hop Reasoning (MHR) or Complex Log-
ical Query Answering task Given an arbitrary
complex FOL query, when traversing the incom-
plete KGs, non-trivial answers cannot be re-
turned directly. The MHR task aims to find
these answers. We evaluate our approach on
there datasets: FB15k (Bollacker et al., 2008),
FB15k-237 (Toutanova and Chen, 2015) and
NELL995 (Xiong et al., 2017), following the pre-
processing in BetaE (Ren and Leskovec, 2020).
We follow the training protocol of previous
works (Ren and Leskovec, 2020; Zhang et al.,
2021), using 10 query syntaxes (non-negation
1p/2p/3p/2i/3i and negation 2in/3in/inp/pni/pin)
for the training. We use these 10 syntaxes plus
4 unseen syntaxes (ip/up/2u/pi) for the evaluat-
ing process (see Fig. 6). An example of the
(1p) query is (v, r1) i.e. (Wesleyan_University,
major_field_of_study), while (2p) or (3p)
query corresponds to (v, r1, r2) or (v, r1, r2, r3).

Evaluation Protocol Following the evaluation
protocol in (Ren et al., 2020), given a query, we
split its answers into two sets: easy answers and
hard answers. The former is for those entities that
can be reached on the training/validation graph
through symbolic approach in graph traversing.
The latter is for those that can be predicted using
query embedding models, or the reasoning process
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3in pipni pin

1p 2p 3p 2i 3i ip up 2u

Anchor nodes Intermediate nodes Target nodes Projection Complement UnionIntersection

2in inp

Figure 6: (Left): training queries. (Left) & (Right): those queries are involved in the evaluation process.

Dataset Model AVGp AVGn 1p 2p 3p 2i 3i (ip) (pi) (2u) (up) 2in 3in inp pin pni

FB15k

GQE 28.2 - 53.9 15.5 11.1 40.2 52.4 19.4 27.5 22.3 11.7 - - - - -
Q2B 40.1 - 70.5 23.0 15.1 61.2 71.8 28.7 41.8 37.7 19.0 - - - - -
Q2P 46.8 16.4 82.6 30.8 25.5 65.1 74.7 34.9 49.5 32.1 26.2 21.9 20.8 12.5 8.9 17.1
ConE 49.8 14.8 73.3 33.8 29.2 64.4 73.7 35.7 50.9 55.7 31.4 17.9 18.7 12.5 9.8 15.1

SConE 53.0 16.0 80.8 38.2 30.7 67.0 75.1 41.7 52.1 57.1 34.6 20.5 19.5 14.5 9.2 16.1

FB15k
(237)

GQE 16.6 - 35.2 7.4 5.5 23.6 35.7 10.9 16.7 8.4 5.8 - - - - -
Q2B 21.1 - 41.3 9.9 7.2 31.1 45.4 13.3 21.9 11.9 8.1 - - - - -
Q2P 21.9 6.0 - - - - - - - - - 4.4 9.7 7.5 4.6 3.8
ConE 23.4 5.9 41.8 12.8 11.0 32.6 47.3 14.0 25.5 14.5 10.8 5.4 8.6 7.8 4.0 3.6

SConE 24.1 6.7 44.2 13.0 10.7 33.8 47.0 17.0 25.1 15.5 10.7 6.9 10.6 7.9 4.0 4.3

NELL
(995)

GQE 18.7 - 33.1 12.1 9.9 27.3 35.1 14.5 18.5 8.5 9.0 - - - - -
Q2B 23.6 - 42.7 14.5 11.7 34.7 45.8 17.4 23.2 12.0 10.7 - - - - -
Q2P 25.5 6.0 - - - - - - - - - 5.1 7.4 10.2 3.3 3.4
ConE 27.2 6.4 53.1 16.1 13.9 40.0 50.8 17.5 26.3 15.3 11.3 5.7 8.1 10.8 3.5 3.9

SConE 30.4 6.7 58.2 20.5 17.0 41.8 50.7 22.9 28.6 18.8 15.5 6.2 8.0 11.8 3.5 4.2

Table 1: The average MRR (%) of geometric-based embedding models in FOL queries: AVGp is for EPFO queries
while AVGn is for negation queries. The results of (GQE, Q2B, ConE) are taken from (Zhang et al., 2021). Union
queries (2u/up) are in DNF forms, (ip/pi/2u/up) queries are not involved in the training process.

performs on hard answers. We use the mean recip-
rocal rank (MRR) metrics, computing the ranking
of each hard answer against all non-answer entities,
to measure the performance of models.

