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Abstract

The impression is crucial for the referring
physicians to grasp key information since it
is concluded from the findings and reasoning
of radiologists. To alleviate the workload of
radiologists and reduce repetitive human labor
in impression writing, many researchers have
focused on automatic impression generation.
However, recent works on this task mainly sum-
marize the corresponding findings and pay less
attention to the radiology images. In clinical,
radiographs can provide more detailed valuable
observations to enhance radiologists’ impres-
sion writing, especially for complicated cases.
Besides, each sentence in findings usually fo-
cuses on single anatomy, such that they only
need to be matched to corresponding anatomi-
cal regions instead of the whole image, which is
beneficial for textual and visual features align-
ment. Therefore, we propose a novel anatomy-
enhanced multimodal model to improve im-
pression generation. In detail, we first con-
struct a set of rules to extract anatomies and put
these prompts into each sentence to highlight
anatomy characteristics. Then, two separate
encoders are applied to extract features from
the radiograph and findings. Afterward, we
apply a contrastive learning module to align
these two representations at the overall level
and use a co-attention to fuse them at the sen-
tence level with the help of anatomy-enhanced
sentence representation. The experimental re-
sults on two benchmark datasets confirm the
effectiveness of the proposed method, which
achieves state-of-the-art results.

1 Introduction

A radiology report of an examination is used to
describe normal and abnormal conditions with one
medical image and two important text sections:
findings and impression. The findings section is a
free-text description of a clinical radiograph (e.g.,

†Corresponding author.

Figure 1: An example of the radiology report and its
chest X-ray image, where different color means that
different sentences are aligned to the image.

chest X-ray), providing the medical image’s de-
tailed observations. Meanwhile, the impression is
a more concise statement about critical observa-
tions summarized from the findings, images and
the inference from radiologists and provides some
clinical suggestions, such that in practice, clini-
cians prefer to read the impression to locate the
prominent observations and evaluate their differ-
ential diagnoses. However, writing impressions is
time-consuming and in high demand, which draws
many researchers to focus on automatic impres-
sion generation (AIG) to alleviate the workload
of radiologists (Gharebagh et al., 2020; Hu et al.,
2021; Zhang et al., 2018, 2020c; Hu et al., 2022a;
MacAvaney et al., 2019).

For example, (Gharebagh et al., 2020; Hu et al.,
2021; Karn et al., 2022) propose to extract medical
ontologies and entities from findings and then uti-
lize graph neural networks (GNNs), dual encoder,
or reinforcement learning to integrate this knowl-
edge into general sequence-to-sequence models for
promoting AIG. Yet, most existing studies mainly
focus on fully using findings to produce impres-
sions and pay rare attention to medical radiography.
Owing to the fact that some diseases tend to have
similar observations, they are difficult to get a clear
diagnosis only depending on the textual statements.
In this situation, most radiologists usually consider
both the image and findings to make a more ac-
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Figure 2: The overall architecture of our proposed model. The green box is used to provide sentence anatomy
prompts. Besides, aligned contrastive learning and sentence-level co-attention fusion modules are shown in the
purple and red boxes. 1⃝, 2⃝, 3⃝ indicate different pairs (i.e., image and its corresponding findings).

curate clinical suggestion in impressions. Besides,
many approaches have been proposed for radiology
report generation and have achieved considerable
success (Chen et al., 2021; Zhang et al., 2020a),
whose goal is to generate the findings based on a
given medical image, further showing the value
of knowledge in the medical image. In radiology
reports, each findings can be regarded as a text rep-
resentation of the corresponding medical image,
and meanwhile, each image is a visual representa-
tion of the findings such that these two modal data
can be effectively aligned.

