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Abstract

This paper proposes and evaluates PsyAM1, a
framework that incorporates adaptor modules
in a sequential multi-task learning setup to gen-
erate high-dimensional feature representations
of hedonic well-being (momentary happiness)
in terms of its psychological underpinnings.
PsyAM models emotion in text through its
cognitive antecedents, through auxiliary mod-
els that achieve multi-task learning through
novel feature fusion methods. We show that
BERT-PsyAM has cross-task validity and cross-
domain generalizability through experiments
with emotion-related tasks – on new emotion
tasks and new datasets, as well as against tradi-
tional methods and BERT baselines. We fur-
ther probe the robustness of BERT-PsyAM
through feature ablation studies, as well as dis-
cuss the qualitative inferences we can draw re-
garding the effectiveness of the framework for
representing emotional states. We close with a
discussion of a future agenda of psychology-
inspired neural network architectures.

1 Introduction

Governments are increasingly investing money into
surveying and reporting nationwide psychological
well-being as an indicator of success and well-
ness (Biswas-Diener et al., 2004), and some schol-
ars have recommended monitoring social media for
the unobtrusive measurement of regional trends in
well-being and mental health. People are increas-
ingly willing to post messages on social media to
express their feelings. Words relate to emotions
because they reflect how humans perceive their sur-
roundings and ongoing events (Pennebaker et al.,
2003); therefore, it is not surprising that language
models trained on social media posts offer predic-
tive insights into emotions. Emotions are an indi-
cator of psychological states, such as happiness
– the feelings of well-being related to momentary

1https://github.com/stephenlaw30/BERT-PsyAM

happiness or pleasure (Huta, 2016; Ryan and Deci,
2001).

Cognitive appraisal theory (CAT) posits that
emotions result from how individuals appraise
their situation and its impact on their well-
being (Lazarus et al., 1980). CAT can model in-
dividual differences in emotional expressions; for
instance, individuals may express happiness both,
during a solitary walk as well as when they spend
time with close friends if their core needs, drives,
or motivations are suitably fulfilled. Therefore, we
propose that relying on the stable cognitive an-
tecedents of emotions could help us to train models
that improve the state-of-the-art predictive accuracy
for emotions detection tasks, and generalize more
readily to other problems that infer psychological
states from language, such as hedonic well-being.

In this work, we test a broad proposition that pre-
training on cognitive auxiliary tasks improves emo-
tion detection from text. This approach can bridge
prior research in emotions classification with the
increasing understanding of the link between self-
expression and psychology. We offer the following
contributions:

• New framework: We introduce PsyAM
- a framework of Psychological Adapter
Modules2 for emotion modeling that learns
cognitive appraisal dimensions as auxiliary
tasks that inform learning for a primary task.

• New tasks: We show that PsyAM (with BERT)
improves over standard approaches in cross-
validation and replication on new message-
level data for predicting the duration of expe-
rienced happiness, and on user-level data for
predicting the in-person emotional variance
associated with their subjective well-being.

• Standard evaluation: We show that PsyAM
(with BERT) outperforms the state-of-the-art

2Code and data is at
https://github.com/stephenlaw30/BERT-PsyAM
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in cross-domain validation on standard tasks
for detecting emotion in binary- and multi-
class settings.

• Real-world application: We demonstrate how
PsyAM can offer real-world applications in
predicting social media users’ well-being
through their Twitter posts.

• New annotated datasets: We have collected
and annotated new happiness datasets from
two nationally representative online surveys
to validate our on new data and a real-world
application.

Our work also offers a reality check to consider
how leaderboard scores in emotion analysis trans-
late to the real-world application of psycholinguis-
tic models for unobtrusive mental health aggre-
gates of communities. Recent studies have raised
concerns about pre-trained psycholinguistic mod-
els’ cross-domain and cross-task validity beyond
simple emotion detection. Many word-trait rela-
tionships, such as that of self-referential language
use and depression (Tackman et al., 2019), or the of
social words and extraversion (Chen et al., 2020),
inexplicably break down in different communica-
tive contexts. We believe this is because of over-
fitting models to training corpora and the lack of
psychologically motivated machine learning archi-
tectures. Prior work also often does not theorize
why words relate to emotions or traits in the first
place. Consequently, it has been challenging to
build research depth in the representational mod-
eling of the psychology of emotions and develop
sophisticated neural network models. Herein lies
an opportunity for social impact, as appropriately
modeling and spatially aggregating emotions in
social media make it possible to monitor mental
health on a large scale (Dodds et al., 2015).

2 Background

Previous studies exploring the psycholinguistics of
text have evaluated text classification approaches
that can best correspond to the psychological mea-
surements of different psychological traits and
states (Turc et al., 2019; Guda et al., 2021; Guntuku
et al., 2019). For instance, Buechel et al. (2018)
elaborates on the psychological complexity of hu-
man reactions such as empathy and distress by an-
notating text data with the empathy assessments of
their authors via multi-item scales and considering
psychological tenets to be co-existent rather than
correlated (Buechel et al., 2018).

In this study, we additionally offer two new tasks:
predicting the duration of happiness and its fluctua-
tion from linguistic expression. Both these concepts
are grounded in psychology literature, where they
are known to provide into emotional stability and
well-being. Unlike a simple emotion detection task,
the duration of happiness relates to distinguishing
transient moods from persisting states of emotional
well-being (Biswas-Diener et al., 2004). Therefore,
it may require a more sophisticated representation
of text semantics than one driven by affective words
alone. Given that our primary datasets comprise tex-
tual descriptions of happy moments, the focus on
hedonia is only appropriate. Secondly, emotional
fluctuation has garnered a lot of recent interest as
a more stable and tractable predictor of mental
health as compared to mean-based emotion-based
predictors, which are less sensitive to deviations
and therefore to indicators of mental health issues.
Emotional fluctuations expressed in verbal or writ-
ten expressions has been evaluated for its relation-
ship with within-person fluctuations in other per-
sonality states, including affective states (Sun et al.,
2020; Golder and Macy, 2011), emotional experi-
ence (Back et al., 2010) and wellbeing (Pennebaker
et al., 2003). In more recent work, emotional vari-
ance in social media posts has been also found to
predict emotionally straining situations (Seraj et al.,
2021), and daily emotional well-being (Lades et al.,
2020).