Baselines We use four recent geometric-based
embedding models as baselines: GQE (Hamil-
ton et al., 2018), Query2Box (Q2B) (Ren et al.,
2020), Query2Particles (Q2P) (Bai et al., 2022)
and ConE (Zhang et al., 2021), and obtain their
results from ConE and Q2P. We also compare these
results with state-of-the-art models based on fuzzy
logic (see Appendix E.2).

5.2 Results
Existential Positive First-order (EPFO) queries
Overall, the average MRR in all EPFO queries
without negation (AVGp) of SConE2 significantly
outperform all geometric-based baselines using the
three datasets, particularly more than that of ConE
by nearly 12% using the NELL995 dataset (see
Table 1). For queries (1p/2p/3p/2i/3i) involving in

2Source code is available at https://github.com/nlp-
tlp/scone

the training process, most of the average MRR in
each of these query structure (11 out of 15 met-
rics) significantly surpass baselines. Specially, in
the (2p) query, around 26% gain of the MRR in
SConE over that in ConE observes in the NELL995
dataset. With regard to queries (ip/pi/2u/up) that
are not involved in the training process, the model
performance of SConE also shows a significant in-
crease of MRR, compared to that of ConE (10 out
of 12 metrics), which suggests an improvement in
the ability of zero-shot learning for these queries
(please see Appendix E.1 for error bars of the main
results).

Negation queries Overall, the average MRR in
negation queries (AVGn) of SConE is significantly
higher than that of ConE by closely 14% using
the FB15k-237 dataset (see Table 1); even though
there is no difference in the modeling of negation
operator in both models. This can be due to the
effect of using RPN to enrich learning in the atomic
query structure (1p), which dominantly involves in
all negation queries (see Fig. 6 Bottom-Left and
Sec. 5.3 for further ablation study in the RPN).
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5.3 Ablation study - Sensitivity analysis

We conduct experiments for ablation study w.r.t.
two situations: relation projection networks and ge-
ometric intersection types; and for sensitivity anal-
ysis w.r.t. two hyper-parameters: distance weight
(ψ) and embedding dimensions (d) as follows:

Relation projection network Table 2 shows the
average MRR on FOL queries in general and sev-
eral specific EPFO queries (e.g. 1p/2i/ip/2u) of the
test set w.r.t. different RPNs: (1) MLP only, (2)
relation transformation only and (3) MLP with re-
lation transformation and attention mechanism for
the entanglement layer (see Sec. 4.1). Overall, the
third scenario observes the highest model’s perfor-
mance of answering complex logical queries over
the other scenarios. We attribute this observation to
the advantage of enhancing the learning for atomic
query (1p) using the RPN, resulting in an improve-
ment in model performance in total. Specifically,
an increase from 42.5 (using MLP only) to 44.2
(using both MLP and relation transformation) in
the average MRR (%) of 1p query can lead to an
increase in that of other query structures (2i, ip,
2u). This is because the atomic query involves
in all structures and in the early stage during the
decomposition process via the computation graph
for each structure (see Fig. 6). Moreover, SConE
with MLP only (d = 800, around 20.0M parame-
ters) and symbolic modeling for logical operators
uses less parameters than those in ConE (d = 800,
around 23.9M parameters reported in Long et al.
(2022) Appendix B), but both models achieve simi-
lar performance (see Table 1).

