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Abstract

Understanding users’ intentions in e-commerce
platforms requires commonsense knowledge.
In this paper, we present FolkScope, an inten-
tion knowledge graph construction framework
to reveal the structure of humans’ minds about
purchasing items. As commonsense knowl-
edge is usually ineffable and not expressed
explicitly, it is challenging to perform infor-
mation extraction. Thus, we propose a new
approach that leverages the generation power
of large language models (LLMs) and human-
in-the-loop annotation to semi-automatically
construct the knowledge graph. LLMs first
generate intention assertions via e-commerce-
specific prompts to explain shopping behaviors,
where the intention can be an open reason or
a predicate falling into one of 18 categories
aligning with ConceptNet, e.g., IsA, MadeOf,
UsedFor, etc. Then we annotate plausibility
and typicality labels of sampled intentions as
training data in order to populate human judg-
ments to all automatic generations. Last, to
structurize the assertions, we propose pattern
mining and conceptualization to form more
condensed and abstract knowledge. Extensive
evaluations and studies demonstrate that our
constructed knowledge graph can well model e-
commerce knowledge and have many potential
applications. Our codes and datasets are pub-
licly available at https://github.com/HKUST-
KnowComp/FolkScope.

1 Introduction

In e-commerce platforms, understanding users’
searching or purchasing intentions can benefit and
motivate a lot of recommendation tasks (Dai et al.,
2006; Zhang et al., 2016; Hao et al., 2022b). In-
tentions are mental states where agents or humans
commit themselves to actions. Understanding oth-
ers’ behaviors and mental states requires rational-
izing intentional actions (Hutto and Ravenscroft,

∗ Work done during internship at Amazon.
† Visiting academic scholar at Amazon.

2021), where we need commonsense, or, in other
words, good judgements (Liu and Singh, 2004).
For example, “at a birthday party, we usually need
a birthday cake.” Meanwhile, commonsense knowl-
edge can be factoid (Gordon et al., 2010), which is
not invariably true, and is usually ineffable and not
expressed explicitly. Existing intention-based stud-
ies on recommendation are either of limited num-
bers of intention categories (Dai et al., 2006; Zhang
et al., 2016) or using models to implicitly model the
intention memberships (Hao et al., 2022b). Thus, it
is very challenging to acquire fine-grained intention
knowledge in a scalable way.

Existing related knowledge graphs (KGs) can
be categorized into two folds. First, some general
situational commonsense KGs deal with everyday
social situations (Rashkin et al., 2018; Sap et al.,
2019; Zhang et al., 2020b), but they are not di-
rectly related to massive products on e-commerce
platforms and thus not generalized well on users’
behavior data even for generative models, e.g.,
COMET (Bosselut et al., 2019). Second, most
e-commerce KGs leverage existing KGs, such as
ConceptNet (Liu and Singh, 2004; Speer et al.,
2017) and Freebase (Bollacker et al., 2008), to in-
tegrate them into the e-commerce catalog data (Li
et al., 2020a; Luo et al., 2020; Zalmout et al., 2021;
Luo et al., 2021; Deng et al., 2022). However, such
integration is still based on factual knowledge, such
as IsA and DirectorOf relations, and does not truly
model the commonsense knowledge for purchase
intentions. Although some of these KGs may in-
clude information related to space, crowd, time,
function, and event, they still fall short of modeling
true commonsense knowledge (Luo et al., 2021).

Existing KGs constructed for e-commerce plat-
forms can be evaluated for their factual knowledge
in terms of plausibility. However, when it comes
to purchasing intentions, a person’s beliefs and de-
sires (Kashima et al., 1998) are mediated by their
intentions, which can be reflected by the typicality

1173

https://github.com/HKUST-KnowComp/FolkScope
https://github.com/HKUST-KnowComp/FolkScope


I am Tell the time

UsedFor

Fans of Electronics Protect one’s devicesAbstract 
Intentions

Feel good Outdoor activity product

IsA

Intentions

Co-buy Co-buy

CapableOf UsedFor

User Behaviors

HasProperty Open

Conceptualization

Co-buy

I am Waterprpoof I am Protect one’s iPhone

I am Protect one’s laptopI am Fans of Apple products

I am Feel cool 

I am Skiing product

I am Camping product

I am Feel warm

Open

Figure 1: An overview of FolkScope. It starts from
users’ purchasing or co-purchasing behaviors and links
them to intentions. Then more abstract intentions are
formed to condense the representation of intentions. The
intentions can be noun phrases or verb phrases (italics).

of commonsense (Chalier et al., 2020; Wilhelm,
2022). For example, in Figure 1, a user bought an
Apple watch because “Apple watches can be used
for telling the time” where the reason is highly
plausible (but other watches can also serve similar
functions), whereas a more typical reason would be
“apple watches are able to track running,” or “the
user is simply a fan of Apple products.” Thus, no
matter what kind of factual knowledge a KG con-
tains, if it is not directly linked to rationalization,
it cannot be regarded as typical commonsense. In
addition, the task of explaining a user’s rating of
an item has been proposed as a means of provid-
ing recommendations. To achieve this, researchers
have suggested using online reviews as a natural
source of explanation (Ni et al., 2019; Li et al.,
2020b). However, online reviews are often noisy
and diverse and may not directly reflect the user’s
intention behind their purchase or rating. Instead,
they may reflect the consequences of the purchase
or the reasons behind the user’s rating. Existing
sources of information, such as question-answering
pairs, reviews, or product descriptions, do not ex-
plicitly mention the user’s intentions behind their
purchases, making it a challenge to extract inten-
tional commonsense knowledge for e-commerce.
As a result, constructing an intention KG for e-
commerce requires sophisticated information ex-
traction techniques and thus remains challenging.

In this paper, we propose a new framework,
FolkScope, to acquire intention knowledge in e-
commerce. Instead of performing information ex-
traction, we start from enormous user behaviors
that entail sustainable intentions, such as co-buy be-
haviors, and leverage the generation power of large

language models (LLMs), e.g., GPT (Radford et al.,
2019; Brown et al., 2020; Ouyang et al., 2022), to
generate possible intentions of the purchasing be-
haviors as candidates. LLMs have shown the ca-
pability of memorizing factual and commonsense
knowledge (Petroni et al., 2019; West et al., 2022),
and “sometimes infer approximate, partial repre-
sentations of the beliefs, desires, and intentions pos-
sessed by the agent that produced the context” (An-
dreas, 2022). As open prompts in the above ex-
ample can be arbitrary and loosely constrained,
we also align our prompts with 18 ConceptNet re-
lations, such as IsA, HasPropertyOf, CapableOf,
UsedFor, etc. In addition, as the generated knowl-
edge by LLMs can be noisy and may not be able
to reflect human’s rationalization of a purchasing
action, we also perform human annotation for plau-
sibility and typicality.