We suggest that reorienting the understanding of
emotions in text in its cognitive antecedents may
offer a fruitful approach to its modeling, detection,
and real-world application. We choose two cogni-
tive constructs which, according to prior research,
are often key to emotional appraisal (Ellsworth
and Scherer, 2003; Karasawa, 1995; Moors, 2010).
First, Agency reflects the role and accountability of
an individual in a situation. Second, Social Interac-
tion reflects the relationship of an individual with
others in the situation (family, friends, or peers).
Among many other appraisal dimensions, we find
that agency and social interaction have also been ex-
plored in other perspectives on understanding how
humans appraise happiness (Paulhus and Trapnell,
2008). These concepts were also applied to enrich
the CLAff-HappyDB happiness dataset in Jaidka
et al. (2020), but our work offers the first instance
of applying them for the computational modeling
of happiness. Furthermore, we extend the central
premise of the authors to explore and model the
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Figure 1: The BERT-PsyAM framework, demonstrating an input with two Psychological Adaptor Modules. The outputs are
fused within the Emotion Adaptor Module and then passed to the next BERT layer.

duration of happiness.
Our choice of modeling the cognitive an-

tecedents of emotions found no match in prior
work.3 Firstly, representing emotion at different
semantic levels of abstraction, such as word em-
beddings (Bengio et al., 2000; Mikolov et al., 2013;
Htait and Azzopardi, 2021), phrase- and sentence-
level representations (Socher et al., 2013), or even
paragraph-(Le and Mikolov, 2014) and document-
level (Tang et al., 2015) representations involve
evoked emotion rather than grounded emotion (Pi-
card, 2000; Liu et al., 2017). Secondly, while fine-
tuned LLMs like BERT offer state-of-the-art per-
formance in emotion prediction, they are harder to
adapt to multi-task learning problems. A finetuned
BERT is also not ideal for knowledge transfer be-
tween multiple tasks. For instance, if we finetune
BERT for n emotions, then we will need n times
parameters inside BERT(n*110M), which would
incur a huge memory overhead. Furthermore, our
goal is to let different psychological tasks interact
with the emotion task in the latent semantic space,
which would necessitate re-engineering the end-to-
end finetuning pipeline. These considerations made
us opt for interactive adaptor modules with fewer
parameters.

3 Methods

PsyAM is a broad proposition which can generalize
to other frameworks. We chose to design our ex-
periments centered on PsyAM coupled with BERT
(BERT-PsyAM), which offers the best and most

3We offer a more exhaustive discussion of related work in
the Appendix.

challenging opportunity to evaluate our claim in
the high-dimensional space. This section defines
and discusses our multi-task learning architecture
(Figure 1), learning strategy, and the latent repre-
sentations of appraisal dimensions.4 In the rest of
the paper, we have referred to the appraisal dimen-
sions more generally as psychological constructs,
and the adapter modules as psychological adap-
tor modules to suggest that the framework could
generalize to include other kinds of cognitive and
psychological antecedents of emotions.

3.1 BERT-PsyAM Architecture

In the BERT-PsyAM architecture for multi-task se-
quential learning of psychological constructs and
emotion labels, we extended each BERT layer by at-
taching a Psychological Adaptor Module (PsyAM)
in parallel, as seen in Figure 1.5

A PsyAM consists of trainable encoder-decoder
weights along with multi-head attention and is in-
stantiated uniquely for each psychological or emo-
tional label. A PsyAM considers the activation state
of the previous layer of BERT as its input. Further,
the output of a PsyAM decoder is subject to re-
combination with the BERT layer as the residual
connection and then serves as the input for the next
BERT layer. The stack of PsyAMs is trained on the
task of Psychological or Emotional Label Classifi-
cation by attaching a unique classification head to
the last layer of BERT-PsyAM.

PsyAM offers two innovations. First, for a

4https://github.com/stephenlaw30/BERT-PsyAM
5A detailed description of all of the PsyAM components is

reported in the Appendix.
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deeper semantic understanding of the data, we de-
signed auxiliary tasks to aid the predictive perfor-
mance of the primary classification task in a sequen-
tial learning approach. Prior work offers a simplis-
tic implementation of auxiliary pre-training (Mah-
moud and Torki, 2020) through auxiliary contexts
in a similarity detection task. Instead, we extend
the auxiliary pre-training architecture with multi-
task learning (Fifty, 2021), which aims to learn
multiple different tasks simultaneously. Therefore,
we are able to pre-train on auxiliary tasks that are
not mutually exclusive, such as the cognitive ap-
praisal dimensions underlying an emotional expres-
sion. Incorporating auxiliary pretraining has shown
a performance improvement over the BERT mod-
els finetuned on individual tasks in prior work (Yu
et al., 2019; Mahmoud and Torki, 2020), and we
cororoborate these reports with similar findings in
our paper.

We use adaptor modules for extracting latent
semantic features from the text. The original idea of
adaptor modules (Rebuffi et al., 2018) comes from
the ResNet concept of residual connection in com-
puter vision and it is a type of ensemble learning
approach that can help overcome degradation prob-
lems in machine learning. The idea was adopted
for natural language processing by Houlsby et al.
(2019), who used an unfrozen encoder-decoder
structure between the feedforward network and the
Layer Norm operation while freezing the param-
eters of the original BERT layers, which has the
effect of reducing the number of parameters to be
finetuned but with a performance trade-off. Build-
ing on their idea,Stickland and Murray (2019) also
incorporated attention mechanisms in adaptor mod-
ules. Herein lies our second innovation, as what we
do is that in fusing latent features, we did not di-
rectly combine the encodings of text and numerical
features as is typical in multimodal transformers,
which could result in performance degradation due
to dimensionality reduction. Instead, we generate
a higher-dimensional feature representation with a
layer-by-layer propagation rather than simply com-
pleting the splicing at the output and evaluate the
effect of different fusion methods on the final pre-
dictive performance.