Projection AVGp AVGn 1p 2i ip 2u #Params

MLP only 22.4 6.5 42.5 30.9 14.5 14.6 11.3M
MLP only (∗) 23.2 6.8 43.1 31.9 16.0 15.1 20.0M
Rtrans only 23.1 6.5 44.0 32.3 15.7 14.9 25.0M

Rtrans + MLP
+ Attention 24.1 6.6 44.2 33.6 17.0 15.3 31.2M

Table 2: Effect of projection network on average MRR
(%) fixing d = 400 using the FB15k-237 dataset. (∗) is
for d = 800, (M) is million.

Geometric intersection of sector-cones Table 3
shows the model’s performance of answering com-
plex logical queries using different types of inter-
section between sector-cones. The implementation
of using individual intersection type is to see the
impact of each intersection type on model perfor-
mance, compared with that using all conditional

intersection types. Geometrically, there are three
types (None, Complete, Partial) of intersection for
any pair of two conjunctive queries as illustrated in
Figure 4. Using one type of intersection calculation
individually will result in misrepresentation for the
other two. For example, assuming all query pairs
have None intersection, i.e. only using (c3) and
(c6) (see Eq. 4.2) for intersection calculation, we
will miss the opportunity to capture Complete and
Partial overlap correctly. Table 3 confirms our intu-
ition, the model performs best when all intersection
types are considered. Notice that the calculation
of intersection of sector-cones neglects the neural-
based approach, but the model is able to efficiently
learn to answer intersection queries as that in ConE,
particularly when using partial intersection only. It
is arguable that the learning process focuses on the
atomic query which are also involved in conjunc-
tive queries.

Intersection AVGp AVGn 2i 3i ip pi

None c3, c6 17.6 4.3 20.4 29.8 10.3 18.1
Complete c2, c5 22.8 6.2 32.0 45.4 14.9 24.2
Partial c1, c4 23.6 5.6 33.5 48.0 15.5 25.2

All
c1, c2, c3,
c4, c5, c6 24.1 6.6 33.6 47.3 17.0 24.9

Table 3: Effect of intersection types for sector-cones on
average MRR (%) (see Eq. (4.2)) using the FB15k-237
dataset.

Weight distance Table 4 (Left) shows the aver-
age MRR on FOL queries of the test set w.r.t. differ-
ent weights (ψ) of distances (see Eq. (4.4)), rang-
ing from zero (no axis distance but having inside
and outside distance), half of one (equally having
axis distance with inside and outside distance) to
one (having axis distance but no inside and no out-
side distance). The model performance increases
from (ψ = 0) to (ψ = 1), which suggests that
there is an effect of using the axis distance (da).
The performance reaches its peak when (ψ) is set
to one as maximum, which suggests that the model
can learn to answer complex logical queries using
the axis distance only (without inside and outside
distance). However, we theorize that the inside
and outside distance should be involved during the
training process. This is to improve the explain-
ability of cone embeddings, where those entities
inside the sector-cone are expected to be answers
of the query. In this situation, the aperture plays
a role in covering answer entities. Thus, to keep
all distance types during the optimization process,
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we set 0 < ψ = 0.9 < 1 for the main results (see
Table 1).

Table 4: (Left:) Effect of weight distance (ψ) (fixing
d = 400) and (Right:) Effect of embedding dimension
(d) (fixing ψ = 0.9) on average MRR (%) using the
FB15k-237 dataset. (M) is million.

SConE AVGp AVGn

ψ = 0.0 23.1 5.5
ψ = 0.1 23.2 5.6
ψ = 0.5 23.9 6.0
ψ = 0.9 24.1 6.6
ψ = 1.0 24.1 6.7

SConE AVGp AVGn #Params

d = 64 17.0 4.2 4.5M
d = 128 20.9 5.6 7.4M
d = 256 23.3 6.4 16.3M
d = 400 24.1 6.6 31.2M
d = 512 24.4 6.8 46.3M

Embedding dimension Table 4 (Right) shows
the average MRR on FOL queries of the test set
w.r.t. different embedding dimension. The model’s
performance increases from using small (d = 64)
to medium (d = 512) embedding dimension. This
observation suggests that there is a significant ef-
fect of this hyper-parameter on the average MRR
(of both EPFO and negation queries). Additionally,
in the case d = 256 (with around 16.3M parame-
ters), SConE uses less 30% in the number of pa-
rameters than those in ConE (d = 800 with around
23.9M parameters), but both achieves similar aver-
age MRR using the same FB15k-237 dataset.