Therefore, we propose a task that integrates the
images and anatomy-enhanced findings for impres-
sion generation. According to communication with
radiologists, each sentence in the findings focuses
on single anatomy, so the sentence-level representa-
tion should be easier to align to a certain anatomical
region of the image. To enhance such a process,
we first construct some rules under the guidance
of radiologists and utilize these rules to extract
the main anatomies from each sentence. Then we
put these anatomies at the beginning of the sen-
tence to emphasize anatomy information. Next,
we use a visual extractor to extract visual features
from the radiology image and apply a Transformer-
based text encoder to embed the corresponding
findings. Afterward, an extra encoder is used to
further model visual features, whose output will
be aligned to the textual representation at the doc-
ument level by a contrastive learning module. Fi-
nally, we employ a co-attention to integrate the

visual and text features at the sentence level to ob-
tain the final fused representation, which is then
input to the decoder to generate the impressions.
Experimental results on two benchmark datasets,
MIMIC-CXR and OpenI, demonstrate the effec-
tiveness of our proposed model, which achieves
better performance than most existing studies. Fur-
thermore, analysis of impression length shows that
our proposed multimodal model is better at long
impression generation, where our model obtains
significant improvements when the impression is
longer than 20.

2 Method

We follow existing studies on report generation
(Chen et al., 2020; Zhou et al., 2021) and im-
pression generation (Zhang et al., 2018; Ghare-
bagh et al., 2020; Hu et al., 2021) and utilize
the standard sequence-to-sequence paradigm for
this task. In doing so, we regard patch features
extracted from radiology image XI as one of
the source inputs. In addition, the other input
is the findings sequence XF = s1, s2, · · · , sM ,
where M is the number of sentence and si =
[CLS]i, xi,1, xi,2, · · · , xi,Ni , [SEP ]i with exter-
nal [CLS] token. The goal is to utilize XI and XF
to find a target impression Y = [y1, ...yi, ..., yL]
that summarizes the most critical observations,
where L is the number of tokens and yi ∈ V is
the generated token and V is the vocabulary of all
possible tokens. The impression generation process
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Type Keywords and Rules

normal observations unremarkable, are normal, there are no, no ... seen, no ... present, ...
lungs lung, lungs, pulmonary, suprahilar, perihilar, atelectasis, bibasilar, pneumonia, ...

pleural spaces pleural
heart heart, hearts, pericardial, cardiac, cardiopulmonary, cardiomediastinal, ...

mediastinum mediastinal, mediastinum
osseous structures fracture, osseous, glenohumeral, thoracic, bone, bony

tube tube, catheter
comparisons comparison, previous, prior

Table 1: The details of the lexicon, where the left is the anatomy type and the right is the keywords and rules used to
match the sentence.

can be defined as:

p(Y | XI ,XF ) =
L∏

t=1

p (yt | y1, . . . , yt−1,XI ,XF ) .

(1)
For this purpose, we train the proposed model to
maximize the negative conditional log-likelihood
of Y given the XI and XF :

θ∗ = argmax
θ

L∑

t=1

log p (yt | y1, ..., yt−1,XI ,XF ; θ) ,

(2)
where θ can be regarded as trainable parameters of
the model. The overall architecture of the model is
shown in Figure 2.

2.1 Visual Extractor

We employ a pre-trained convolutional neural net-
works (CNN) (e.g., ResNet (He et al., 2016)) to
extract features from XI . We follow Chen et al.
(2020) to decompose the image into multiple re-
gions with equal size and then expand these patch
features into a sequence:

[im1, im2, · · · , imP ] = fve(XI), (3)

where fve refers to the visual extractor and imi is
the patch feature.