In summary, while the common way to use
BERT for multiclass classification is to freeze the
parameters of the original BERT and add several
classification heads at the same level to fine-tune
the parameters of the last layer to achieve multi-

classification; however, because BERT’s overall
model parameters are fixed, finetuning in this man-
ner often cannot achieve the best results, which
would imply its inability to achieve optimal per-
formance in every single classification task. There-
fore, in the present architecture we assume that the
internal parameters of BERT are not frozen. Fur-
thermore, in BERT-PsyAM, we have replaced the
original BERT Layer for fine-tuning with a small
number of other parameters, so this is a great way
for us to optimize processing with reduced over-
load.

4 Experiments

Our experiments address the question, How well do
the psychological constructs of agency and social
interaction aid an understanding of emotions and
well-being? We evaluate the BERT-PsyAM frame-
work on 5 different settings based on happiness,
emotions, and well-being datasets. Through exten-
sive experiments, we show how different variants
of the BERT-PsyAM framework compares favor-
ably to other approaches. With an ablation study
and qualitative exploration, we reiterate the criti-
cal role of cognitive appraisal in well-being and
emotion prediction tasks.

4.1 Task Settings and Datasets
4.1.1 Duration of Happiness task
Departing from typical emotion prediction tasks,
we considered whether psychology labels could
provide a deeper view into predicting the duration
of happiness, a measure with immediate implica-
tions for understanding and modeling hedonic well-
being (Biswas-Diener et al., 2004). The duration
task was formulated as a binary classification prob-
lem that distinguished transient from more long-
lasting feelings of happiness, on three datasets, with
label distributions reported in Table 1:6.

• CLAff-HappyDB: For training, testing, and
internal validation, we relied on its 27,697
observations annotated with agency and social
interaction labels (Jaidka et al., 2019).

• HappyDB-expand: The analysis was repli-
cated on 59,664 further descriptions of happy
moments (Asai et al., 2018) which consti-
tuted the superset of CLAff-HappyDB labeled
through a semi-supervised approach.7

61 = “All day, I’m still feeling it” and 0 = “A few moments,”
“A few minutes, ” “At least one hour,” and “Half a day”

7Labeling for Agency and Social Interactions was done
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• HappyDB-2021: A second replication was
conducted on a freshly collected dataset of
happy moments, sourced from a panel of inter-
net users recruited through Qualtrics and then
annotated through Amazon Mechanical Turk.
The new dataset (N = 984) had a micro-level
inter-annotator agreement of at least 80%.
Dataset details are reported in the Appendix.

CLAff-
HappyDB

HappyDB-
expand

HappyDB-
2021

N 27,697 59664 984
Positive labels 10,807 20807 187
Agency 19,906 41233 796
Social interactions 15,369 34289 517

Table 1: Label distribution in the HappyDB datasets. We
collected and annotated HappyDB-2021 for this study.

4.1.2 Emotion detection tasks

We evaluated the generalizability of PsyAM for
binary emotion classification and multi-category
classification task, on two popular industry bench-
marks. Recent studies suggest that many affor-
dances of Reddit make it imminently suitable for
understanding and modeling individuals’ physical
and mental health (Wanchoo et al., 2023; Liu et al.,
2023), including but not limited to self-disclosure
and social interaction (Yang et al., 2017; Jaidka
et al., 2019; Yang et al., 2019), both of which of-
fer signals of agency and social interaction respec-
tively.

• Kaggle SA-Emotions: We used the Kaggle
SA-Emotions dataset8 comprising 20,266 ob-
servations. We generated agency and social
labels and subsequently predicted the Joy la-
bels in a cross-validation setup.

• GoEmotions dataset: The GoEmotions
dataset (Demszky et al., 2020) has finegrained
emotion labels on 58k datapoints from Reddit,
from which we sampled a balanced dataset
of 14,589 datapoints with 7907 having a
positive label of ’Joy’. We followed the
same semi-supervised labeling and binary
classification setup as the SA-Emotions task.

The label distributions for the two emotion datasets
are reported in Table 2 and Figure 2.

using the best-performing BERT-PsyAM classifiers trained on
CLAff-HappyDB. Classification accuracies are reported in the
Appendix.

8https://www.kaggle.com/c/sa-emotions

SA-Emotions GoEmotions
Number of entries 20,266 14,589
Positive labels 5,209 (25.70%) 7,907 (54.2%)
Agency 10,907 (53.82%) 5311 (36.40%)
Social interaction 5,872 (28.97%) 4353 (29.84%)

Table 2: Binary label distribution in the Kaggle SA-
Emotions and the GoEmotions datasets

Figure 2: The distribution of labels in the SA-emotions.

4.1.3 Well-being prediction task
We also introduce the TwitterUsers-2021 dataset
to evaluate the real-world application of PsyAM to
predict user-level subjective-wellbeing. The dataset
comprises 217,910 tweets posted by 296 internet
users recruited through Qualtrics, who took part
in an online survey experiment and shared the link
to their Twitter profiles.9 We used the Twitter API
to collect the social media posts of the 337 legit-
imate Twitter users who had participated in the
survey and shared their Twitter handles. Of these,
296 participants had legitimate accounts and had
posted at least one tweet of 50 characters or more
that was not a retweet. As before, we used weakly
supervised methods to generate Agency and Social
Interaction labels for each post. Subsequently, we
used BERT-PsyAM to generate labels for the dura-
tion of happy moments, which we used to derive an
Emotional Fluctuation variable corresponding to
the within-person variance in the happiness scores.