6 Conclusions

We have provided a symbolic modeling for logical
operators, particularly computing geometric inter-
section of sector-cones for modeling the conjunc-
tion. In addition, we highlighted the importance
of the projection operator by introducing a relation
projection network using neural-based approach, to
strengthen the learning in atomic queries involved
in all FOL query syntaxes. Our neural-symbolic
approach using geometric embeddings significantly
outperforms state-of-the-art geometric-based mod-
els in both EPFO and negation queries.

Limitations

Although our geometric embedding approach can
handle a complete set of basic FOL operators (exis-
tential quantification, conjunction, disjunction and
negation), the modeling of negation operator can-
not narrow down the predicted answers to relevant
topics of atomic queries. For example, one can
expect the answers of this negation question/query
“List Argentina players who are not Lionel Messi
in World Cup 2022?” to be any teammates of Li-
onel Messi (i.e. 2in query structure). However, the

current model is designed to return all elements
in the entire entity set except for Lionel Messi,
which have redundant objects (e.g. trees, music,
houses). This is a common limitation not only in
geometric-based models but in others using fuzzy
sets representation. This is due to the fact that the
modeling of negation operator is assumed to be the
complement set of a questionable entity w.r.t. the
entire entity set. Our hypothesis is that the expected
answers should be narrowed into the complement
set w.r.t. a sub-topic of relevant entity set.

In addition, when apertures of two sector-cones
are obtuse angles, the current calculation of partial
intersection cannot correctly model the conjunction
operator. This special case is inevitable in a system
using geometric representation that is closed under
negation and conjunction, but not for disjunction
(see Appendix A.2 for further details).

Ethics Statement

The ability of models to answer complex logical
queries is achievable to reason about knowledge
graphs. Due to model’s uncertainty, one potential
negative impact of this task is the out-of-control in
automatic reasoning over open large-scale knowl-
edge graphs, where there are diverse source of in-
formation. Some of which though can be missed
from KGs due to incompleteness or private pur-
poses, but they can be possibly reasoned using the
query embedding methods.
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A Modeling logical operators - None
intersection type

A.1 Comments on partial and complete type
of intersection

Note that the condition (c1) for partial intersection
type has a special case when these equalities holds
(u2 = l1) and (l1 = l2). In this situation, the partial
type (c1) can be considered as the complete type
(c2). Hence, these types of intersection can be used
interchangeably. Similarly, we can interchangeably
use the calculation of the partial and complete type
for the condition (c4, c5). This is due to the fact that
the calculation of these intersection types become
as follows:

β∧ =





0,

β2,

0,

β1

α∧ =





u2, if c1,
α2, if c2,
u1, if c4,
α1, if c5.

In terms of the cases (c1, c2), notice that (u2 =
l1 = l2) or (u2 = l2), hence (0 = β2), and (u2 =
α2 +

β2
2 ) or (u2 = α2). Similar explanation is for

the cases (c4, c5).

A.2 Special case of partial intersection
In case of the aperture of two sector-cones are both
obtuse angles as shown in Fig. 7, the calculation of
partial intersection under conditions (c1, c4) cannot
exactly model the conjunction operator. Specially,
the calculation of (α∧, β∧) for conjunction oper-
ator in Sec. 4.2 will return (α∧, β∧) of the right
intersection sector-cone, but will ignore (α∧, β∧)
of the left intersection sector-cone in this special
case. Our hypothesis is that this special case is in-

𝑞1

𝑞1 ∧ 𝑞2𝑞1 ∧ 𝑞2

𝑞2

Figure 7: A special case of partial intersection of two
sector-cones.

evitable if a system using geometric representation,
such as conic shapes, is closed under negation and
conjunction, but not disjunction. This limitation
can be addressed by providing a refined approach
for calculating the partial intersection when both
apertures are obtuse angles. We leave this approach
as an extension for future work.