Given generated candidates and annotations to
construct the KG, we first perform pattern mining
to remove irregular generations. Then we train
classifiers to populate the prediction scores to all
generated data. Finally, for each of the generated
intentions, we perform conceptualization to map
the key entities or concepts in the intention to more
high-level concepts so that we can build a denser
and more abstract KG for future generalization.
An illustration of our KG is shown in Figure 1.
To assess the overall quality of our KG, we ran-
domly sample populated assertions and estimate
their quality. Furthermore, we demonstrate the
quality and usefulness of our KG by using it in a
downstream task, CF-based (collaborative filtering)
recommendation. The contributions of our work
can be summarized as follows.

• We propose a new framework, FolkScope, to
construct large-scale intention KG for discovering
e-commerce commonsense knowledge.

• We leverage LLMs to generate candidates and
perform two-step efficient annotation on Amazon
data with two popular domains, and the process
can be well generalized to other domains.

• We define the schema of the intention KG align-
ing with famous commonsense KG, ConceptNet,
and populate a large KG based on our generation
and annotation with 184,146 items, 217,108 inten-
tions, 857,972 abstract intentions, and 12,755,525
edges (assertions).

• We perform a comprehensive study to verify the
validity and usefulness of our KG.
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Figure 2: The overall framework of FolkScope. It in-
cludes the generation, population, and conceptualiza-
tion to semi-automatically construct the e-commerce
intention commonsense KG with the help of human-in-
the-loop annotations and evaluation.

2 Methodology

2.1 Overview of FolkScope Framework

We call our framework FolkScope as we are the
first attempt to reveal the structure of e-commerce
intentional commonsense to rationalize purchas-
ing behaviors. As shown in Figure 2, FolkScope
is a human-in-the-loop approach for the semi-
automatic construction of the KG. We first leverage
the LLMs to generate candidate assertions of in-
tentions for purchasing or co-purchasing behaviors
based on co-buy data from the released Amazon
dataset. Then we employ two-step annotations to
annotate the plausibility and typicality of the gen-
erated intentions, where the corresponding defini-
tions of scores are as follows.
• Plausibility: how possible the assertion is valid
regarding their properties, usages, functions, etc.
• Typicality: how well the assertion reflects a spe-
cific feature that causes the user behavior. Typical
intentional assertions should satisfy the following
criteria. 1) Informativeness: contains key infor-
mation about the shopping context rather than a
general one, e.g., “they are used for Halloween par-
ties .” v.s. “they are used for the same purpose.”
2) Causality: captures the typical intention of user
behaviors, e.g., “they have a property of water resis-
tance.” Some specific attributes or features might
largely affect the users’ purchase decisions.

After the annotation, we design classifiers to pop-
ulate prediction scores to all generated candidates.
Then the high-quality ones will be further struc-
tured using pattern mining on their dependency
parses to aggregate similar assertions. Then, we
also perform conceptualization (Song et al., 2011;
Zhang et al., 2022a) to further aggregate assertions
to form more abstract intentions.

Clothing Electronics Total

# Item Pairs 199,560 93,889 293,449
# Unique Items 151,509 64,244 211,349
# Assertions 11,358,637 5,282,273 16,640,910
# Uniq. Assertions 2,865,118 1,280,259 4,063,764
Avg. # Tokens 6.66 5.25 6.21

Table 1: Statistics of sampled co-buy pairs and gener-
ated candidate assertions. Note that the prompts in the
generation are not included in the calculations of asser-
tion lengths.

2.2 Knowledge Generation

User Behavior Data Sampling. We extract the
users’ behavior datasets from open-sourced Ama-
zon Review Data (2018)1 (Ni et al., 2019) with
15.5M items from Amazon.com. In our work, we
mainly consider co-buy pairs, which might indi-
cate stronger shopping intent signals than co-view
pairs. After the pre-processing and removing du-
plicated items, the resulting co-buy graph covers
3.5M nodes and 31.4M edges. The items are orga-
nized into 25 top-level categories from the Amazon
website, and among them, we choose two frequent
categories: “Clothing, Shoes & Jewelry" and “Elec-
tronics" to sample co-buy pairs because those items
substantially appear in situations requiring com-
monsense knowledge to understand, while other
categories such as “Movie” or “Music” are more
relevant to factual knowledge between entities. We
uniformly sample co-buy pairs from the two cate-
gories, and the statistics are shown in Table 1.
Prompted Generation. As shown in Table 2, we
verbalize the prompt templates using the titles of
co-buy pairs. Besides the general prompt (i.e.,
“open”), we also align our prompts with 18 rela-
tions in ConceptNet highly related to common-
sense. For example, for the relation HasA, we can
design a prompt “A user bought ‘item 1’ and ‘item
2’ because they both have [GEN]” where [GEN]
is a special token indicating generation. Since the
long item titles might contain noise besides use-
ful attributes, we use heuristic rules to filter out
items whose titles potentially affect the conditional
generation, like repeated words. We use the OPT
model (Zhang et al., 2022b) of 30B parameters2

with two NVIDIA A100 GPUs based on the Hug-
gingFace library (Wolf et al., 2020) to generate
assertion candidates3. For each relation of the co-

1https://nijianmo.github.io/amazon/
2https://huggingface.co/facebook/opt-30b
3As we will further annotate the plausibility and typical-

ity of candidates, larger models will reduce annotation cost.
However, the generation is also constrained by API or compu-
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Type Relation Prompt

Open / /

Item

HasA they both have
HasProperty they both have a property of

RelatedTo they both are related to
SimilarTo they both are similar to

PartOf they both are a part of
IsA they both are a type of

MadeOf they both are made of
CreatedBy they are created by

DistinctFrom they are distinct from
DerivedFrom they are derived from

Function

UsedFor they are both used for
CapableOf they both are capable of
SymbolOf they both are symbols of
MannerOf they both are a manner of
DefinedAs they both are defined as

Human
Result as a result, the person
Cause the person wants to

CauseDesire the person wants his

Table 2: Prompts for different commonsense relations.

buy pairs, we set the max generation length as 100
and generate 3 assertions using nucleus sampling (p
= 0.9) (Holtzman et al., 2020). We post-process
the candidates as follows. (1) We discard the gen-
erations without one complete sentence. (2) We
use the sentence segmenter from Spacy library4

to extract the first sentence for longer generations.
After removing duplicates, we obtain 16.64M can-
didate assertions for 293K item pairs and 4.06M
unique tails among them. The statistics of the two
categories are listed in Table 1.