4.2 Experiments
We performed the following experiments to test
and validate the BERT-PsyAM framework:

• Cross-validation: The CLAff-HappyDB
dataset with an 80-10-10 split is used for in-
ternal validation for the duration task.

• Replication analysis: Experiments are repli-
cated on the HappyDB-expand dataset and
the HappyDB-2021 datasets, which constitute
held-out data and data from a different cultural
context.

9Participant demographics are reported in the Appendix.
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Table 3: Predictive performance on the duration task, sorted by accuracy on the CLAff-HappyDB dataset. The
color gradient identifies the best performing models for each metric (darker is better). * shows that the best result is
significantly better than the best BERT baseline (p < 0.05).

Dataset CLAff-HappyDB HappyDB-expand HappyDB-2021
ACC ROC F-1 ACC ROC F-1 ACC ROC F-1

Traditional
Method

GaussianNB 56.06 59.97 56.95 56.76 60.01 54.20 54.90 59.31 55.90

MLPclassifier 63.72 61.39 51.38 65.76 62.20 50.42 63.96 61.12 49.51
MLPclassifier+A+S 63.75 61.61 52.42 64.54 61.42 50.82 64.13 62.32 54.45

BERT-based
Method

BERT-FT 70.22 75.46 59.74 71.63 76.08 57.71 71.07 75.69 59.94

BERT-PALS 70.87 75.64 60.34 71.54 76.19 57.66 71.31 76.83 58.95
Proposed
Method

BERT-PsyAM post-add 71.44 77.10 61.92 72.71 77.30 59.75 71.87 77.27 61.70

BERT-PsyAM pre 71.59 77.03 62.68 72.61 77.51 60.75 71.98 76.78 62.11
BERT-PsyAM post-linear 72.13* 77.41* 62.52* 72.75* 77.47* 60.17* 72.08* 77.27* 62.52*

Table 4: Predictive performance on emotion detection,
sorted by accuracy on the binary task. The color gradient
identifies the best performing models for each metric
(darker is better). * p < 0.05.

Kaggle SA-Emotion
Approach Binary Multi-class

ACC ROC F-1 ACC
Traditional
Method

GaussianNB 75.09 68.35 55.11 18.58

MLPclassifier 78.29 71.73 56.35 26.93
MLPclassifier+A+S 79.13 73.01 60.72 27.72

BERT-based
Method

BERT-FT 84.16 87.28 67.21 35.32

BERT-PALS 84.51 89.32 68.91 36.72
Proposed
Method

BERT-PsyAM post-linear 85.15 89.64 71.63 39.84

BERT-PsyAM post-add 85.29 90.23 71.29 39.48
BERT-PsyAM pre 85.35* 89.90* 71.90* 39.39*

Table 5: Predictive performance on GoEmotions. The
color gradient identifies the best performing models for
each metric (darker is better). * p < 0.05.

GoEmotions
Approach ACC ROC F-1
Traditional
Method

GaussianNB 73.00 74.57 71.41

MLPclassifier 88.76 88.67 89.45
MLPclassifier+A+S 89.10 89.10 89.97

BERT-based
Method

BERT-FT 91.30 96.98 91.77

BERT-PALS 91.09 96.64 91.76
Proposed
Method

BERT-PsyAM post-linear 93.69* 98.08* 94.12*

BERT-PsyAM post-add 93.56 97.86 94.03
BERT-PsyAM pre 92.39 97.84 92.90

• External validation: We used the Kaggle
SA-Emotions and the GoEmotions datasets
to benchmark the external validity of BERT-
PsyAM with an 80-10-10 data split for binary
and multi-class emotion prediction.

• Ablation analysis: We conducted an ablation
experiment to evaluate the role of different
combinations of agency and social interac-
tion labels in predictive performance. We also

included other contextual information (e.g.
the reflection period) and respondent demo-
graphics (their marital status, which would af-
fect their psychological outlook (Diener et al.,
2000)).10

• Model visualization: We applied the Captum
toolkit (Kokhlikyan et al., 2020) to visualize
the impact of individual words on the clas-
sification confidence score for the duration
task. Captum calculates the layer integrated
gradient on the test cases input through BERT-
PsyAM with post-linear feature fusion. We
then compared word attributions from token
embeddings by a BERT-finetuned vs. a BERT-
PsyAM model.

• Real-world application: We evaluated the
predictive performance of Bert-PsyAM on
user-level subjective well-being prediction
based on duration of happiness scores gen-
erated on their Twitter posts.

4.3 Model Setup
We adapted the PyTorch BERT-base-uncased as
our backbone, initialized with pre-trained weights.
Our implementation comprises 12 layers, 12 at-
tention heads and 768 as the hidden unit size. We
modeled psychological constructs (agency, social)
prediction as a binary classification task. We set the
augmentation size a to be 204. We trained for each
task with the AdamW optimizer (Loshchilov and
Hutter, 2019) for 3 epochs, with a batch size of 32,
a learning rate of 3e-5, and a maximum sequence
length of 128 tokens.

We have compared the BERT-PsyAM frame-
work against traditional and BERT-based methods.

10These experiments were conducted on the primary task
and dataset with post-linear feature fusion.
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Traditional methods adopt the pre-trained word
embeddings (Mikolov et al., 2018) and the bag-
of-words model to generate the sequence repre-
sentation which is passed to classifiers: Gaussian
Naive Bayes (Gaussian-NB) and Multi-layer Per-
ceptron classifier (MLP-classifier). In order to com-
pare role of different representation of psycho-
logical features, we made a baseline called MLP-
classifier+A+S which embeds agency and social
information into the input of MLP-classifier with
numerical features. Since BERT-PsyAM is con-
structed with a BERT backbone, BERT-Finetune
and BERT-NPALS (Stickland and Murray, 2019)
offer the ideal baselines to illustrate performance
improvements.