B Further details in section modeling
operators of FOL queries

B.1 Scaling function
Continuing Sec. 4.1, after obtaining the output from
entanglement layer as q = (α,β), we scale the
semantic center axis and the aperture into their
normal ranges [−π, π) and [0, 2π] respectively,
defined in Sec. 3.2. The final embedded query
q = (α′,β′) is as follows:

α′ = π tanh(λ1α), (B.1)

β′ = π tanh(λ2β) + π, (B.2)

where (λ1, λ2) are scaling hyper-parameters.

Stats FB15k FB15k-237 NELL995

Entities 14,951 14,505 63,361
Relations 1,345 237 200

Triples
(Edges)

Train 483,142 272,115 114,213
Valid 50,000 17,526 14,324
Test 59,071 20,438 14,267
Total 592,213 310,079 142,804

Table 5: Statistics of three datasets, reported from Ren
and Leskovec (2020)

Split Query syntaxes FB15k FB15k-237 NELL995

Train
1p/2p/3p/2i/3i 273,710 149,689 107,982
2in/3in/inp/pin/pni 27,371 14,968 10,798

Valid
1p 59,097 20,101 16,927
Others (Each) 8,000 5,000 4,000

Test
1p 67,016 22,812 17,034
Others (Each) 8,000 5,000 4,000

Table 6: Statistics of query structures preprocessed
by Ren and Leskovec (2020).

C Distance score functions

Continuing the calculation of distance score func-
tion in Sec. 4.3, the calculations of the outside with
inside distances and axis distance are as follows:

do =
∣∣∣
∣∣∣min{dl, du}

∣∣∣
∣∣∣
1
, di =

∣∣∣
∣∣∣min{dα, dβ}

∣∣∣
∣∣∣
1
,

da =
∣∣∣
∣∣∣α−αq

∣∣∣
∣∣∣
1
, (C.1)

where || · ||1 denotes the L1 norm, the upper bound
(u = αq+

βq

2 ) and the lower bound (l = αq− βq

2 )
are of the query (q); dl = |1 − cos(α − l)| and
du = |1−cos(α−u)| is the lower and upper bound
outside distance respectively, dα = |1− cos(α−
αq)| and dβ = |1 − cos(

βq

2 )| is the axis and the
aperture inside distance respectively.
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Dataset d b n m γ l ψ λ1 λ2 λ
embed dim batch size negative sampling max steps learning rate weight distance

FB15k 400 512 128 450k 30 0.00005 0.9 1.0 2.0 0.02
FB15k-237 400 512 128 350k 20 0.00005 0.9 1.0 2.0 0.02
NELL995 400 512 128 350k 20 0.00005 0.9 1.0 2.0 0.02

Table 7: Found hyper-parameters for the main results.

Dataset AVGp AVGn 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k
53.0 16.0 80.8 38.2 30.7 67.0 75.1 41.7 52.1 57.1 34.6 20.5 19.5 14.5 9.2 16.1
± 0.3 ± 0.1 ± 0.3 ± 0.3 ± 0.2 ± 0.3 ± 0.2 ± 0.5 ± 0.3 ± 0.5 ± 0.4 ± 0.1 ± 0.1 ± 0.04 ± 0.2 ± 0.2

FB15k-237
24.1 6.7 44.2 13.0 10.7 33.8 47.0 17.0 25.1 15.5 10.7 6.9 10.6 7.9 4.0 4.3
± 0.1 ± 0.05 ± 0.1 ± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 0.1 ± 0.2 ± 0.2 ± 0.2 ± 0.1 ± 0.2 ± 0.1 ± 0.04 ± 0.04

NELL995
30.4 6.7 58.2 20.5 17.0 41.8 50.7 22.9 28.6 18.8 15.5 6.2 8.0 11.8 3.5 4.2
± 0.2 ± 0.1 ± 0.1 ± 0.2 ± 0.2 ± 0.3 ± 0.2 ± 0.4 ± 0.3 ± 0.1 ± 0.3 ± 0.1 ± 0.1 ± 0.1 ± 0.04 ± 0.1

Table 8: Error bars of MRR (%) for the main results of SConE. (±) is for standard deviation.