2.3 Two-step Annotation and Population

As the generated candidates can be noisy or not
rational, we apply the human annotation to obtain
high-quality assertions and then populate the gen-
erated assertions. We use Amazon Mechanical
Turk (MTurk) to annotate our data. Annotators
are provided with a pair of co-buy items with each
item’s title, category, shopping URL, and three
images from our sampled metadata. Assertions
with different relations are presented in the natural
language form by using the prompts presented in
Table 2. More details are listed in Appendix A.
Annotation. To filter out incorrect candidates, we
begin by annotating plausibility in the first step.
This step serves as a preliminary filter and reduces
the annotation cost for the subsequent steps. We
randomly sample 66K generations and collect three
plausibility votes per generated candidate. The fi-
nal plausibility score is derived by majority vot-
ing. The overall IAA score is 75.48% in terms
of pairwise agreement proportion, while Fleiss’s
Kappa (Fleiss, 1971) is 0.4872. Both metrics are

tational cost. Thus, we choose the best model we can use.
4https://spacy.io/

Stage Category # Annotation Avg. Score

Plausibility
Clothing 44,337 0.6435

Electronics 21,760 0.5467
Total 66,097 0.6116

Typicality
Clothing 38,279 0.4407

Electronics 22,995 0.4631
Total 61,274 0.4491

Table 3: Statistics of annotated data.

Plausibility Typicality

RoBERTa-large 83.22% 81.96%
DeBERTa-large 85.12% 82.67%

Table 4: Classification results on validation sets (F1).

satisfiable for such large-scale annotations.
Different from the simple binary plausibility

judgments, in the second step, we have more fine-
grained and precise typicality indicators concern-
ing informativeness and causality. Here we choose
the candidates automatically labeled as plausible
based on our classifier trained on the first step’s
data. We ask the annotators to judge whether they
are strongly acceptable (+1), weakly acceptable
(0.5), rejected (0), or implausible (-1) that the as-
sertion is informative and casual for a purchasing
behavior. Considering the judgments might be sub-
jective and biased with respect to different annota-
tors, we collect five annotations for each assertion
and take the average as the final typicality score.5

Similar to the first step, we collect around 60K as-
sertions. Empirically, we find annotating more data
does not bring significantly better filtering accuracy.
The statistics are presented in Table 3.
Population. For plausibility population, we train
binary classifiers based on the majority voting re-
sults in the first step, which can produce binary
labels of the plausibility of unverified generations.
For the typicality score, as we take the average of
five annotators as the score, we empirically use
scores greater than 0.8 to denote positive examples
and less than 0.2 as negative examples. We split
the train/dev sets at the ratio of 80%/20% and train
binary classifiers using both DeBERTa-large (He
et al., 2021, 2023) and RoBERTa-large (Liu et al.,
2019) as base models. The best models are selected
to maximize the F1 scores on the validation sets,
and results are shown in Table 4 (more results can
be found in Appendix B). DeBERTa-large achieves
better performance than RoBERTa-large on both

5The annotators in this step are chosen from the high-
quality annotators in the first step. We tried other options,
such as using seven or nine annotators per generation in our
pilot study. The results do not show much improvement.
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Figure 3: Illustration of knowledge aggregation.

plausibility and typicality evaluation. We populate
the inference over the whole generated corpus in Ta-
ble 1 and only keep the assertions whose predicted
plausibility scores are above 0.5 (discarding 32.5%
generations and reducing from 16.64M to 11.24M).
Note that only plausible assertions are kept in the
final KG. Using different confidence cutting-off
thresholds leads to trade-offs between the accuracy
of generation and the size of the corpus. After
the two-step populations, we obtain the plausibility
score and typicality score for each assertion. Due
to the measurement of different aspects of knowl-
edge, we observe low correlations between the two
types of scores (Spearman correlation ρ: 0.319 for
clothing and 0.309 for electronics).

2.4 Knowledge Aggregation
To acquire a KG with topology structures instead of
sparse triplets, we aggregate semantically similar
assertions. This is done by (1) pattern mining to
align similar generated patterns and (2) conceptual-
ization to produce more abstract knowledge.

Assertions are typically expressed as free-form
text phrases, some of which may have similar syn-
tax and semantics. By extracting the skeleton and
necessary modifiers, such as demonstrative pro-
nouns, adjectives, and adverbs, we can reduce the
noise generated by these phrases. For example, as
shown in Figure 3, several generations can be sim-
plified to “they could both be used for his daughter,”
despite the presence of punctuation and incomplete
content. To achieve this, we employ frequent graph
substructure mining over dependency parse trees

Threshold Clothing Electronics Total
Accept Size Accept Size Accept Size

0.5 83.73% 7,986,031 82.74% 3,250,605 83.40% 11,236,636
0.7 90.27% 7,346,160 88.27% 2,868,256 89.40% 10,214,416
0.8 91.02% 6,947,606 89.50% 2,650,625 90.00% 9,598,231
0.9 95.60% 6,167,315 94.87% 2,230,423 95.36% 8,397,738

Table 5: Acceptance ratios of plausible assertions and
the corresponding sizes of populated assertions with
different cutting-off thresholds.

to discover linguistic patterns (More details in Ap-
pendix C).

After pattern mining, we can formally construct
our knowledge graph, where the head is a pair of
items (p1, p2), the relation r is one of the relations
shown in Table 2, and the tail is an aggregated asser-
tion e that is originally generated and then mapped
to a particular one among 256 patterns. Each of the
knowledge triples is associated with two populated
scores, i.e., plausibility and typicality.

To produce abstract knowledge generalizable
to new shopping contexts, we also consider the
conceptualization with the large-scale concept KG,
Probase (Wu et al., 2012; He et al., 2022; Wang
et al., 2023b). The conceptualization process maps
one extracted assertion e to multiple conceptual-
ized assertions with concepts c. For example, in
Figure 3, “they could be used for his daughter” can
be conceptualized as “they could be used for his off-
spring,” “they could be used for his relative,” and
“they could be used for his family-member,” etc.
The conceptualization weight P (c|e) can be deter-
mined by the likelihood for IsA(e, c) in Probase.
This process has been employed and evaluated
by ASER 2.0 (Zhang et al., 2022a). Finally, we
obtain a KG with 184,146 items, 217,108 inten-
tions, 857,972 abstract intentions, and 12,755,525
edges to explain 236,739 co-buy behaviors, where
2,298,011 edges from the view of original asser-
tions and 9,297,500 edges from the angle of con-
ceptualized ones, and 1,160,014 edges model the
probabilities of the conceptualization.

3 Intrinsic Evaluations

In this section, we present some examples of our
constructed KG and conduct comprehensive intrin-
sic evaluations of KG.