2.2 Sentence Anatomy Prompts

It is known that each sentence in findings usu-
ally focuses on describing observations in single
anatomies, such as lung, heart, etc., instead of stat-
ing multiple anatomy observations in one sentence.
This might be because many radiologists usually
draw on radiology report templates when writing
findings, and most templates follow this characteris-
tic, which describes medical observations anatomy
by anatomy. For example, radiology report tem-
plates in the radreport website1 mainly divide the

1https://radreport.org/

radiology findings into six sections: Lungs, Pleural
Spaces, Heart, Mediastinum, Osseous Structures,
and Additional Findings, respectively. Motivated
by this, we manually construct a rule lexicon under
the guidance of radiologists to extract anatomy in-
formation from the sentence, with the details shown
in Table 1. After that, we use the following ways
to deal with different types of sentences:
• Type I: For the sentence that only describes ob-

servation in single anatomy, we assign the sen-
tence to the corresponding anatomy type. For
example, the sentence “The lungs are hyperex-
panded and mild interstitial opacities" only con-
tains one anatomy (i.e., lungs), and thus, we as-
sign type lungs to this sentence.

• Type II: Although most sentences focus on sin-
gle anatomy, there are still some with multiple
anatomies. For these sentences, we follow the
priority ranking from normal observations to
comparisons, as shown in Table 1. For instance,
although both lung and pleural spaces are in the
sentence “lungs are grossly clear, and there are
no pleural effusions", we distribute this sentence
into type normal observations.

• Type III: For the remaining sentences, we use a
particular type other observations to mark.

Next, we plan anatomy type into the correspond-
ing sentence and modify the original sentence as
“anatomy: sentence". For instance, the type lungs
is inserted into “The lungs are hyperexpanded and
mild interstitial opacities" as “lungs: The lungs are
hyperexpanded and mild interstitial opacities". In
this way, the original findings XF is updated as an
anatomy-enhanced one X ′

F .

2.3 Text Encoder
Pre-trained language models have achieved great
success in many NLP tasks (Hu et al., 2022b,c;
Zhong and Chen, 2021; Xu et al., 2021b; Fang
et al., 2023a,b; Hu et al., 2023). Therefore, we
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employ a pre-trained model BioBERT (Lee et al.,
2020) as our text encoder to extract features from
the findings:

[h1,h2, · · · ,hn] = fte(X ′
F ), (4)

where fte(·) refers to the text encoder, and hi is a
high dimensional vector for representing tokens xi.
We regard the representation of [CLS]i in si (i.e.,
hCLSi) as the ith sentence representation.

2.4 Document-level Cross-Modal Alignment
In radiology reports, findings and radiology images
usually describe the same medical observations by
using different media (i.e., vision and text, respec-
tively). To pull the image representation close to
the output of the text encoder, we first utilize an ex-
tra Transformer encoder to further model the visual
features XI , computed by:

[c1, c2, · · · , cP ] = fie(im). (5)

Herein the outputs are the hidden states ci encoded
from the input visual features in subsection 2.1
and fie refers to the Transformer image encoder.
Afterward, we use the mean pooling to obtain the
overall representation with respect to the findings
and the corresponding image, formalized as:

zI =Mean(c1, c2, · · · , cP ),
zF =Mean(hCLS1 ,hCLS2 , · · · ,hCLSi).

(6)

Owing to the characteristic of the radiology report,
zI and zF should be close to each other if the im-
age and findings are from the same examination.
On the contrary, radiology images and reports from
different tests tend to have distinct medical obser-
vations and further should be different from each
other. Therefore, we introduce a contrastive learn-
ing module to map positive samples closer and
push apart negative ones, where the positive indi-
cates that zI and zF are from the same pair (i.e.,
the same examination) and the negative refers to
the samples from different pairs. For example, we
assume there are two tests, (findings1, images1)
and (findings2, image2), and thus, in this case,
for findings1, the image+1 is a positive sample
while the image−2 is a negative instance. We fol-
low Gao et al. (2021) to compute the cosine sim-
ilarity between the original representation and its
positive and negative examples. Then, for a batch
of 2Q examples z ∈ {zI}∪ {zF }, we compute the
contrastive loss for each zm as:

Lcon
m = − log

esim(zm,z+m)/τ

∑
z−∈{ẑ}(e

sim(z,z−)/τ )
, (7)

where sim(·, ·) is the cosine similarity, and τ is a
temperature hyperparameter. The total contrastive
loss is the mean loss of all examples:

Lcon =
1

2Q

2Q∑

m=1

Lcon
m . (8)

2.5 Sentence-Level Co-Attention Fusion
As mentioned in subsection 2.2, each sentence in
the findings usually focuses on single anatomy,
meaning that sentence-level textual information
can be mapped to corresponding anatomy re-
gions in images. Therefore, we propose to uti-
lize the anatomy-enhanced sentence representa-
tion to align with the image. In detail, as in-
troduced in 2.3, we extract anatomy-enhanced
sentence representations from the text encoder
hCLS = [hCLS1 ,hCLS2 , · · · ,hCLSi ], which are
then used to perform co-attention to fuse two modal
knowledge. We first treat hCLS as query and the
corresponding image representations c as key and
value matrix and compute the attention weight with
the softmax function:

abi = Softmax(hCLSic
T), (9)

where abi can be viewed as a probability distribu-
tion over the image features, which is then used to
compute a weighted sum:

cbi =
∑

k

abi,kck. (10)

Afterward, on the contrary, c is regarded as the key
and value matrix, and hCLS is represented as the
query. We then adopt a similar method to obtain
another fusion representation:

hr
i =

∑

k

ari,khCLSk
,ari = Softmax(cihCLS).

(11)
After that, we obtain the updated image and sen-
tence representation by adding the fusion vectors
to the original ones:

c = c+ cb,hCLS = hCLS + hr. (12)

2.6 Decoder
The backbone decoder in our model is the one from
the standard Transformer, where e = [c,hCLS ,h]
is functionalized as the input of the decoder so as to
improve the decoding process. Then, the decoding
process at time step t can be formulated as the
function of a combination of previous output (i.e.,
y1, · · · , yt−1) and the feature input (i.e., e):

yt = fde(e, y1, · · · , yt−1), (13)
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DATA MODEL
ROUGE FC

R-1 R-2 R-L P R F-1

OPENI

BASE-IMAGE 47.07 33.10 47.05 - - -
BASE-FINDING 66.37 58.01 66.27 - - -
BASE 66.94 58.87 66.89 - - -

BASE+DCA 67.48 59.05 67.34 - - -
BASE+AP 67.66 58.89 67.51 - - -
BASE+AP+DCA 68.00 59.89 67.87 - - -

MIMIC-CXR

BASE-IMAGE 24.97 14.11 24.42 34.74 33.20 32.87
BASE-FINDING 46.48 31.38 45.13 56.29 50.88 52.51
BASE 46.54 31.32 45.09 57.51 51.45 52.93

BASE+DCA 46.83 31.40 45.33 56.41 51.87 53.39
BASE+AP 47.06 31.66 45.74 57.68 50.79 53.07
BASE+AP+DCA 47.63 32.03 46.13 58.91 53.22 54.55

Table 2: The performance of all baselines and our model on test sets of OPENI and MIMIC-CXR datasets. R-1,
R-2 and R-L refer to ROUGE-1, ROUGE-2 and ROUGE-L. P, R and F-1 represent precision, recall, and F1 score.

where fde(·) refers to the Transformer-based de-
coder, and this process will generate a complete
impression. We define the final loss function as the
linear combination of impression generation loss
and contrastive objectives:

L = Lgenerator + λLcon, (14)

where λ is the tuned hyper-parameter controlling
the weight of the contrastive loss.

3 Experimental Setting

3.1 Dataset

Our experiments are conducted on two benchmark
datasets: OpenI (Demner-Fushman et al., 2016)
and MIMIC-CXR (Johnson et al., 2019), respec-
tively, which are described as follows:
• OPENI: it is a public dataset containing 7,470

chest X-ray images and 3,955 corresponding re-
ports collected by Indiana University.

• MIMIC-CXR: it is a large-scale radiography
dataset with 473,057 chest X-ray images and
206,563 report.

