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Abstract

Grammatical Error Correction (GEC) aims to
correct grammatical errors in sentences. We
find that autoregressive models tend to as-
sign low probabilities to tokens that need cor-
rections. Here we introduce additional sig-
nals to the training of GEC models so that
these systems can learn to better predict at
ambiguous positions. To do this, we use
a non-autoregressive model as an auxiliary
model, and develop a new regularization term
of training by considering the difference in pre-
dictions between the autoregressive and non-
autoregressive models. We experiment with
this method on both English and Chinese GEC
tasks. Experimental results show that our GEC
system outperforms the baselines on all the data
sets significantly.

1 Introduction

Grammatical Error Correction (GEC) has attracted
much attention in recent years, which aims to cor-
rect grammatical errors in a given text automati-
cally. It is widely applied to natural language pro-
cessing scenarios such as Automatic Speech Recog-
nition (ASR) (Kubis et al., 2020; Wang et al., 2020),
writing assistant and language learning platforms,
etc. The GEC task is characterized by a significant
overlap between input and output sentences with
only a few errors requiring modification.

Since the transformer-based autoregres-
sive (Vaswani et al., 2017) (AR) model with
sequence-to-sequence (seq2seq) architecture
has been successful in many generation tasks,
a few works (Chollampatt and Ng, 2018) have
applied it to the GEC task by taking the incorrect
text as the source language and the text without
errors as the target language, which has become a
mainstream paradigm. However, in the GEC task,
the overlap of source and target sentences makes
the AR model simply copy most of the tokens
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Figure 1: Illustration for the confidence in different
types of errors, where Sub denotes substitution, Del
means deletion and Ins is insertion.

over from the input to the output. We further find
that the AR has high confidence for the tokens
that are unchanged between the source and target
sentence, while it usually has low confidence for
correcting operations such as insertion, deletion,
and substitution. Figure 1 is an example to
illustrate this phenomenon. Intuitively, we believe
that the reasonable cause of this phenomenon
is the class imbalance issue (Li and Shi, 2021).
With the influence of this problem, the AR model
cannot confidently predict these incorrect tokens
according to only the local context. Therefore, a
natural idea is to improve the model performance
by exploiting the global information, which can
be captured by the non-autoregressive (NAR) (Gu
et al., 2018; Lee et al., 2018) model. Although
prior works have explored combining the two
approaches through joint training, a combination
for the GEC task is still missing. Besides, due to
the inconsistency between AR and NAR output,
a simple combination of them will lead to poor
performance.

In this paper, we propose a simple yet novel ap-
proach to focus on incorrect tokens and integrate
global information with the non-autoregressive
model. Specifically, by masking the tokens in the
golden target sentence corresponding to the low
confidence positions of the AR output, we con-
struct the input for NAR method. We combine the
AR and NAR generation mechanisms to effectively
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utilize global information by constraining the con-
sistency of their output distribution.

We conduct experiments on standard English
GEC datasets and evaluate the system against
strong baselines. Experimental results show that
our approach can consistently achieve better re-
sults without relying on any resources other than
the training data. Furthermore, we compare with
a combination method of AR and NAR to verify
whether the proposed model is more favorable for
the GEC task. Here we use the Chinese GEC
dataset as a benchmark to validate the generaliza-
tion ability of the model. Meanwhile, we also con-
duct comparative ablation studies to illustrate the
effectiveness of our proposed method.

2 Related Work

Seq2seq for GEC In recent years, a number
of Transformer-based AR methods have been de-
veloped for GEC tasks. Junczys-Dowmunt et al.
(2018) adapt several methods from low-resource
machine translation to GEC by regarding GEC
as low-resource machine translation. Zhao et al.
(2019) aim to copy the words that overlap be-
tween the source and target sentence. They pro-
pose a copy-augmented architecture for GEC task
which is pre-trained with unlabeled data. A se-
ries of work focus on data augmentation (Grund-
kiewicz et al., 2019; Ge et al., 2018; Lichtarge
et al., 2019), Xie et al. (2018) propose to syn-
thesize “realistic” parallel corpus with grammat-
ical errors by back-translation. Zhao and Wang
(2020) add a dynamic masking method to the orig-
inal source sentence during training, which en-
hances the model performance without requiring
additional data. With the help of large pre-trained
language models (Kaneko et al., 2020), the per-
formance of Transformer based AR models can
be improved effectively. Meanwhile, the NAR ap-
proach emerges as a competitive alternative, which
can correct the errors by modeling the whole sen-
tence information. Li and Shi (2021) apply a Con-
ditional Random Fields (CRF) layer to conduct
non-autoregressive sequence prediction by model-
ing the dependencies among neighbor tokens.