5 Results & Analysis

As seen in Table 3, first, in the internal cross-
validation, BERT-PsyAM with the linear post-
training fusion strategy is the best performed model
in the internal validation by surpassing baselines
1.5% in accuracy and nearly 2% in both ROC and
F-1 in repeated iterations (Accuracy = 72.13 vs.
70.87; ROC = 77.41 vs. 75.64, p < 0.05). Next,
in the replication analysis reported for HappyDB-
expand, we see similar improvements as above (Ac-
curacy = 72.75 vs. 71.54; ROC = 77.47 vs 76.19,
p < 0.05), illustrating its robustness and general
ability that leverages pre-trained models. Finally,
the performance on HappyDB-2021 (Accuracy =
72.08 vs. 71.31; ROC = 77.27 vs 76.83, p < 0.05)
suggests that the model also generalizes well to
new cultural contexts.

5.1 External validation

Tables 4 and 5 and Table shows PsyAM’s perfor-
mance at emotion classification. For SA-Emotions,
in the binary classification task, BERT-PsyAM with
pre-training feature fusion has the highest Accuracy
and ROC that are statistically significantly higher
than BERT-PALS by about 1% each in repeated
runs (Accuracy = 85.35 vs 84.51; ROC = 89.90 vs.
89.32, p < 0.05), while for GoEmotions the post-
linear feature fusion has the better performance.
BERT-PsyAM also outperforms BERT-PALS in
multi-task prediction by about 3% (Accuracy =
71.90 vs 68.91; ROC = 39.39 vs. 36.72, p < 0.05),
suggesting that our framework has generalized well
to new tasks, datasets, and emotions.

As seen in Table 6, adding both psychologi-
cal constructs considerably improves over BERT-

finetune (ROC = 77.41 vs. 75.64). We also found
that the performance increased further with the
addition of a third adapter module related to emo-
tional transience (Asai et al., 2018) - the reflection
period (ROC = 77.67 vs 75.64).

5.2 Model visualization
Figure 3 reports a confusion matrix of classifica-
tions by BERT-FT reported in Table 3 vs. BERT-
PsyAM on CLAff-HappyDB data. Across the four
quadrants, BERT-FT does attribute importance to
emotion words such as ‘anniversary’ and ‘special,’
but also to irrelevant words such as ‘to,’ and ‘it’s’,
confirming recent findings regarding BERT (Hay-
ati et al., 2021). In contrast, BERT-PsyAM gener-
ates higher confidence scores and appears to pay
attention to first person and possessive pronouns
that denote agency (Rouhizadeh et al., 2018) (‘me’
and ‘my’), and social relationships and interac-
tions (Jaidka et al., 2020) (‘husband’ and ‘daugh-
ter’; ‘we’ and ‘our’).

5.3 Real-world application
In Figure 4 (a), we demonstrate whether labels
generated using PsyAM offer any psychologi-
cal insights for real-world applications. In a re-
gression analysis that predicts subjective well-
being, after controlling for demographic covari-
ates, higher emotional fluctuation scores based on
BERT-PsyAM predictions predict lower wellbeing,
a relationship which corroborates prior work in
psychology (Seraj et al., 2021). The value of the
coefficients suggests that a 1% decrease in emo-
tional fluctuation predicts a 0.04% increase in the
subjective well-being of an individual, or a mag-
nitude of 0.4 points on a 10-point scale. Although
the predicted R2 values are low, this is typical of
models that use linguistic covariates to predict psy-
chological traits (Boyd and Pennebaker, 2017). In
Figure 4(b), We examined the interactive effect of
age on this relationship and find that the interactive
effect of age and emotional fluctuation is signifi-
cant (and negative) among 18-34 year olds.

6 Discussion

Our findings offer the following insights towards
a future agenda of neural networks inspired by hu-
man psychology:

• Feature-rich representation: PsyAM appears
to help BERT pay more attention to words
reflecting cognitive constructs, such as words
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Predicting Subjective Wellbeing: Model Summary
Coefficient Estimate (b) Std. Error p (* if < 0.05)
(Intercept) 0.559 0.084 ***
Emotional fluctuation -0.038 0.011 ***
Education 0.006 0.006
Income -0.001 0.008
Female 0.009 0.018
Age -0.048 0.022 *
Emotional fluctuation x Age 0.009 0.003 **
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(a)

Female

Income

Education

Emotional 
fluctuation

−0.1 0.0 0.1 0.2

Coefficient Estimate

18 - 24

25 - 34

35 - 44

45 - 54

55 - 64

65+

Predicting Subjective Wellbeing with BERT PsyAM−predicted scores

Age (years old)-0.080*** -0.017**

-0.04*

0.16*

(b)

Figure 4: (a) The model summary of a regression model predicting subjective well-being as a function of user
demographics and the emotional fluctuation (predicted by Bert-PsyAM) reflected on Twitter (N=296). (b) Predicting
subjective wellbeing with BERT PsyAM-predicted scores for emotional fluctuation, on the TwitterUsers2021 dataset.
(*: p < 0.05)

Table 6: Ablation study on the duration task with CLAff-
HappyDB. The color gradient identifies the best per-
forming models for each metric (darker is better).

BERT 1 2 3 4
Agency ✓ ✓ ✓
Social interaction ✓ ✓ ✓
Reflection period ✓
ACC 70.87 70.82 71.58 72.13 71.94
ROC 75.64 77.12 77.36 77.41 77.67
F-1 60.34 61.49 62.82 62.52 63.09

referencing the self, family members, and so-
cial activities, as seen in Figure 3.

• Operational flexibility: Within PsyAM, differ-
ent feature fusion methods had the best perfor-
mance, suggesting that contextual and dataset
differences can be accounted for through mi-
nor adjustments of the PsyAM framework.