We follow Hu et al. (2021) to remove the following
cases: (a) incomplete reports without findings or
impressions; (b) reports whose findings have fewer
than ten words or impression has fewer than two
words. Besides, since some reports have multiple
radiology images from different views, such as pos-
teroanterior, anteroposterior and lateral, we only
select one image from posteroanterior or anteropos-
terior. As for partition, we follow Chen et al. (2020)
to split OpenI and MIMIC-CXR, where the former
is split as 70%/10%/20% for train/validation/test,
and the latter follows its official split.

3.2 Baseline and Evaluation Metrics

To illustrate the validity of our proposed model, we
use the following models as our main baselines:
• BASE-FINDINGS and BASE-IMAGE: They are

unimodal models, where the former utilizes a
pre-trained text encoder and a randomly initial-
ized Transformer-based decoder, and the latter
replaces the text encoder with image encoders.

• BASE: This is the base backbone multimodal
summarization model with pre-trained image and
text encoders and a Transformer-based decoder,
which utilizes both findings and images to gener-
ate impressions.

• BASE+DCA and BASE+AP: They are the mul-
timodal summarization models. The former uti-
lizes document-level representations to align find-
ings and images, and the latter utilizes the rules
to enhance anatomy prompts for each sentence.
We follow Zhang et al. (2020c) to utilize sum-

marization and factual consistency (FC) metrics
to examine the model performance. Specially, we
use ROUGE (Lin, 2004) and report F1 scores of
ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L
(R-L) for summarization metrics2. Meanwhile, a
pre-trained CheXbert (Smit et al., 2020)3 is used to
recognize 14 types of observation from reference
and generated impression, respectively, whose de-
tected results are used to calculate the precision,

2We utilize the python-implemented library to calculate
Rouge scores, which can obtain from https://github.
com/pltrdy/rouge, which might be slightly different
from the official ROUGE script.

3We follow (Hu et al., 2021) to evaluate the FC of MIMIC-
CXR, which is obtained from https://github.com/
stanfordmlgroup/CheXbert
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MODEL
OPENI MIMIC-CXR

R-1 R-2 R-L R-1 R-2 R-L

R2GEN (Chen et al., 2020) 50.68 38.02 50.62 24.68 14.45 24.12
R2GENCMN (Chen et al., 2021) 51.30 34.35 51.27 24.73 14.04 24.25

TRANSABS (Liu and Lapata, 2019) 62.90 53.51 62.71 46.17 29.06 43.86
CHESTXRAYBERT (Cai et al., 2021) - - - 41.3* 28.6* 41.5*
WGSUM (Hu et al., 2021) 63.90 54.49 63.89 46.83 30.42 45.02
AIG_CL (Hu et al., 2022a) 64.97 54.26 64.73 47.14 32.02 45.60

CLIPABS (Radford et al., 2021) 53.13 39.69 52.99 38.23 23.44 36.62

OURS 68.00 59.89 67.87 47.63 32.03 46.13

Table 3: Comparisons of our proposed models with the previous studies on the test sets of OPENI and MIMIC-CXR
with respect to the ROUGE metric. CHESTXRAYBERT is regarded as a weak reference since their data processing
method was not public.

recall, and F1 score for measuring FC.

3.3 Implementation Details

In our experiments, we select biobert-base-cased-
v1.14 as our text encoder and follow its default
model settings which are 12 layers of self-attention
with 768-dimensional embeddings. Besides, for
the visual extractor, we select the ResNet101 pre-
trained on the ImageNet to extract patch features
with the dimension 2048. For the Transformer im-
age encoder, we use a 6-layer Transformer with
768 hidden sizes and 2048 feed-forward filter sizes.
The decoder has a similar structure: 6-layer Trans-
former with 768 dimensions, 8 attention heads, and
2048 feed-forward filter sizes. As for training, we
use Adam (Kingma and Ba, 2014) to optimize the
trainable parameters in our model.