Combination of AR and NAR The combina-
tion of AR and NAR modeling mechanisms has
been discussed in other tasks. Wei et al. (2019) use
a pre-trained AR model to supervise the decoding
state of NAR, which can alleviate the problem of

large search space. Li et al. (2019) propose that
learning the hidden representation and attention
distribution of AR by hints from the hidden repre-
sentation can effectively improve the performance
of NAR. Several approaches (Guo et al., 2020; Liu
et al., 2020) are proposed to gradually guide the
model transition from AR to NAR by designing
the decoder input and semi-autoregressive tasks as
courses. Some other works (Sun and Yang, 2020;
Hao et al., 2021; Wang et al., 2022) attempt to
utilize a unified framework to train AR and NAR
jointly so that the NAR can be enhanced. Besides,
Zhou et al. (2020) have also explored using the out-
put of NAR to improve the AR performance. Un-
like them, we focus on the GEC task and introduce
the NAR model to utilize the global information
to help the model understand the context around
incorrect tokens.

3 Methodology

In this section, we elaborate on our proposed frame-
work for GEC. As shown in figure 2, we introduce
the CMLM-based NAR model to integrate more
context information into our single model.

3.1 Overview

Given the training dataset (X,Y ), the definition
of the GEC task is to correct the original erro-
neous source X and generate a sentence Y with-
out grammatical error, where X = (x1, x2, ..., xK)
and Y = (y1, y2, ..., yN ). Specifically, the trans-
former encoder takes the source sentence X as
input. Different from previous seq2seq works, our
decoder consists of two components: AR decoder
and NAR decoder. We keep the AR decoder as
a traditional seq2seq decoder without any change.
For the NAR decoder, we mask the tokens in the
input that corresponds to the positions of the low
confidence tokens from the output distribution of
the AR decoder. Then, we regenerate tokens in
masked positions more accurately by bidirectional
semantic modeling of the NAR decoder. Finally,
we try to decrease the output distribution distance
which is in masked positions between two manners
to further improve the model performance during
the training stage.

3.2 Mask low Confidence

Here, it is important that the output probability
represents whether the model is confident in the
prediction. As for the GEC task, there are only a

12015



EncoderEncoderEncoder

y1 y2 y3 y4 y5 y6 y7

y1’ y2’ y3’ y4’ y5’ y6’ y7’

y1 y2 y4 m5 y6 y7

y1’’ y2’’ y3’’ y4’’ y5’’ y6’’ y7’’

x1

x2

x3

x4

x5

x6

x7

share 
parameters y1’ y2’ y3’ y4’ y5’ y6’ y7’

y1’’ y2’’ y3’’ y4’’ y5’’ y6’’ y7’’
Mask Mask

KL Loss

AR Loss

NAR Loss

m3

probability

AR Decoder

NAR Decoder

Figure 2: An illustration of our proposed model. The results {y′1, y′2, y′3, y′4, y′5, y′6, y′7} are predicted by AR Decoder
with the golden target. The mask set {m3,m5} indicates the position in the golden target that needs to be masked
with a special token <mask>. After the mask operation, the input of the NAR decoder is {y1, y2,m3, y4,m5, y6, y7},
and the output {y′′3 , y′′5} are re-predicted by CMLM based NAR decoder, and then the output are used to calibrate
the corresponding AR decoder output.