3.1 Examples in KG
We show two examples of co-purchasing products
and their corresponding knowledge (§ 2.2) as well
as populated scores (§ 2.3) in Table 7. We measure
the quality of assertions using both plausibility and
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Relation Acc. Rate # Edges # Tails Avg. Length

Open 87.54% 703,059 151,748 7.86
HasA 94.08% 710,331 68,516 5.53
HasProperty 79.13% 317,938 133,877 5.00
RelatedTo 91.89% 571,918 130,551 3.08
SimilarTo 86.35% 685,737 18,603 3.53
PartOf 79.60% 674,928 114,983 4.36
IsA 89.05% 591,037 98,262 3.82
MadeOf 90.05% 528,289 70,246 5.06
CreatedBy 95.15% 267,459 74,920 3.93
DistinctFrom 91.74% 861,929 80,295 4.66
DerivedFrom 85.54% 444,131 61,696 4.90
UsedFor 91.79% 630,462 45,206 2.58
CapableOf 87.73% 681,480 101,170 5.23
SymbolOf 78.04% 809,196 52,075 3.46
MannerOf 89.44% 371,892 122,829 4.38
DefinedAs 85.59% 288,411 151,986 6.31
Result 44.79% 568,523 166,018 8.80
Cause 80.50% 696,392 185,042 7.06
CauseDesire 67.23% 833,524 155,422 5.61

Total 83.40% 11,236,636 1,874,782 5.02

Table 6: Evaluation on plausible rate and size of the
populated KG. The prompts in the generation are not
included in the calculations of assertion lengths.

typicality scores, which are again shown they are
not correlated. For example, “they are SimilarTo
the product they bought” for the first pair and “they
are DistinctFrom other similar products” for the
second pair are plausible assertions but not typi-
cal explanations of why a user would buy them
together. Moreover, some of the open relations are
very good as well. Take the second pair as an exam-
ple: the open relation shows “he was worried about
his baby’s skin” as both products are related to
baby skin protection. We also append more typical
knowledge examples in Table 14 of the Appendix.

3.2 Human Evaluation

As we populate the whole generated assertions
using classifiers based on DeBERTa-large model,
we conducted human evaluations by sampling a
small number of populated assertions from differ-
ent scales of predicted scores to evaluate the effec-
tiveness of the knowledge population.

3.2.1 Plausibility Evaluation
We randomly sample 200 plausible assertions from
each relation in each of the clothing and electronics
domains to test the human acceptance rate. The
annotation is conducted in the same way as the
construction step. As we only annotate assertions
predicted to be greater than the 0.5 plausibility
score, the IAA is above 85%, even greater than the
one in the construction step. As shown in Table 5,
different cutting-off thresholds (based on the plau-
sibility score by our model) lead to the trade-offs
between the accuracy and the KG size. Overall,
FolkScope can achieve an 83.4% acceptance rate
with a default threshold (0.5). To understand what
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Figure 4: Average typicality score of each relation in
the populated KG with the cutting-off threshold 0.8.

is filtered, we manually check the generations with
low plausibility scores and find that OPT can gen-
erate awkward assertions, such as simply repeating
the item titles or obviously logical errors regarding
corresponding relations. Our classifier trained on
annotated datasets helps resolve such cases. Using
a larger threshold of 0.9, we attain a 95.35% ac-
ceptance rate, a nearly 11.96% improvement while
still keeping above 8M plausible assertions. We
also report the accuracy in terms of different rela-
tions in Table 6. We can observe that assertions
concerning the relations of human beings’ situa-
tions like Cause, Result, and CauseDesire have rel-
atively lower plausibility scores and longer lengths
than the relations of items’ property, function, etc.
This is because there exist some clues about items’
knowledge in the item titles, while it is much harder
to generate (or guess) implicit human beings’ ca-
sual reasons using language generation.

3.2.2 Typicality Evaluation
The goal of the typicality population is to precisely
recognize high-quality knowledge, and we evaluate
whether assertions with high typicality scores are
truly good ones. We randomly sample 200 asser-
tions from each relation whose predicted typicality
scores are above 0.8 for human evaluation. Each
of the assertions is again annotated by five AMT
workers, and the average rating is used. The re-
sults are shown in Table 8. It shows that average
annotated scores are lower than the predicted ones
due to harder judgments for typicality. Similarly,
predicted typicality scores are less accurate than
plausibility. Especially the typicality score will be
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Item 1 Item 2 Relation Tail P. T.

GGS III LCD Screen
Protector glass for

CANON 5D Mark III (link)

ECC5D3B Secure Grip
Camera Case for

Canon 5D Mark III (link)

Open they can be used for the same purpose 0.67 0.35
HasProperty “easy to install" and “easy to remove" 0.80 0.85
SimilarTo the product he bought 0.95 0.09
PartOf his camera gear 0.93 0.99
UsedFor protect the camera from scratches and dust 0.97 0.99
SymbolOf his love for his camera 0.99 0.88
DefinedAs "Camera Accessories" on Amazon.com 0.99 0.67

Sun Smarties Baby
UPF 50+ Non-Skid Sand
Water Socks Pink (link)

Schylling UV Play
Shade, SPF 50+,

Ultra portable, Blue (link)

Open he was worried about his baby’s skin 0.98 0.98
SimilarTo each other 0.74 0.01
DistinctFrom other similar products 0.97 0.10
UsedFor baby’s outdoor activities 0.85 0.91
CapableOf blocking harmful UV rays 0.97 0.99
DefinedAs sun protection products 0.87 0.81
Result enjoy the sun sagely and comfortably 0.97 0.98
Cause want to use them for his/her baby 0.99 0.94

Table 7: Two examples from the constructed knowledge graph. “P.” and “T.” stand for the predicted plausibility and
typicality scores. Generated tails with high typicality (in green) and low typicality (in red) scores are highlighted.

Threshold Aggregated Knowledge Conceptualization

0.8 0.6215 0.4571
0.9 0.6335 0.5567

0.99 0.7028 0.5775

Table 8: Average annotated typicality scores for asser-
tions after pattern mining and conceptualization with
different thresholds of predicted typicality scores.

further decreased after conceptualization. This is
because, first, the conceptualization model may in-
troduce some noise, and second, the more abstract
knowledge tends to be less typical when asking
humans to annotate. We also show the typicality
scores of each relation in Figure 4. Different from
plausibility, SimilarTo, DistinctFrom, DefinedAs,
and HasPropertyOf are less typical compared to
other relations. They describe items’ general fea-
tures but can not well capture typical purchasing
intentions though they have high plausibility scores,
whereas CapableOf and MadeOf are the most typi-
cal features that can explain purchasing intentions
for the two domains we are concerned about.