4 Experimental Results

4.1 Overall Results

To explore the effect of integrating image and text
to generate impressions, we compare our model to
corresponding single modal summarization base-
lines in Table 2. We can observe that compared
to BASE-FINDINGS and BASE-IMAGE, all other
models (except BASE) obtain better results with re-
spect to ROUGE scores, which shows the value of
multimodal information fusion. The main reason
might be that findings can provide key and accurate
information, and the image can present detailed and
rich features, such that these two different types
of features can complement each other to enhance
impression generation. Besides, BASE-FINDINGS

4https://github.com/dmis-lab/biobert

outperforms BASE-IMAGE, illustrating that textual
features are more valuable than visual ones because
the gap between two related texts is smaller than
that between vision and text.

Moreover, we conduct experiments on the dif-
ferent models, and the results are reported in Ta-
ble 2 where BASE+AP+DCA indicates our full
model. There are several observations drawn
from different aspects. First, the comparisons
between BASE+DCA, BASE+AP, and BASE il-
lustrate the effectiveness of each component in
our proposed model (i.e., contrastive learning and
lexicon matching). Second, our full model (i.e.,
BASE+AP+DCA) achieves the best results among
these baselines, which confirms the validity of
our design that combines contrastive learning and
anatomy information planning. Contrastive learn-
ing can map the image closer to the corresponding
findings if they are in the same pair and push them
apart if they are not, which can effectively align
these two modalities at the document level. For
another, highlighting anatomy characteristics can
potentially help the model align the sentence fea-
ture to the corresponding organ or body part posi-
tion in the images, further improving feature fusion
between different modalities. Third, in terms of
FC metrics on the MIMIC-CXR dataset, our pro-
posed model outperforms all baselines and achieves
higher F1 scores, indicating that our model is able
to generate more accurate impressions. This is
because our model can enhance feature matching
between findings and images to facilitate critical in-
formation extraction, contributing to better impres-
sion generation with the help of such information.
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Comparison Metric Win Tie Lose

Ours vs. Base
READ. 8% 88% 4%
ACC. 25% 58% 17%

COMP. 13% 80% 7%

Ours vs. Ref
READ. 4% 77% 9%
ACC. 12% 70% 18%

COMP. 5% 85% 10%

Table 4: Results of the human evaluation. The top three
give results for comparison between BASE+AP+DCA
and BASE. The bottom three are results for
BASE+AP+DCA versus the reference impressions.

4.2 Comparison with Previous Studies

We further compare our model with existing meth-
ods, with the results reported in Table 3. We can
observe that our model outperforms other methods,
although those studies utilize complicated struc-
tures to enhance the generation, e.g., WGSUM uti-
lizes a complicated graph structure, and R2GEN

uses a recurrent relational memory. In addition, it
is surprising that CLIPABS achieve worse perfor-
mance than text-based models (i.e., TRANSABS,
WGSUM and AIG_CL). This might be because
CLIP pays more attention to the images and is less
powerful in encoding text, while textual features
are more important in this task.

4.3 Human Evaluation

We also conduct a human evaluation to evaluate
the quality of the generated impressions with re-
spect to three metrics: Readability, Accuracy, and
Completeness (Gharebagh et al., 2020). In detail,
we randomly select 100 chest X-ray images and
their findings and impressions from the test set of
MIMIC-CXR, as well as impressions generated
from different models. Afterward, three experts
who are familiar with radiology reports are invited
to evaluate the generated impression with the re-
sults shown in Table 4. We can observe that our
model is better than BASE, where more impres-
sions from our model have higher quality than those
from BASE, further confirming the effectiveness
of our model. Meanwhile, when comparing our
model against references, we find that although
some cases are worse than ground truth (9%, 18%,
and 10%), most of the impressions from our model
are at least as good as the reference impressions.
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Figure 3: R-1 score of generated impressions
from different models, where OURS represents the
BASE+AP+DCA. Note that when the word-based im-
pression length is longer than 20, the p− value is less
than 0.05.