Algorithm 1 Mask strategy

Input: The AR decoder output yAR, the golden
target ytgt, the mask ratio δ

Output: The NAR input xNAR

1: while not converged do
2: Select the max probability for each token;
3: max_logit← get_max_logit(yAR);
4: Lt ← get_target_length(ytgt);
5: Lm = Lt × δ;
6: Get the Lm index of the low confidence po-

sitions in maxim logit;
7: Index← select_index(max_logit, Lm);
8: Replace with <mask> in the ytgt correspond-

ing position;
9: xNAR ← mask_target(Index, ytgt);

10: end while

few tokens that need to be modified (About 10%).
Therefore, the model tends to focus on high confi-
dence correct tokens that need to be kept, but not
so much on low confidence tokens that need to be
modified. As mentioned above, we choose the low
confidence positions in the AR output distribution
and substitute them with special symbols <mask>
as the input of the NAR decoder. In this way, the
NAR decoder is forced to learn the knowledge of
low confidence tokens from the bidirectional con-
text in hidden layers, which helps to boost the per-
formance.

To construct the input effectively, we design a
special mask strategy. Details are described in Al-

gorithm 1. Specifically, we select the maximum
probability of each token from the AR decoder out-
put distribution. Then, we reorder each token in
the output sentence from low confidence to high
confidence to get a specific number of positions for
the low confidence tokens. We introduce a special
token <mask> to mask the token at the correspond-
ing position in the golden target, which serves as
a placeholder to represent the position where the
target token needs to be regenerated. The golden
target after the masking operation is used as in-
put to the NAR decoder to introduce bidirectional
contextual information.

3.3 Restrict Output Consistency
The objective of our model is to overcome the limi-
tations of AR models by introducing the NAR gen-
eration mechanism, and then correct sentences with
grammatical errors. A common way is to implicitly
pass the information learned by the NAR branch to
the AR branch using the parameter-sharing method.
Specifically, we share the parameters of the Trans-
former layer in both manners. However, there is a
huge difference between the AR manner and the
NAR manner in the training process, as shown in
Equation 1 and Equation 2, where the AR genera-
tion process is more concerned with local depen-
dencies, while the NAR generation process is more
concerned with global dependencies.

P (Y |X) =
N∏

i=1

PAR(yi|X,Y<i), (1)

12016



P (Y |X) =
N∏

i=1

PNAR(yi|X). (2)

The inconsistency between the two generation
methods can lead to direct parameter sharing be-
tween the two branches without enabling the AR
manner to obtain the exact information provided
by the NAR manner. This sharing method only
implicitly considers the correlation of model pa-
rameters and ignores the inconsistency between the
two generation methods, which seriously hinders
performance.

In contrast, in our work, to make the AR man-
ner learn the information from NAR in a way that
is more adapted to AR generation, we take an ex-
plicit approach to constrain the two manners. This
approach can avoid the inconsistency caused by
the different ways of AR and NAR generation and
break the performance bottleneck. In practice, we
accomplish explicit information modeling by using
bidirectional Kullback-Leibler (KL) divergence to
force the AR and NAR output distributions at the
mask positions to be consistent with each other.
Fortunately, Liang et al. (2022) also use KL diver-
gence to combine the advantages of AR and NAR,
which gives us much inspiration.

3.4 Training and Inference

Multi-Task Framework We learn the GEC
model under the multi-task learning framework,
including an AR primary task and a NAR auxiliary
task. It should be noted that AR and NAR manners
are regarded as two different tasks. For the AR
task, we employ the negative log-likelihood (NLL)
as the loss function which is akin to the traditional
seq2seq. Therefore, the optimization objective is:

LAR = −
N∑

i=1

logPAR(yi|X,Y<i), (3)

where N is the target length, and Y<i represents the
tokens before the i-th time step. PAR(yi|X,Y<i)
represents the output probability of the AR decoder,
which will be used in the later process.

For the NAR task, we obtain the positions of the
specified number of low confidence tokens based
on the mask ratio δ, and replace the tokens with
the special symbols <mask> at the corresponding
positions of the golden target. The loss function
LNAR for NAR task is to minimize the sum of

negative log-likelihood in masked positions:

LNAR = −
M∑

i=1

logPNAR(yi|X,Ymask), (4)

where M is the number of the masked tokens, and
Ymask is the set of the tokens in masked. In this
way, the NAR decoder regenerates the masked to-
kens with more context information to help the
AR task. Then the loss function of the multi-task
framework is:

Lm = λtLNAR + (1− λt)LAR, (5)

where λt is the important factor to balance the
weight of AR and NAR tasks during training. We
will present the design details in the following para-
graphs.