More evaluation on the diversity of implicit gen-
eration and fine-grained subcategory knowledge
aggregation can be found in Appendix D.

4 Extrinsic Evaluation

4.1 Experimental Setup

Data Preparation. We conduct extrinsic evalu-
ation via knowledge-augmented recommendation
tasks. Specifically, we use the same categories’
user-item interaction data from the Amazon Re-
view dataset (Ni et al., 2019) shown in Table 9.
We split datasets into train/dev/test sets at a ratio of
8:1:1 and report averaged RMSE (root mean square
error) scores over five runs.

To fairly evaluate the KG for recommendations,
we sample the sub-graph from the original KG

Clothing Electronics

# Users 782,144 486,349
# Items 18,042 6,166
# Interactions 1,579,499 1,056,406
Density 0.011% 0.035%

Table 9: Statistics of the recommendation datasets.

where co-buy pairs are simultaneously purchased
by at least one user in the recommendation training
set. The detailed statistics of the matched KG are
in Table 10. The item coverage computes the per-
centage of the items in the recommendation dataset
that are covered by the matched KG. Moreover, we
also filter the matched KG with the threshold of
0.5 or 0.9 on plausibility and typicality scores to
evaluate the effectiveness of the knowledge popu-
lation. From Table 10, we can observe the number
of edges essentially reduces when the filters are
applied, but the coverage of the items does not
drastically drop.

Knowledge Representation. As our constructed
KG can be represented as the triplet ((p1, p2), r, e),
where the head (p1, p2) is the co-buy pair, the re-
lation r is from relations in Table 2 and e refer to
generated tails. To combine both structural and tex-
tual information from KG, we modify the original
TransE model (Bordes et al., 2013) to the following
objective:

L = γ + d(
p1 + p2

2
+ r, e)− d(

p′
1 + p′

2

2
+ r, e)

where γ is a margin parameter, and p1, p2, p′
1, p′

2

are item embeddings for positive head (p1, p2), and
negative corrupted head (p′1, p

′
2). Meanwhile, r is

the relation embedding for the relation r, e is the
embedding for the tail e, and the function d is Eu-
clidean distance. Moreover, the node embeddings
for e are initialized by Sentence-BERT (Reimers
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Knowledge Graph Clothing Electronics
# Edges Coverage # Edges Coverage

Matched Knowledge Graph 432,119 79.83% 117,836 82.40%
+ Plau. >0.5 323,263 79.83% 78,908 82.40%
+ Plau. >0.5 and Typi. >0.5 141,422 79.67% 40,978 80.20%
+ Plau. >0.9 269,210 79.83% 58,013 82.39%
+ Plau. >0.9 and Typi. >0.9 103,262 79.36% 27,288 76.94%

Table 10: Details of matched KG subsets. “Plau.” means
plausibility and “Typi” means typicality.

and Gurevych, 2019) representations. After train-
ing the modified TransE model, all the item embed-
dings p can be used as extra features to enhance
recommendations.

4.2 Experimental Results

Baselines. We adopt commonly-used NCF (He
et al., 2017) and Wide&Deep model (Cheng et al.,
2016) as our baselines. As our goal is to evalu-
ate the effectiveness of features derived from KG,
we leave advanced KG fusion methods, such as
hyperedges or meta path-enhanced, to future work.

Ablation Study. We conduct two ablation stud-
ies to evaluate the effect of structural information
provided by the co-buy pairs and the semantic in-
formation provided by the tails’ text only. For the
former, we train a standard TransE model solely
on co-buy pairs to learn the graph embeddings of
items. For the latter, for each item in the matched
KG, we conduct average pooling of its neighbor
tails’ Sentence-BERT embeddings as its seman-
tic representations. The experimental results are
shown in Table 11, and we have the following ob-
servations. First, the textual information contained
in intentional assertions is useful for product rec-
ommendations. This can be testified as the W&D
model can perform better even when only features
of the assertions are provided. Second, our KG,
even before annotations and filtering, can produce
better item embeddings than solely using the co-
buy item graphs. As we can see, the performance
of our matched KG is better than that of the co-buy
pair graphs. Third, the two-step annotation and
population indeed help improve the item embed-
dings for recommendations. The higher the scores
are, the larger improvement the recommendation
system obtains.

5 Related Work

Knowledge Graph Construction. An early ap-
proach of commonsense KG construction is pro-
posed in ConceptNet (Liu and Singh, 2004; Speer

Method Clothing Electronics

NCF (He et al., 2017) 1.117 1.086
W&D (Cheng et al., 2016) 1.104 1.071
+ Co-Buy Structure Only 1.096 1.067
+ Textual Features Only 1.093 1.068
+ Matched Knowledge Graph 1.093 1.058
+ Plau. > 0.5 1.087 1.060
+ Plau. > 0.5 and Typi. > 0.5 1.081 1.053
+ Plau. > 0.9 1.086 1.053
+ Plau. > 0.9 and Typi. > 0.9 1.081 1.052

Table 11: Recommendation results in RMSE.

et al., 2017) where both text mining and crowd-
sourcing are leveraged. In 2012, a web-scale
KG, Probase, which focuses on IsA relations (Yu
et al., 2020), is constructed based on pattern min-
ing (Wu et al., 2012), which can model both plau-
sibility and typicality of conceptualizations (Song
et al., 2011). Recently, situational commonsense
knowledge, such as Event2Mind (Rashkin et al.,
2018) and ATOMIC (Sap et al., 2019), has at-
tracted more attention in the field of AI and NLP.
Then their extensions and neural generative mod-
els are developed (Bosselut et al., 2019; Hwang
et al., 2021). Meanwhile, information extrac-
tion can be used to extract event-related knowl-
edge from large-scale corpora, such as Knowlly-
Wood (Tandon et al., 2015), WebChild (Tandon
et al., 2017), and ASER (Zhang et al., 2020b,
2022a). The extracted knowledge can then be
transferred to other human-annotated knowledge re-
sources (Zhang et al., 2020a; Fang et al., 2021b,a).

In e-commerce, Amazon Product Graph (Zal-
mout et al., 2021) is developed to align Amazon
catalog data with external KGs such as Freebase
and to automatically extract thousands of attributes
in millions of product types (Karamanolakis et al.,
2020; Dong et al., 2020; Zhang et al., 2022c). Al-
ibaba also develops a series of KGs including Al-
iCG (Zhang et al., 2021), AliCoCo (Luo et al.,
2020, 2021), AliMeKG (Li et al., 2020a), and
OpenBG (Deng et al., 2022; Qu et al., 2022). As we
have stated in the introduction, there is still a gap
between collecting factual knowledge about prod-
ucts and modeling users’ purchasing intentions.