5 Analyses

5.1 Impression Length

To test the effect of the length of impressions in
AIG, we categorize the generated impressions on
the MIMIC-CXR test set into several groups ac-
cording to the length of reference impression, with
the R-1 scores shown in Figure 3. Note that the av-
erage impression length for MIMIC-CXR is 17. We
can observe that these models tend to have worse
performance with increasing impression length, es-
pecially in the last group, where all obtain the worst
R-1 scores. Our proposed model achieves more
promising results in most groups, except the first
group where the BASE-FINDINGS achieves the best
results, which illustrates that our model is better at
generating longer impressions. The main reason
is that short impressions are usually normal obser-
vations without complicated abnormalities so that
findings are enough to describe such information,
and images may lead to some redundant noise due
to their being too detailed. In contrast, for the long
impression, detailed information can complement
textual features to help the model accurately grasp
complex observations.

5.2 Case Study

To further qualitatively investigate the effectiveness
of our proposed model, we conduct a case study on
the generated impressions from different models
whose inputs are X-ray images and corresponding
findings. The results are shown in Figure 4, and
different colors represent the observations found
in different locations. It is observed that OURS is
able to produce better impressions than the BASE
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Figure 4: Examples of the generated impressions from BASE and BASE+AP+DCA as well as reference impressions.
Lungs, tubes and hearts are located in the red, blue and green boxes.

model, where impressions from our models can
almost cover all the key points in these two exam-
ples with the help of the corresponding regions in
images. On the contrary, the BASE model ignores
some critical observations written in reference im-
pressions, such as “right basilar loculated hydrop-
neumothorax.” in the first example and “Stable
mild cardiomegaly” in the second example, and
even generates some unrelated information (e.g.,

“No pneumonia” in the second case).

6 Related Work

6.1 Multimodal Summarization
With the increase of multimedia data, multimodal
summarization has recently become a hot topic,
and many works have focused on this area, whose
goal is to generate a summary from multimodal
data, such as textual and visual (Zhu et al., 2018;
Li et al., 2018; Zhu et al., 2020; Li et al., 2020;
Im et al., 2021; Atri et al., 2021; Delbrouck et al.,
2021). For example, Li et al. (2017) proposed to
generate a textual summary from a set of asyn-
chronous documents, images, audios and videos by
a budgeted maximization of submodular functions.

6.2 Radiology report generation
Image captioning is a traditional task and has re-
ceived extensive research interest (You et al., 2016;
Aneja et al., 2018; Xu et al., 2021a). Radiology
report generation can be treated as an extension of
image captioning tasks to the medical domain, aim-
ing to describe radiology images in the text (i.e.,
findings), and has achieved considerable improve-
ments in recent years (Chen et al., 2020; Zhang
et al., 2020a; Liu et al., 2019b, 2021b; Zhou et al.,
2021; Boag et al., 2020; Pahwa et al., 2021; Jing
et al., 2019; Zhang et al., 2020b; You et al., 2021;
Liu et al., 2019a). Liu et al. (2021a) employed

competence-based curriculum learning to improve
report generation, which started from simple re-
ports and then attempted to consume harder reports.

6.3 Radiology impression generation

Summarization is a fundamental text generation
task in natural language processing (NLP), drawing
sustained attention over the past decades (See et al.,
2017; Liu and Lapata, 2019; Duan et al., 2019;
Chen and Bansal, 2018; Lebanoff et al., 2019).
General Impression generation can be regarded as
a special type of summarization task in the medical
domain, aiming to summarize findings and gener-
ate impressions. There are many methods proposed
for this area (Gharebagh et al., 2020; Hu et al.,
2021; Zhang et al., 2018; Hu et al., 2022a; Karn
et al., 2022; MacAvaney et al., 2019; Zhang et al.,
2020c; Delbrouck et al., 2022). MacAvaney et al.
(2019); Gharebagh et al. (2020) proposed to extract
medical ontologies and then utilize a separate en-
coder to extract features from such critical words
for improving the decoding process and thus pro-
moting AIG. Hu et al. (2021) further constructed
a word graph by medical entities and dependence
tree and then utilized the GNN to extract features
from such graph for guiding the generation process.
However, recent works in this area mainly focus
on the text section while failing to fully explore the
valuable information in corresponding radiology
images.