Curriculum Learning Compared with the AR
task, the NAR task is more complex, and unrea-
sonable weight setting will make training difficult.
For example, the excessive weight of the NAR task
will disturb the parameter learning of the AR pri-
mary task at the beginning. Inspired by curriculum
learning (Bengio et al., 2009), which is to imitate
the human learning process, we propose the dy-
namic weight strategy. More concretely, we start
with λt = 0 and gradually increase the NAR task
weight λt to introduce learning signals. The dy-
namic weight scheme is:

λt =
t

T
, (6)

where t and T are the current and total steps of
training. We increase the weight linearly in all the
experiments.

It is not enough to use only the hard parameter
sharing method mentioned above, we regularize
the two output distributions PAR and PNAR for un-
confident words with the token-level bidirectional
Kullback-Leibler divergence to further transfer the
knowledge of NAR:

LKL =
∑

Ymask

KL(PAR||PNAR)+

∑

Ymask

KL(PNAR||PAR).
(7)

The final training objective for our GEC model
is a combination of the three terms reviewed above
as:

L = λtLNAR + (1− λt)LAR + αLKL. (8)
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Model Architecture Precision Recall F0.5

Transformer Big† 1024-1024-4096 65.26 27.19 50.98
LaserTagger⋆ (Malmi et al., 2019) - 50.9 26.9 43.2
Adversarial-GEC (Raheja and Alikaniotis, 2020) 512-512-2048 64.68 22.57 47.10
ESD+ESC⋆ (Chen et al., 2020) 1024-1024-4096 66.0 24.7 49.5
SAD(9+3) (Sun et al., 2021) 1024-1024-4096 58.8 33.1 50.9
S2A (Li et al., 2022) 1024-1024-4096 65.9 28.9 52.5
CMLM† (Ghazvininejad et al., 2019) 1024-1024-4096 46.3 27.17 40.59
Levenshtein Transformer⋆ (Gu et al., 2019) 1024-1024-4096 39.9 24.4 35.4
JANUS† (Liang et al., 2022) 1024-1024-4096 66.22 27.76 51.85

Ours-base 512-512-2048 66.63 28.70 52.70
Ours 1024-1024-4096 65.10 32.29 54.11

Table 1: The results of systems on the CoNLL-2014 English GEC task. For the models with ⋆, their performance
is from (Chen et al., 2020). † indicates the models are implemented by us with the released codes of the original
papers. The Architecture column represents the embedding, hidden, and FFN size of the model. Here we bold the
best results of the models.

Inference During the inference stage, we use
the AR decoder to generate the correct sentences,
and the inference efficiency is the same as the tra-
ditional seq2seq model since the NAR decoder is
only used in training.

4 Experimental Setup

4.1 Datasets

To validate the effectiveness of our proposed GEC
model, we conduct a set of experiments on both
the restricted track of the BEA-2019 GEC shared
task (Bryant et al., 2019) and NLPCC 2018 Task
2 (Zhao et al., 2018).

BEA-2019 GEC shared task This is a pub-
lic dataset for the English GEC task, we follow
the setting of (Chollampatt and Ng, 2018) and
take the FCE training set (Yannakoudakis et al.,
2011), Lang-8 Corpus of Learner English (Mizu-
moto et al., 2011), NUCLE (Dahlmeier et al., 2013)
and W&I+LOCNESS (Granger, 2014; Bryant et al.,
2019) as the training set. The development set is a
subset of NUCLE, and our model is evaluated on
the CoNLL-2014 (Ng et al., 2014), which is a well-
known English GEC benchmark test set. Specifi-
cally, we use pre-processed script1 in (Chollampatt
and Ng, 2018) to obtain the parallel corpus.

NLPCC 2018 Task 2 It is the first and latest
benchmark dataset for Chinese GEC. We combine

1https://github.com/nusnlp/mlconvgec2018/tree/
master/data

the incorrect sentence with each corrected sentence
to build the parallel sentence pairs as described
in (Zhao and Wang, 2020) and get 1.2 million sen-
tence pairs in all. Next, we randomly sample 5,000
training instances as the development set. The offi-
cial test set extracted from PKU Chinese Learner
Corpus contains 2,000 samples. We use the com-
bination of two group annotations that mark the
golden edits of grammatical errors in these sen-
tences to evaluate our model. Following the setting
of NLPCC 2018 Task (Zhao et al., 2018), the tok-
enization of training data is implemented with the
PKUNLP tool2.