Language Models as Knowledge Bases. Re-
searchers have shown LLMs trained on large cor-
pus encode a significant amount of knowledge in
their parameters (AlKhamissi et al., 2022; Ye et al.,
2022). LLMs can memorize factual and common-
sense knowledge, and one can use prompts (Liu
et al., 2023) to probe knowledge from them (Petroni
et al., 2019). It has been shown that we can derive
factual KGs at scale based on LLMs for factual
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knowledge (Wang et al., 2020; Hao et al., 2022a)
and distill human-level commonsense knowledge
from GPT3 (West et al., 2022). None of the above
KGs are related to products or purchasing inten-
tion. We are the first to propose a complete KG
construction pipeline from LLMs and several KG
refinement methods for e-commerce commonsense
discovery.

6 Conclusion

In this paper, we propose a new framework,
FolkScope, to acquire intention commonsense
knowledge for e-commerce behaviors. We develop
a human-in-the-loop semi-automatic way to con-
struct an intention KG, where the candidate asser-
tions are automatically generated from large lan-
guage models, with carefully designed prompts
to align with ConceptNet commonsense relations.
Then we annotate both plausibility and typicality
scores of sampled assertions and develop models
to populate them to all generated candidates. Then
the high-quality assertions will be further struc-
tured using pattern mining and conceptualization
to form more condensed and abstractive knowl-
edge. We conduct extensive evaluations to demon-
strate the quality and usefulness of our constructed
KG. In the future, we plan extend our framework
to multi-domain, multi-behavior type, multilin-
gual (Huang et al., 2022; Wang et al., 2023a) and
temporal (Wang et al., 2022b,a) scenarios for em-
powering more e-commerce applications.

Limitations

We outline two limitations of our work from user
behavior sampling and knowledge population as-
pects. Due to huge-volume user behavior data pro-
duced every day in the e-commerce platform, it is
crucial to efficiently sample significant behaviors
that can indicate strong intentions and avoid ran-
dom co-purchasing or clicking etc. Though in this
work we adopt the criteria of selecting nodes whose
degree are more than five in the co-buy graph, it
is still coarse-grained and more advanced methods
remain to be explored in order to sample represen-
tative co-buy pairs for intention generation. Some
potential solutions are to aggregate frequent co-buy
category pairs and then sample product pairs within
selected category pairs. Moreover, our proposed
framework can be generalized to other types of
abundant user behaviors such as search-click and
search-buy, which requires to design corresponding

prompts. We leave these designs to future work.
For open text generation from LLMs, it becomes

common practices to label high-quality data for
finetuning to improve the quality and controllabil-
ity of generation such as LaMDA (Thoppilan et al.,
2022), InstructGPT (Ouyang et al., 2022), and
ChatGPT6. However, computation cost is the major
bottleneck to use annotated data as human feedback
for language model finetuning with billions of pa-
rameters, like OPT-30b in our work. Hence we
adopt a trade-off strategy to populate human judge-
ments by training effective classifiers and conduct-
ing inferences over all the generation candidates.
With impressive generation performance of Chat-
GPT, we expect efficient methods to directly op-
timize LLMs with human feedback in more scal-
able way like reinforcement learning (RLHF), and
enable LLMs to generate more typical intention
knowledge with less annotation efforts.

Ethics Statement

As our proposed framework relied on large lan-
guage models, text generation based on LLMs of-
ten contains biased or harmful contexts. We ar-
gue that our work largely mitigated the potential
risks in the following ways. First, our careful-
designed prompting leads to rather narrow genera-
tions constrained on small domains, i.e., products
in e-commerce. Second, we also had a strict data
audit process for annotated data from annotators
and populated data from trained classifiers. On
a small scale of inspections, we found none be-
longs to significant harmful contexts. The only
related concern raised here is that some generated
knowledge is irrelevant to the products themselves.
The major reason is due to imprecise product titles
written by sellers for search engine optimization,
such as adding popular keywords to attract clicks
or purchases. Our human-in-the-loop annotation
identified such cases and the trained classifier fur-
ther assisted machines in detecting bias, as we hope
our intention generations can be safe and unbiased
as much as possible.
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Survey Instructions (Click to Collapse)

E-Commerce Behavior Assertion Validation
Hi there! Welcome to our HITS! In this survey, you will be presented with two items from Amazon online shopping website. After the two items, there will be
five assertions, describing a person's behavior when shopping these two items. These assertions are likely to be related to the attributes, functions, usages,
and intentions of the two items. Your task is to determine the validity of each assertion given the scheme below.

This is our main round annotation, which means that you have passed our qualification rounds! Congratulations! Please still be aware that there is a correct
answer for each of the question below, and we'll inspect your submissions from time to time to avoid spamming and low-quality answers. If you have any
question, feel free to email me at 1874240442@qq.com

An assertion can be either valid or invalid. Here we provide you the detailed requirements of a valid assertion and some examples for both categories.

Valid Assertion
A valid assertion needs to satisfy the following requirements:

Sentence completeness: The assertion is a complete sentence, it generally makes sense and ends naturally. There are no garbled words (words that
have no meaning), and the sentence is not missing any grammar component.
Content relatedness: The assertion is related with both items, they should be describing user's shopping behavior regarding the items' attributes,
functions, usages, and intentions. Note that if the sentence is only describing one item (the other item doesn't fit into the assertion), or the assertion is
completely unrelated with both items, the assertion is NOT VALID.
Content correctness: As the assertion is describing BOTH items, the items' attributes, functions, usages, and intentions, mentioned or reflected in the
assertion, should be correctly matched to both items or their categories. Meanwhile, the assertion should contain more information than simply the
name of the items. If the assertion repeats the name of items without any other useful information, it is INVALID.

Some VALID examples are presented for you to have a better understanding:

PersonX bought a steak and a bacon because they are both used for cooking dishes.

PersonX bought a basketball and a jersey because they are both similar to the equipments used by Lebron James.

Invalid Assertion
Here we provide some examples for you to understand what makes an invalid assertion:

Incomplete assertion: PersonX bought a steak and a bacon because they are all
Garbled assertion: PersonX bought a television and a phone because they are derived from 2 the early 1960's, 70's to the present, the '80s, '90s etc,
of course.."
Unrelated assertion: PersonX bought a Halloween costume and Halloween candies because they can be used to play soccer.
Assertion only related to one item: PersonX bought a battery and a mask because they are symbols of energy.
Incorrect contents: PersonX bought a pair of shoes and a pair of sneakers because they are made of plastic.
Useless/Repeated information: PersonX bought a McDonald's Big Mac because it has the property of being a "McDonald's Big Mac".

Additional Hints
Please ignore grammar mistakes in all the assertions provided, just stick to the content of each assertion.