7 Conclusion

This paper proposes an anatomy-enhanced multi-
modal summarization framework to integrate radi-
ology images and text for facilitating impression
generation. In detail, for radiology images, we use
a visual extractor to extract detailed visual features.
For radiology findings, we first plan anatomical
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prompts into each sentence by keywords and rules
and then apply a pre-trained encoder to distillate
features from modified findings. Afterward, we
employ a contrastive learning module to align the
visual and textual features at the document level
and use a co-attention to fuse these two features
at the sentence level, which are then input to the
decoder to improve impression generation. Fur-
thermore, experimental results on two benchmark
datasets illustrate the effectiveness of our model,
especially for long impression generation, where
our model achieves significant improvements.

8 Limitations

Although our model has achieved considerable im-
provements, as shown in Figure 3, our model tends
to have a slight decrease in short impression gener-
ation, which need to be further solved in the future.
In this paper, we follow previous studies and only
utilize English radiology report datasets to verify
the effectiveness of our proposed model, which
is limited in verification in other languages. The
main reason is that most publicly available radiol-
ogy report datasets center on English. In addition,
our model needs relatively more parameters than
the models only using findings to generate impres-
sions.
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MODEL HYPER-PARAMETER VALUE

MIMIC-CXR

BATCH SIZE 640, 1024,2048,3072
LEARNING RATE 6e-5,5e-4, 1e-3
TRAINING STEPS 200000
λ 1
τ 0.5

OPENI

BATCH SIZE 640, 1024,2048,3072
LEARNING RATE 6e-5,5e-4, 1e-3
TRAINING STEPS 30000
λ 1
τ 0.5

Table 5: The hyper-parameters that we have experi-
mented on the datasets. The bold values illustrates the
best configurations of different models.

DATA TYPE TRAIN DEV TEST

OPENI

REPORT # 2.4K 0.3K 0.6K
AVG. WF 37.9 37.8 30.0
AVG. SF 5.75 5.68 5.77
AVG. WI 10.4 11.2 10.6
AVG. SI 2.86 2.94 2.82

MIMIC
-CXR

REPORT # 117.7K 0.9K 1.5K
IMAGE # 117.7K 0.9K 1.5K
AVG. WF 55.4 56.3 70.0
AVG. SF 5.49 5.51 6.24
AVG. WI 16.4 16.26 21.1
AVG. SI 1.66 1.65 1.87

Table 6: The statistics of the two benchmark datasets
with random split for OPENI and official split for
MIMIC-CXR, including the numbers of report, the
averaged sentence-based length (AVG. SF, AVG. SI),
the averaged word-based length (AVG. WF, AVG. WI)
of both IMPRESSION and FINDINGS.

A Appendix

A.1 Hyper-parameter Settings
Table 5 reports the hyper-parameters tested in tun-
ing our models on MIMIC-CXR and OPENI. For
each dataset, we try combinations of the hyper-
parameters and use the one achieving the highest
R-L for MIMIC-CXR and OPENI.

A.2 Dataset
We present the statistics of these two datasets in
Table 6.

A.3 Model Size
Table 7 reports the number of trainable parame-
ters (PARA.) of the baselines and our porposed
model on MIMIC-CXR dataset when the hyper-
parameters use the best configuration.

MODEL PARA.

BASE-FINDING 177.87M
BERT+AP+CL (i.e., OURS) 255.03M

Table 7: The parameter size of the methods in the exper-
iments.
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