• Robust predictions: PsyAM works well with a
variety of datasets, cultural contexts, and even
tasks. Even when the label distribution differs
from the original, the superior performance of
PsyAM models signals that our architecture
is robust to new data.

• Semi-supervised extensions: Labeling exist-
ing datasets with models finetuned on small
annotated datasets offers a low-cost alternative
to obtaining high-quality annotations. This is
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the approach we used, as reported in Table
8 of the Appendix, and the predictions have
face-validity, as reported in Figure 3.

• Cognitive construct extensions: Other cogni-
tive constructs, such as reflection period, can
offer additional measures of cognitive com-
plexity to further improve the modeling of
emotional expression.

7 Conclusion

The main advantage of the BERT-PsyAM frame-
work is a modeling paradigm that transfers to new
domains and tasks for detecting emotions and,
by extension, well-being. Psychologists can use
PsyAM to build and test new hypotheses about self-
expression, cognitive appraisal, and behavior. It
could also be helpful in interventionist scenarios re-
quiring live monitoring and reporting problematic
social media posts.

PsyAM achieved substantive improvements over
the state-of-the-art BERT alternatives, and we show
that this is because of the contribution of the
high-dimensional feature representation inside the
Adaptor Modules. Different feature fusion methods
achieved different degrees of improvement in dif-
ferent settings, and different latent variables may
add value in different problem contexts.

Future directions: We have released the la-
beled datasets developed as part of the study for
researchers to explore further how psychological
traits and states can inspire better neural architec-
tures for text classification. We plan to explore
other appraisal dimensions, such as goal conducive-
ness and certainty, as well as individual differences
through demographic and personality traits.

Limitations: The duration task focused only on
data with a positive happiness label, but it would
be interesting to see whether the framework gener-
alizes to a complete dataset and more sophisticated
problem definitions. The need for annotations lim-
its the generalizability of our approach, but the
BERT-PsyAM framework is effective even with
labels generated through semi-supervised methods
and other metadata.

Ethical considerations: The models are in-
tended for aggregate- and group-level inferences,
and not individual or message-level inferences. De-
spite our cross-domain validation efforts, we cau-
tion that relying exclusively on AI-inferred rela-
tionships between emotion, self-efficacy, and self-
determination may lead to inaccurate measure-

ments. Finally, models trained in a specific socio-
cultural setting may nevertheless violate the social
conventions in specific settings, such as in the work-
place, and cultural conventions of individualism
and collectivism in social life (Diener et al., 2009).

Acknowledgments: We thank Niyati Chhaya,
Chaitanya Aggarwal, and Gerard Yeo for feedback
on early versions of this work. This work was sup-
ported by an NUS CTIC grant and a Nanyang Pres-
idential Postdoctoral fellowship.
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A Appendix

A.1 Background
Psychological constructs including but not limited
to empathy, distress, agency, social affinity have
been widely studied by computational linguists
(Turc et al., 2019; Guda et al., 2021; Rouhizadeh
et al., 2018; Guntuku et al., 2019). Such studies,
primarily, evaluate representational learning ap-
proaches for downstream tasks to predict the appro-
priate psychological constructs associated with the
given text. For instance, Buechel et al. (2018) elab-
orates on the psychological complexity of human
reactions such as empathy and distress, by anno-
tating text data with the empathy assessments of
their authors via multi-item scales. Even this study
considered empathy and distress to be co-existent
rather than correlated, offering little insight into
the role of cognitive appraisals as the wellspring
of emotional expression (Omdahl, 2014; Hoffner
and Lee, 2015). We formulate our problem as the
multi-task learning of psychological states in tan-
dem with human emotions, which offers insight
into the role of psychological self-appraisals as the
wellspring of emotional expression (Luo and Han-
cock, 2020; Omdahl, 2014; Hoffner and Lee, 2015).
In the following paragraphs, we first motivate the
problem of modeling emotion in terms of its psy-
chological underpinnings, followed by a review of

the literature on multitask learning and language
modeling that is relevant to our context.

A.2 State of the art in emotion prediction

Emotion in text has been modeled in different stud-
ies at different levels of abstraction and meaning,
such as sentiment-specific word embeddings (Ben-
gio et al., 2000; Mikolov et al., 2013; Htait and
Azzopardi, 2021), phrase- and sentence-level rep-
resentations (Socher et al., 2013), and even at the
paragraph-(Le and Mikolov, 2014) and document-
level (Tang et al., 2015). Note that these approaches
appear to conflate the detection of expressed versus
evoked emotion (Picard, 2000), as they tend further
and further away from the root of emotion (Liu
et al., 2017). We suggest that grounding the emo-
tion prediction task in its cognitive antecedents,
similar to prior work focusing on its causes (Poria
et al., 2021), may offer a fruitful approach to its
modeling and detection.

In studies with a temporal component, Long-
Short Term Memory (LSTM) architectures and
Gated Neural Networks have been used success-
fully; however, they often fall short of transformer-
based models in tasks involving language under-
standing, such as emotion prediction. Therefore,
given the stability and universality of transformer-
based models, and the ability to benchmark against
previous work and datasets, we opted to use the
BERT model as the backbone for our experiments.
BERT (Devlin et al., 2018) is a pre-training lan-
guage model with two self- supervised pretraining
objectives: masked language modeling (MLM) and
next sentence prediction (NSP). The NSP task in
pre-training is used to fine-tune the model using
labeled data in order to obtain the prediction result.
Although a finetuned BERT model is known to
achieve good results in emotion prediction, it is not
suitable for our purpose for two reasons. Firstly, a
finetuned BERT is not ideal for knowledge transfer
between multiple tasks. For instance, if we finetune
BERT for n emotions, then we will need n*110M
parameters, which would incur a huge memory
overhead. Secondly, our goal is to let different psy-
chological tasks interact with the emotion task at
the semantic latent space, which implied that fine-
tuned models would not meet our requirements.
These considerations made us opt for an interactive
module with fewer parameters.
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A.3 Multi-task learning

A multi-task learning setup aims to learn multiple
different tasks simultaneously. This can be thought
of as predicting attributes of text that are not mutu-
ally exclusive, such as the psychological and emo-
tional facets of the memory of a happy moment. In
multi-task learning, more than one loss function is
trained, or a part of the loss function comes from a
different task, with the expectation that the model
will apply the information it learns during training
on one task to decrease the loss on other tasks in-
cluded in training the network (Fifty, 2021). The
initial proposal of adaptor modules for natural lan-
guage processing by Houlsby (Houlsby et al., 2019)
offered an end-to-end structure which offers fine-
tuning parameters while employing fewer parame-
ters than the entire BERT, but with a degraded final
performance. However, their final performance was
slightly worse than the whole BERT finetune model
while reducing the number of parameters that must
be fine-tuned.