4.2 Settings

While in the training process, we use the base
model configuration of the Transformer for the
Chinese GEC task, with 6 layers, the number of
self-attention heads is set to 8, the embedding di-
mension is 512 and the size of FFN layer is 2048,
the dropout and weight decay is 0.3 and 0.01 re-
spectively. In the English GEC task, we use the big
Transformer setting, which contains 6 layers and
16 self-attention heads, the size of word vectors on
the source side and the target side are 1024, the
FFN layer size is 4096, the dropout is applied with
a probability of 0.1 and the weight decay value is
set to be 0.0001. We adopt Adam (Kingma and Ba,
2015) optimizer with initial learning rate 0.0005
and 0.0007 for Chinese and English GEC tasks re-
spectively, and a beta value of (0.9, 0.98). We use

2https://github.com/zhaoyyoo/NLPCC2018_GEC
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Model Model type Precision Recall F0.5

Transformer Single 36.91 15.57 28.97
YouDao (Fu et al., 2018) Ensemble 35.24 18.64 29.91
AliGM (Zhou et al., 2018) Ensemble 41.00 13.75 29.36
BLCU (Ren et al., 2018) Ensemble 47.63 12.56 30.57
ESD+ESC (Chen et al., 2020) Single 37.3 14.5 28.4
SAD(9+3) (Sun et al., 2021) Single 33.0 20.5 29.4
S2A (Li et al., 2022) Single 36.57 18.25 30.46

Ours Single 41.90 15.24 31.04

Table 2: The results of systems on the NLPCC-2018 Chinese GEC task. For a fair comparison, all the results are
produced by training on the original NLPCC-2018 training data. We bold the best results.

learning rate schedule as in (Vaswani et al., 2017),
10,000 warmup steps for the Chinese GEC task and
4,000 for the English GEC task. Lable smoothing
is added with an epsilon value of 0.1. We use 32K
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
for tokenization on Chinese and English GEC tasks.
We save the checkpoint for each epoch and select
the best checkpoint based on the loss on the devel-
opment set. The beam size is 5 during the inference
stage. All experiments are based on fairseq (Ott
et al., 2019).

4.3 Baselines

We compare the performance of the proposed
model with several representative baseline methods
on both English and Chinese GEC tasks. Specifi-
cally, for the English GEC task, Transformer Big
is the typical AR model. LaserTagger proposes
to predict tags with a smaller vocabulary (Malmi
et al., 2019). Adversarial-GEC presents an adver-
sarial learning approach to generate realistic texts
in a generator-discriminator framework (Raheja
and Alikaniotis, 2020). ESD+ESC is a pipeline
model (Chen et al., 2020). SAD employs a new de-
coding method with a shallow decoder to conduct
the prediction (Sun et al., 2021). S2A proposes to
integrate action probabilities into token prediction
probabilities to obtain the final results (Li et al.,
2022). Levenshtein Transformer (Gu et al., 2019)
and CMLM (Ghazvininejad et al., 2019) are NAR
models, which achieve excellent performance with
an iterative generation paradigm. In addition, we
also compare with JANUS (Liang et al., 2022),
which joints AR and NAR training for sequence
generation.

For the Chinese GEC task, we compare our
model to all previous systems in the NLPCC 2018

dataset. YouDao corrects the sentences indepen-
dently by utilizing five different mixture mod-
els (Fu et al., 2018). AliGM combines three ap-
proaches, including NMT-based, SMT-based, and
rule-based together (Zhou et al., 2018). BLCU
is based on a multi-layer convolutional seq2seq
model (Ren et al., 2018).

4.4 Evaluation Metrics

Following the typical previous works (Chen et al.,
2020; Li et al., 2022), we use the official MaxMatch
(M2) (Dahlmeier and Ng, 2012) scorer for evalu-
ation of our grammatical error correction system.
M2 scorer computes the sequence of phrase-level
edits between a source sentence and a system hy-
pothesis that achieves the maximal overlap with the
gold standard annotation. Given the set of system
edits and the set of gold edits for all sentences, the
value of precision, recall, and F0.5 are computed
by m2scorer 3.