Note that for the assertions that are correct but are too general, for example: PersonX bought item A and item B because he likes them very much, they are
VALID.

If the images are unclear or cannot reflect the items clearly, please tick the box below the item in the item card! For
example, image with only a small part being the item, or the size chart image of clothes items, should all be ticked.
You are advised to grab information from the amazon link page if there's assertion that you can't decide.

By clicking the item's name, you can access the amazon website to grab more information. If the link doesn't work, please try to google for some additional
information!

Item Card

Item A: Aroma Housewares AEW-305 Electric Wok, Black (Home & Kitchen -
B00005KJWV)

Is there any image that cannot clearly show this item A? Image 1 Image 2  Image 3

Item B: Microsoft Wireless Mobile Mouse 4000 - Graphite (D5D-00001)
(Electronics - B002DPUUL4)

Is there any image that cannot clearly show this item B? Image 1 Image 2  Image 3

Assertion 1 (similarTo):

PersonX bought a product of Item A and a product of Item B because they both are
similar to what he needs.

Question 1 Plausibility

Is this a plausible assertion? (Implausible if it does not make sense to you)

Yes, this sentence satisfies all the requirements of a plausible assertion.

No, this sentence is implausible as it falls into one of the reasons that make an implausible assertion.

Unfamiliar with Item A or B, so I can't decide.

Assertion 2 (${assertion_2_relation}):

${assertion2}

Question 2 Validity

Is this a valid assertion? (Invalid if it does not make sense to you)

Yes, this sentence satisfies all the requirements of a valid assertion.

No, this sentence is invalid as it falls into one of the reasons that make an invalid assertion.

Unfamiliar with Item A or B, so I can't decide.

Assertion 3 (${assertion_3_relation}):

${assertion3}

Question 3 Validity

Is this a valid assertion? (Invalid if it does not make sense to you)

Yes, this sentence satisfies all the requirements of a valid assertion.

No, this sentence is invalid as it falls into one of the reasons that make an invalid assertion.

Unfamiliar with Item A or B, so I can't decide.

Assertion 4 (${assertion_4_relation}):

${assertion4}

Question 4 Validity

Is this a valid assertion? (Invalid if it does not make sense to you)

Yes, this sentence satisfies all the requirements of a valid assertion.

No, this sentence is invalid as it falls into one of the reasons that make an invalid assertion.

Unfamiliar with Item A or B, so I can't decide.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Submit

Figure 5: The question card in our plausibility annota-
tion round.

Appendix

A Annotation Guideline

Workers satisfying the following three require-
ments are invited to participate: (1) at least 90%
lifelong HITs approval rate, (2) at least 1,000 HITs
approved, and (3) achieving 80% accuracy on at
least 10 qualification questions, which are carefully
selected by authors of this paper. Qualified workers
will be further invited to annotate 16 tricky asser-
tions. Based on workers’ annotations, they will
receive personalized feedback containing explana-
tions of the errors they made along with advice to
improve their annotation accuracy. Workers sur-
passing these two rounds are deemed qualified for
main-round annotations. To avoid spamming, ex-
perts will provide feedback for all workers based
on a sample of their main rounds’ annotations from
time to time. Finally, we recruited more than 100
workers in the us-east district. It takes $0.2 on
average for each assertion, and the annotators are
paid $7.7 per hour on average, which satisfies the
local minimum wage under local laws.

We conducted human annotations and evalua-
tions on the Amazon Mechanical Turk as Figure 5
for the first-step plausibility annotation and as Fig-
ure 6 for the second-step typicality annotation.

B Knowledge Population

Using different confidence cutting-off thresholds
leads to trade-offs between the accuracy of genera-
tion and the size of the corpus. Higher values result
in conservative selections that favor precision over
recall, whereas lower ones tend to recall more plau-
sible assertions. We plotted four cutoff points in
Figure 7.

C Pattern Mining Details

We apply the frequent graph substructure mining
algorithm over dependency parse trees to discover
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Survey Instructions (Click to Collapse)

Item Card

Item A: ${item_a_name} (${item_a_link}) (${item_a_cate} - ${item_a_id})

Is there any image that cannot clearly show this item A? Image 1 Image 2  Image 3

Item B: ${item_b_name} (${item_b_link}) (${item_b_cate} - ${item_b_id})

Is there any image that cannot clearly show this item B? Image 1 Image 2  Image 3

Assertion 1 (capableOf):

PersonX bought a product of Item A and a product of Item B because they both are
capable of providing him comfort and joy.

Question 1

How acceptable is the quality of this sentence? (Implausible if it matches with the
Implausible assertions defined in the instruction)

Strongly Acceptable! This sentence is very detailed and is a strong reason for shopping these two items.

Weakly Acceptable. Though this sentence is correct, the information is not detailed enough.

Reject. The information related to both items is too few or too general, or the reason for shopping is not related
to items at all.

Implausible Sentence.

Assertion 2 (${assertion_2_relation}):

${assertion2}

Question 2

How acceptable is the quality of this sentence? (Invalid if it matches with the INVALID
assertions defined in the instruction)

Strongly Acceptable! This sentence is very detailed and is a strong reason for shopping these two items.

Weakly Acceptable. Though this sentence is correct, the information is not detailed enough.

Reject. The information related to both items is too few or too general, or the reason for shopping is not related
to items at all.

INVALID Sentence.

Assertion 3 (${assertion_3_relation}):

${assertion3}

Question 3

How acceptable is the quality of this sentence? (Invalid if it matches with the INVALID
assertions defined in the instruction)

Strongly Acceptable! This sentence is very detailed and is a strong reason for shopping these two items.

Weakly Acceptable. Though this sentence is correct, the information is not detailed enough.

Reject. The information related to both items is too few or too general, or the reason for shopping is not related
to items at all.

INVALID Sentence.

Assertion 4 (${assertion_4_relation}):

${assertion4}

Question 4

How acceptable is the quality of this sentence? (Invalid if it matches with the INVALID
assertions defined in the instruction)

Strongly Acceptable! This sentence is very detailed and is a strong reason for shopping these two items.

Weakly Acceptable. Though this sentence is correct, the information is not detailed enough.

Reject. The information related to both items is too few or too general, or the reason for shopping is not related
to items at all.