The BERT-PsyAM architecture proposed in this
study adapts the BERT and PALS architecture
(Stickland and Murray, 2019) which included pro-
jected attention layers, as parts within the adaptor
module. This constitutes an ensemble approach
which is then used for the sequential training of
psychological states and emotions. Our approach is
novel in three ways: firstly, instead of using adap-
tors for parameter minimization, we use them to
extract latent semantic features with the multi-head
attention mechanism and feedforward layers. Sec-
ondly, instead of adding attention outputs, we use
residual connections to combine the latent seman-
tic features between tasks. This allows different
tasks to interact and support each other with high-
dimensional (context-psychology) feature represen-
tations. In this paper, we have evaluated three dif-
ferent methods for feature fusion, all of which per-
form well. Thirdly, in the process of fusing latent
features, we did not directly combine the encod-
ings of text and numerical features as is typical
in multimodal transformers, which could result in
signal losses due to dimensionality reduction. In-
stead, we generate a higher-dimensional (context &
psychology) feature representation with a layer-by-
layer propagation rather than simply completing
the splicing at output.

A.4 Context

Now that we have motivated our architecture, we
will explain the theoretical concepts it realizes. This
study focuses on the psychological concepts that
are meaningful in the understanding of emotion –
specifically, in understanding happiness. Psychol-
ogists define agency as the feeling of being in
control of one’s life. It is related to the ideas of
autonomy (Tay and Diener, 2011), and self effi-
cacy (Deci and Ryan, 2000), which are known to
have a strong relationship with personal health and
well-being (Lachman and Weaver, 1998). More-
over, its linguistic correlates have been examined in
prior work (Rouhizadeh et al., 2018). On the other
hand, social interaction and feeling connected to
others are also central to well-being (Helliwell and
Putnam, 2004), the feeling of belongingness (Sand-
strom and Dunn, 2014), and happiness (Epley and
Schroeder, 2014).

The association of agency and social interaction
in textual descriptions of happy moments was ex-
plored in the The CLAff-HappyDB Shared Task
models happy moments in terms of their agency
and social interaction (Jaidka et al., 2019). The
Task proposes that a happy moment may involve ei-
ther agency and social interaction, both, or neither
of these; however, their interplay could be helpful
for an enriched understanding of happiness. How-
ever, the labeled dataset was small in size, limit-
ing the possibilities for technical and conceptual
follow-up work. In this study, we have used semi-
supervised approaches to expand on the training
data, collected new data, and tested our approach on
standard emotion detection tasks on a well-known
emotion dataset.

B BERT-PsyAM architecture

B.0.1 BERT Layer
Figure 1 illustrates how a BERT layer receives the
activation state of the previous BERT layer as in-
put, and generates dh dimensional hidden states for
each token in the sequence, which are forwarded to
the BERT attention and the feedforward network.

Multi-Head Attention: N different attention
heads11 are applied to extract the attention score on
tokens as the aggregate of previous hidden states.

Rescale: This sub-module splices and re-scales
the feature space to make it more suitable for the
task in context. It does so by calculating the mean

11We have used N = 12
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µ and variance σ of each unit in the input vector x,
and then re-scaling them by learning a gain g and
bias b parameter sequentially.

Feed-forward Networks (FFN) Next, an FFN
framework containing two linear transformations
with a GELU activation function (Hendrycks and
Gimpel, 2016) is applied to each position of hidden
states by transforming them to a high-dimensional
space and then transforming them back. Here we
add BAN , the residual part we got from the multi-
head attention setup, which gives us the final BERT-
PsyAM layer output as:

Layer_output = Rescale(FFN(BAN (x))+

BAN (x) + PsyAM(x))
(1)

The PsyAM(x) component of Equation 1 is ex-
plained in the following paragraphs.

B.0.2 Adaptor Modules
There are two types of Adaptor Modules: psy-
chological constructs adaptor modules (PCAM)
and emotion adaptor modules (EAM), connected
through a hierarchical bottom-up structure to en-
sure the dependency of emotion on psychological
constructs.
PCAM. PCAMs consider the activation weights of
the previous layer of BERT as the input. The acti-
vation weights are Xd

i where, (a) d represents the
dimensionality of the hidden states transmitted be-
tween each layer of BERT, and (b) i represents the
layer number. The encoder inside, essentially, aug-
ments the dimensionality of the input to a which
helps retrieve latent features specific to the psycho-
logical context:

Enc(Xd
i ) = Xd

i A
d∗a + ba (2)

We use a BERT Multi-Head Attention mechanism
once again as the feature extractor, but reduce the
number of heads to N/2 as it was achieving com-
petitive performance with fewer parameters. We
therefore obtain BAN/2(Enc(Xd

i )). Next, we apply
a Decoder to resize the augmented data to the orig-
inal hidden size d of BERT.