D Experimental setups

D.1 Datasets

Following experimental settings in Ren and
Leskovec (2020) for the training and evaluation
process, which pre-processed datasets (FB15k Bol-
lacker et al. (2008), FB15k-237 Toutanova and
Chen (2015) and NELL995 Xiong et al. (2017))
and publicly available at this link 3 , Table 5 shows
statistics of these datasets regarding the number of
entities, the number of relations and the number
of triples. In addition, Table 6 shows the num-
ber of queries in different structures for the train-
ing/validation/test set.

D.2 Training and evaluation settings:
Further details, hyper-parameters and
error bars

Following the original work in (Ren and Leskovec,
2020) 4, we implement all experiments using Py-
torch as Deep Learning framework under Python.
For each experiment, we conduct it on a single
NVIDIA Tesla V100 GPU, in the UWA Kaya High
Performance Computing (HPC) cluster. For the set-
tings in the relation projection network, we use a
three-layer MLP using 1600 dimension for hidden
layers and Rectified Linear Units (ReLU) for the
activation function. Further, following the found
hyper-parameters in ConE (Zhang et al., 2021):
λ1 = 1.0, λ2 = 2.0, λ = 0.02, batch size b = 512
and negative sampling size n = 128, we use these
in all experiments. With regard to other hyper-
parameters, we search for the best performance

3https://github.com/snap-stanford/KGReasoning
4https://github.com/snap-stanford/KGReasoning,licensed

under the MIT License

in MRR. Specifically, (γ) involving in the loss
function is in {20, 30}, the learning rate (l) is
in {1e−4, 5e−5}. Table 7 shows found hyper-
parameters of the main results in Table 1. For
obtaining error bars of the main results, we run
the model five times, each uses different random
seed in {0, 10, 100, 1000, 10000} (see Table 8 for
further details).

E Additional results

E.1 Error bars for the main results

Table 8 shows error bars of the average MRR (in
percentage) for the main results of SConE reported
in Table 1 (see random seed settings as described
in Appendix. D.2). We compute the standard devi-
ation (std) of results from five experiments using
each of the three dataset (FB15k, FB15k-237 and
NELL995). Overall, the error bar of the average
MRR is low in all query structures and in aver-
age for EPFO and negation queries, which demon-
strates the stability of model performance.

E.2 Comparison results with fuzzy
logic-based models

Table 9 shows comparison in the average MRR
(in percentage) of SConE with that of other fuzzy
logic-based models. In the FB15k-237 dataset,
GNN-QE achieves state-of-the-art performance of
answering complex logical queries. Compared to
other models (ENeSy and FuzzQE), the perfor-
mance of SConE is nearly to that of these logic-
based models. With regard to the NELL995 dataset,
although SConE achieves the lowest performance
in answering negation queries, the performance
of SConE reaches its highest in answering non-
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Dataset Model AVGp AVGn 1p 2p 3p 2i 3i ip pi 2u up 2in 3in inp pin pni

FB15k-237

CQD-CO 21.8 - 46.7 9.5 6.3 31.2 40.6 16.0 23.6 14.5 8.2 - - - - -
CQD-Beam 22.3 - 46.7 11.6 8.0 31.2 40.6 18.7 21.2 14.6 8.4 - - - - -
FuzzQE 24.2 8.5 42.2 13.3 10.2 33.0 47.3 18.9 26.2 15.6 10.8 9.7 12.6 7.8 5.8 6.6
ENeSy 24.5 8.5 44.7 11.7 8.6 34.8 50.4 19.7 27.6 14.2 8.4 10.1 10.4 7.6 6.1 8.1
GNN-QE 26.8 10.2 42.8 14.7 11.8 38.3 54.1 18.9 31.1 16.2 13.4 10.0 16.8 9.3 7.2 7.8