5 Results

5.1 Main Results

The results of our proposed approach and recent
models on English GEC task are shown in Table 1.
We can see that our approach significantly outper-
forms the baselines mentioned above. Our model
achieves an improvement above Transformer Big
by nearly 3.1 in F0.5 score, and performs better than
the strong baseline S2A, by a large margin of 1.6
F0.5. Moreover, the proposed model surpasses the
recent JANUS model by F0.5 score of 2.3, which
shows excellent performance on multiple tasks by
combining AR and NAR. This result implies that
our designed joint training method is more suit-

3https://github.com/nusnlp/m2scorer
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Mask Ratio
BEA-2019 NLPCC-2018

Precision Recall F0.5 F1 Precision Recall F0.5 F1

10% 61.70 31.31 51.67 41.61 38.99 14.57 29.20 21.22
15% 62.32 31.82 52.30 40.65 41.90 15.24 31.04 22.35
20% 65.10 32.29 54.11 43.21 42.24 14.95 30.94 22.09
25% 64.87 30.61 53.01 41.68 40.01 14.48 29.58 21.26
30% 63.35 29.68 51.63 40.56 41.18 13.68 29.36 20.54
35% 64.51 30.43 52.71 41.48 41.73 13.70 29.61 20.63

Table 3: Effect of Mask Ratio. The mask ratio represents the percentage of low-confidence tokens in a sentence that
are masked. Best results of the Chinese GEC task and the English GEC task are bold separately.

Model Sub Del Ins
AR 58.12% 77.50% 73.82%

Ours 52.30% 52.84% 61.70%

Table 4: The Correction Coincidence Rate of the AR
model and our method on the English CoNLL-2014 test
set.

able for the GEC task. It is noteworthy that our
model with Transformer base settings still consis-
tently exceeds the baselines with Transformer big
settings. These results all support that our proposed
approach can effectively improve the AR GEC by
using a NAR model.

To validate the effectiveness of our approach,
we conduct experiments on the Chinese GEC task
and present the results in Table 2. These results
demonstrate that the Chinese GEC task is more
challenging than the English GEC. Despite this, the
proposed model yields a higher F0.5 than the listed
methods. Moreover, we can observe that all the
top three models are ensemble models, including
YouDao, AliGM, and BLCU, but our single model
still surpasses them. This result means that our
model is generalizable.

5.2 Fix more Grammar Errors
We carefully investigate the number of different
types of errors corrected in the two datasets, and
find that most of the corrected grammar errors are
the same between the proposed method and the
AR model. To show the advantages of our model
intuitively, we propose a Correction Coincidence
Rate, which is the number of overlaps of correction
errors to the total number of respective correction
errors. The results are summarized in Table 4. For
computational convenience, the errors are broadly
categorized into insertion, deletion, and substitu-
tion. From Table 4, the overlap rate of our proposed

method on all types of error modifications is much
lower. For instance, the percentage of deletion de-
creases by 25%. This indicates that our model is
able to correct more grammar errors while main-
taining the ability of the AR model.

5.3 Ablation Analysis

Effect of Mask Ratio In this section, we
present exhaustive investigations on the impact
of mask ratio. Here we vary the mask ratios
in {0.1, 0.15, 0.2, 0.3, 0.35} and conduct experi-
ments in BEA-2019 and NLPCC 2018. The corre-
sponding results are provided in Table 3. It can be
observed that all mask ratios outperform the Trans-
former baseline. A reasonable reason is that the
masking operation makes the model focus more on
incorrect tokens, and the model is forced to capture
more context information, which facilitates error
correction. On the other hand, a small mask ratio
(e.g., 0.1) cannot perform as well as a large one
(e.g., 0.15), which means that there is a fraction
of incorrect tokens that are not focused on. How-
ever, too much masking ratio is also not good. It
will result in many correct words being masked,
which may prevent the correction of incorrect to-
kens. Note that the choice of mask ratio is distinct
for different datasets, and the best balance choices
for BEA-2019 and NLPCC-2018 are 0.2 and 0.15
respectively.

Effect of KL Loss Weight α We explore the ef-
fect of KL-divergence loss weight α in Equation 8.
The result is illustrated in Table 6. By compar-
ing the performance with KL loss and without KL
loss, we can see that the performance of the former
is consistently better than the performance of the
latter, which suggests that KL loss can be further
combined with information from AR and NAR to
correct errors. In addition, the performance is lower
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Type Samples

SRC I think the family will stay mentally
::::::
healty as it is, without having

:::::::
emtional stress.