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure 6: The question card in our typicality annotation
round.
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Figure 7: The precision-recall curve of our plausibility
population classifier on the human-labeled validation
set. The annotated points show the different thresh-
olds (cutoffs) to filter the generated assertions, i.e. from
left to right: 0.9, 0.8, 0.7, 0.5 respectively.

the linguistic patterns. We sample 90,000 candi-
dates for each relation to analyze patterns and then
parse each candidate into a dependency tree. In ad-
dition, the lemmatized tokens, pos-tags, and named
entities are acquired for further use. To reduce
the time complexity of pattern mining, we mine
high-frequency patterns for each relation. To meet
the two requirements of the knowledge with high
precision but non-trivial, patterns are required to
perfectly match more than 500 times. One perfect
match means that this pattern is the longest pattern,
and no other candidate patterns can match. There-
fore, the pattern mining pipeline consists of three
passes: (1) a graph pattern mining algorithm, Java
implementation of gSpan (Yan and Han, 2002),7 to
mine all candidate patterns with the frequency more
than 500, (2) a subgraph isomorphism algorithm,
C++ implementation of VF2 algorithm in igraph,8

with a longest-first greedy strategy to check the
perfect match frequency, and (3) human evaluation
and revision. Finally, we obtain 256 patterns that
cover 80.77% generated candidates. Details can be
found in Table 12.

7https://github.com/timtadh/parsemis
8https://igraph.org/

Type Relation # of Patterns Coverage

Item

RelatedTo 14 96.94
IsA 15 97.20

HasA 12 99.30
PartOf 8 99.83

MadeOf 13 99.45
SimilarTo 7 22.22
CreatedBy 14 98.59

HasProperty 16 63.20
DistinctFrom 9 97.30
DerivedFrom 20 100.00

Function

UsedFor 2 96.57
CapableOf 13 74.68
DefinedAs 27 95.99
SymbolOf 9 99.76
MannerOf 34 98.56

Human
Cause 21 93.68
Result 0 0

CauseDesire 0 0

Overall / 256 80.77

Table 12: Frequent linguistic patterns and corresponding
coverage on human-annotated knowledge.

D More Evaluations

D.1 Implicit Generation Evaluation

As we know, language model based generation cap-
ture spurious correlation given the condition of the
generation (Ji et al., 2022). Hence we simply quan-
tify the diversity as the novelty ratio of generated
tails not appearing in the item titles, i.e., novel
generations. Different from explicit attribute ex-
traction (Vilnis et al., 2022; Yang et al., 2022), our
generative method is able to extract implicit knowl-
edge behind item titles or descriptions. For exam-
ple, the title “Diesel Analog Three-Hand - Black
and Gold Women’s watch” contains specific at-
tributes like “Black and Gold” or type information
“women’s watch.” Such knowledge can be easily
extracted by off-the-shelf tools. Traditional infor-
mation extraction based approaches mostly cover
our knowledge if the generation simply copies titles
to reflect the attributes. Otherwise, it means that
we provide much novel and diverse information
compared with traditional approaches. The novelty
ratio increases from 96.85% to 97.38% after we
use the trained classifiers for filtering. Intuitively,
filtering can improve the novelty ratio. For the as-
sertions whose typicality scores are above 0.9, we
also observe that the novelty ratio reaches 98.01%.
These findings suggest that FolkScope is indeed
an effective framework for mining high-quality im-
plicit knowledge.
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Subcategory Generation

(Costumes, Toys)

he wants to disguise himself as a superhero
they can be used to make a crown costume

he wanted to be a star war character for Halloween
they are both a manner of Christmas decoration

he wants kids to have fun and enjoy the Easter holiday
he is able to dress up as a pirate

(Dresses, Dresses)

they are symbol of the fashion trend
they can both be worn to formal events

they can both be worn for casual occasions
they are both used for wedding dress

they are both capable of giving a good fit
they can both being worn by girls of any age

Table 13: Generated knowledge in same subcategory.

D.2 Fine-grained Subcategory Knowledge

Since the items are organized in multilevel fine-
grained subcategories in the catalog of shopping
websites, we are interested in whether our con-
structed KG contains high-quality common inten-
tions among items belonging to subcategories. The
common knowledge can be useful to have intention-
level organizations besides category-level and fur-
ther help downstream tasks. The co-buy item-pairs
in our sampled clothing category fall into 15,708
subcategory pairs, such as (necklaces, earning) or
(sweater, home & kitchen), where most of them
are different subcategories in one pair. We select
frequent common assertions with high typicality
scores to demonstrate the abstract knowledge. Two
examples are shown in Table 13. Though costumes
and toys belong to two different types, they are
complementary because of the same usage, such as
“Halloween,” “Easter holiday,” and “Christmas,” or
sharing the same key feature like “star war charac-
ter,” “pirate.” On the other hand, if two items fall
in the same subcategory, like “dresses” in Table 13,
the generated assertions share some common char-
acteristics, such as being suitable for certain events
and complementing each other when worn together.

D.3 Use Different LLMs as Knowledge Source

We are interested in whether different sizes of
language models have large impact on the gen-
eration. Hence we empirically analyze the plau-
sible rate of generation using four language
models: GPT-J (6b), OPT-30b, OPT-66b and
text-davinci-003. We can observe that: 1)
OPT-30b outperformed GPT-J over 10% (51% vs.
41%) while OPT-66b did not improve OPT-30b. 2)
text-davinci-003 achieved nearly perfect results
and make little mistakes when recognizing prod-
ucts given title information. Though impressive
results, we have to balance between knowledge
size and cost hence the takeaway from our work is

to use human annotation with middle-size LLMs.
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Relation Clothing Electronics

Open
a fan of Harry Potter / Star Wars make a robot, make a remote control, build a PC

give gifts for his girlfriends / his son know how to play guitar / take better photos
go to a costume party / wedding / be a father learn code / microcontroller programming

UsedFor

outdoor activities, hiking, camping, travel outdoor use, navigation, education, networking
daily use, formal occasions, winter sports personal use, office work, home theater, 3D movies

babies, maternity wear, sleepwear baby photography, underwater photography
Halloween costumes, Christmas cosplay Arduino projects, Raspberry Pi, Samsung headphone
jewelry making, leather care, weight loss water cooling, cable management, screen protection

nursing, working out, polishing shoes framing, storing data, mounting camera, prototyping

CapableOf

keeping cool, keeping dry, keeping warm taking pictures, printing labels, boosting signals
being worn with jeans / dress / shorts being used in car / boat / computer / water / emergency

holding up pants, holding a lot of stuff holding radio / CDs / GoPro camera / phones / devices
protecting from rain / sun / harmful UV rays tracking location / heart beat rate / cycling activities
making him look like wizard / price / Batman controlling light / TV / home automation / device

SymbolOf
his love for daughter / wife / mother / family his passion for gaming / aviation /cycling / sports

luxury, friendship, childhood, the 80s security, reliability, durability, high performance
modern life, American culture, graduation latest technology, hacker culture, music industry

Table 14: More examples of high-frequency typical assertions for different relations. Note we omit the prompts for
space and simplicity .
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