SConE 24.1 6.7 44.2 13.0 10.7 33.8 47.0 17.0 25.1 15.5 10.7 6.9 10.6 7.9 4.0 4.3

NELL995

CQD-CO 28.8 - 60.4 17.8 12.7 39.3 46.6 22.0 30.1 17.3 13.2 - - - - -
CQD-Beam 28.6 - 60.4 20.6 11.6 39.3 46.6 23.9 25.4 17.5 12.2 - - - - -
GNN-QE 28.9 9.7 53.3 18.9 14.9 42.4 52.5 18.9 30.8 15.9 12.6 9.9 14.6 11.4 6.3 6.3
FuzzQE 29.3 8.0 58.1 19.3 15.7 39.8 50.3 21.8 28.1 17.3 13.7 8.3 10.2 11.5 4.6 5.4
ENeSy 29.4 9.8 59.0 18.0 14.0 39.6 49.8 24.8 29.8 16.4 13.1 11.3 8.5 11.6 8.6 8.8

SConE 30.4 6.7 58.2 20.5 17.0 41.8 50.7 22.9 28.6 18.8 15.5 6.2 8.0 11.8 3.5 4.2

Table 9: Comparison the average MRR (%) of SCone with that of logic-based embedding models (CQD-CO, CQD-
Beam, FuzzQE, ENeSy, GNN-QE). Union queries (2u/up) are in DNF forms. Results of CQD-CO, CQD-Beam,
GNN-QE are taken from (Zhu et al., 2022).

Delta AVG AVGp AVGn 2i 3i ip pi 2in 3in inp pin pni

δ = 0.0 17.8 24.4 5.9 34.5 48.6 16.8 26.6 5.3 9.3 7.9 3.6 3.6
δ = 0.1 17.9 24.4 6.1 34.3 48.2 17.0 26.2 5.6 9.7 7.8 3.8 3.8
δ = 0.5 17.9 24.1 6.8 33.9 47.0 16.9 25.1 6.9 10.8 7.9 4.0 4.4
δ = 0.9 17.8 24.3 6.2 33.9 47.7 16.8 26.1 6.0 9.8 7.8 3.8 3.8
δ = 1.0 17.8 24.3 6.1 34.1 47.6 16.8 26.3 5.8 9.7 7.8 3.7 3.7

Table 10: The effect of weight axis (δ) for the none type of intersection queries on average MRR (%) (see
Eq. (4.3)).

negation queries among other logic-based models.
Particularly, there is a significant improvement in
the average MRR regarding union queries, com-
pared to that in other models.

F Further sensitivity analysis - Weight of
semantic axis for none intersection
type

Table 10 shows the performance of SConE w.r.t. dif-
ferent weights (δ ∈ [0, 1]) of semantic axis in the
case of none type intersection (see Eq. (4.3)). We
conduct five experiments using different weights
in {0.0, 0.1, 0.5, 0.9, 1.0}. When (δ = 0.0) or
(δ = 1.0), the semantic axis of an intersection
query corresponds to the lower bound of one sector-
cone or the upper bound of the other sector-cone.
When (δ = 0.1) or (δ = 0.9), the spatial position
of this semantic axis is close the lower bound of
one sector-cone or the upper bound of the other
sector-cone respectively. In a special case when
(δ = 0.5), the semantic axis is in the middle of the
two bounds.

Overall, the average MRR (AVG) of SConE for
both non-negation and negation queries is similar
from one to another in all different weights (δ).
However, there is a slight difference between AVGp

for non-negation queries and AVGn for negation
queries. When (δ = 0.1), SConE achieves the
highest AVGp but not for AVGn. In contrast, when
(δ = 0.5), SConE achieves the highest AVGn but
not for AVGp. Since there is a slight difference in
AVGp using (δ = 0.1) and (δ = 0.5) but there is
highly difference in AVGn using these weights, we
select the special case with (δ = 0.5) or the middle
semantic axis of intersection query and report the
main results. Further, we observe that there is no
significant difference in the average MRR (AVG)
of model performance for both non-negation and
negation queries (see second column of Table 10).
Thus, any semantic axes (or cones) between the
two mentioned bounds can be considered as the
semantic axis of intersection query. Note that the
aperture of intersection query in the case of none
intersection type is equivalent to zero.
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