TGT I think the family will stay mentally healthy as it is, without having emotional stress.
Transformer I think the family will stay mentally

::::::
healty as it is, without having

:::::::
emtional stress.

Ours I think the family will stay mentally healthy as it is, without having emotional stress.

SRC While we do know that we should not
:::::::::::
discriminate

:::::
them based on their limitations...

TGT While we do know that we should not discriminate against them based on their limitations...
Transformer While we do know that we should not

:::::::::::
discriminate

:::::
them based on their limitations...

Ours While we do know that we should not discriminate against them based on their limitations...

SRC First and foremost, I would like to
::::
share

:::
HHon

:::
the advantages of using such social media...

TGT First and foremost, I would like to share the advantages of using such social media...
Transformer First and foremost, I would like to

::::
share

:::
on

:::
the advantages of using such social media...

Ours First and foremost, I would like to share the advantages of using such social media...

Table 5: Case studies of the original Transformer model and our proposed model on the English CoNLL-2014 test
set. The tokens in red and

::::
wave

::::
line are errors, while tokens with underline and in green are the corrections made

by the gold target or our model.

TrainSet α Precision Recall F0.5

BEA-2019

0 59.47 31.82 50.66
0.3 61.72 32.21 52.16
0.4 60.68 31.27 51.07
0.5 65.10 32.29 54.11
0.6 60.51 31.88 51.30
0.7 65.03 31.29 53.50

NLPCC-2018

0 37.58 14.34 28.38
0.8 40.53 15.54 30.66
0.9 39.46 14.24 29.14
1.0 41.90 15.24 31.04
1.1 39.34 14.23 29.07
1.2 40.32 13.88 29.20

Table 6: The results with different weight. α equal
0 represents the model without KL loss. Weights are
adjusted according to different datasets. Best results are
bold.

than the baseline when the value of α is 0, i.e., the
model is fused using only the simple method of
parameter sharing. It indicates that simple fusion
will lead to poor performance. We also find that the
performance is not optimal when α is set too small
or too large. We believe that the model does not
learn enough information when α is set too small,
while setting it too large leads to the introduction
of too much noise.

5.4 Case Study

In order to qualitatively show the effectiveness of
global context information, we conduct case stud-
ies with Transformer and our proposed model. We
pick the cases from the CoNLL-2014 English GEC

test set. The results are listed in Table 5. Generally,
it is easy to see that both approaches can copy most
of the correct tokens from the source to the target.
Nevertheless, when correcting grammatical errors,
our approach can predict more accurately by con-
sidering more context information. For example,
as shown in the third sample in Table 5, the AR
model generates the phase "share on" which tends
to be consistent with the source language, while
our model can delete the token "on" by utilizing
more context information. This again confirms that
our method can make use of the global information
to correct errors.

6 Conclusion

In this work, we propose a joint AR and NAR
learning objective for the GEC, using a multi-task
learning framework. To better predict tokens at
low-confidence positions, we introduce additional
signals to the training of GEC models by using the
NAR model as an auxiliary model. Meanwhile, we
develop a new regularization term of training to
constrain the inconsistency between the two man-
ners. Through our experiments in the English and
Chinese GEC task, the proposed approach can sig-
nificantly improve the GEC model performance
without additional inference costs.

In the future, we are also interested in introduc-
ing syntax and lexical knowledge to focus on incor-
rect tokens to further improve performance.
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7 Limitations

In this work, we achieve a noticeable improvement
in the GEC task by introducing additional context
information with a NAR model. However, in or-
der to focus on incorrect tokens, the input of the
NAR is required to be constructed based on the
AR output distribution. In this way, the AR and
NAR model perform sequentially, which leads to
much time consumption in the training stage. In
the future, we will apply a layer dropout strategy
to speed up model training. On the other hand,
due to the limitation of computation resources, all
experiments are conducted on two Nvidia TITAN
V GPUs with 12GB VRAM. Therefore, we could
not compare with the state-of-the-art models which
are pre-trained with 100M synthetic parallel ex-
amples (Li et al., 2022). We left it as our future
work.
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