Dec(BAN/2(Enc(Xd
i ))) = BAN/2(X

d
i )A

a∗d + bd (3)

So, the output of PCAM is:

PCAM(Xd
i ) = Dec(BAN/2(Enc(Xd

i ))) (4)

EAM EAM is the adaptor module for classifi-
cation on emotion, which generates outputs for

PsyAM through one of three ways of feature fu-
sion. First, pre-training fusion (pre) receives the
last BERT layer’s output and all the features from
PCAMs. It defines them as a list of features:
[Xd

i , PCAM1(X
d
i ), PCAM2(X

d
i )...]). Next, it

concatenates all the features, then passes it into
Encoder inside EAM. So the feature propagation
through EAM with fusion occurring pre-training
looks like:

pre(Xd
i , PCAM1(X

d
i ), PCAM2(X

d
i )...) =

[Xd
i , PCAM1(X

d
i ), PCAM2(X

d
i )...]

(5)

The output of residual from PsyAM is:

EAM(pre) = Dec(BAN/2(Enc(pre(Xd
i ,

PCAM1(X
d
i ), PCAM2(X

d
i )...))))

(6)

Alternatively, when pre-training feature fusion is
disabled, the post-training feature fusion methods
(post-linear and post-add) receive the EAM’s out-
put and all the features from PCAMs, and then per-
form either an addition or a latent transformation of
the concatenated features. The pooled output acts
as the residual connection passed to the next BERT
layer. In this case, the feature propagation through
EAM looks like:

EAM(post− add) = Dec(BAN/2(Enc(Xd
i )))+∑

j

PCAMj(X
d
i )

(7)

EAM(post− linear) = LinearTransform(D) (8)

D = post(Dec(BAN/2(Enc(Xd
i ))),

PCAM1(X
d
i ), PCAM2(X

d
i )...))

(9)

B.1 Training Approach
After initializing the parameters for both BERT
layers (pretrained BERT) and PsyAMs (Random),
we train all of the psychological constructs tasks
at the same time. Under the setting that (a) BERT
layer parameters are frozen and (b) The EAM with
feature fusion modules is disabled, these psycho-
logical constructs tasks contain their unique PCAM
along with the BERT layer and classifier on the top,
so they can be trained simultaneously without af-
fecting the gradients of each other. Since feature
fusion modules are disabled, inputs are directly
propagated without transformation. Then the out-
put of PCAM is passed to the output of BERT layer
as residual:

Layer_output = Rescale(FFN(BAN (x))

+BAN (x) + PCAM(Xd
i ))

(10)
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After finishing training on psychological constructs
and to realize a hierarchical bottom-up structure,
we adjust the following settings: (a) Start the emo-
tion training through the PCAMs to ensure the de-
pendency of EAM on PCAM, (b) Choose a feature
fusion strategy for the EAM, and (c) Freeze the
parameters in all PCAMs. The output of EAM is
passed to the output of BERT-PsyAM layer as the
residual:

Layer_output = Rescale(FFN(BAN (x))

+BAN (x) + EAM(Xd
i )))

(11)

For each task, the hidden states of the sequence in-
put are transformed at each layer of BERT-PsyAM,
but only the final hidden state of the [CLS] token is
used for classification with the cross-entropy loss
inside their unique classification head:

−
M∑

c=1

yo,c log(po,c) (12)

where M is the number of classes, y is binary indi-
cator (0 or 1), p is predicted probability observation
o is of class c.

C New datasets’ curation and annotation

HappyDB-2021 was collected through a Qualtrics
Singapore panel sampled to obtain a gender- and
age-representative split in terms of age and gender.
Following the original data collection procedure,
first we collected happy moments from survey re-
spondents12, together with their self reported dura-
tion of experiencing happiness. Participants were
asked about three happy moments they experienced
recently. Besides the happy moment, participants
were also asked about the duration (i.e., the length)
of happiness they experienced. The detailed instruc-
tions are sourced from (Asai et al., 2018) and are
reported in Figure 5(a). Participants came from a
representative distribution of gender (51.1% Fe-
male), age (M = 39.13; SD = 13.18), educational
(Median = undergraduate degree), economic (Me-
dian = $7000 to $8999 monthly income), and racial
backgrounds (83% majority). 984 happy moments
thus collected were annotated through Amazon Me-
chanical Turk annotators, as reported in the next
subsection.

TwitterUsers-2021 was collected from a
Qualtrics USA panel sampled to obtain a nationally

12The survey protocol for both surveys was approved by
our university’s Institutional Review Board.

representative split in terms of age and gender. As
a part of a larger survey, they were asked to share
their Twitter handles and answer the Cantril Ladder
question: “Think of a ladder, with the best possible
life for you being a 10 and the worst possible life
being a 0. Rate your own current life on that 0 to 10
scale.” They also shared basic demographic infor-
mation, such as their age, sex, level of education,
and income. The detailed participant demographics
are reported in Table 7.

Table 7: Demographic statistics of the TwitterUsers2021
dataset.

TwitterUsers-
2021

N 296
Gender 41.2% Female

Age group
18-24 years 26
25-34 years 96
35-44 years 106
45-54 years 40
55-64 years 28

Highest education level
No formal education 1
High school diploma 39
Some college 42
Technical Degree 32
Bachelor Degree 98
Graduate degree 68
PhD or equivalent 16

Annual household income
less than $20,000 34
$20,000-$44,999 42
$45,000-$139,999 133
$140,000-$149,999 35
$150,000-$199,999 31
More than $200,000 21

C.1 Annotation

A sample of 1000 happy moments from HappyDB-
2021 was published as an Amazon Mechanical
Task to get five annotations per moment, to obtain
annotations for agency and social interaction, fol-
lowing the same instructions as the original CLAff-
HappyDB task. Annotators looked for evidence of:

• Personal agency: Describing whether or not
the author was directly responsible for the
happy moment that occurred. Example: “I
made a nice birthday cake today.”

• Social Interaction: Indicating whether or not
other the happy moment involved other people.
Example: “I had a good lunch with my mom.”

The detailed annotator instructions are sourced
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from (Jaidka et al., 2019) and are reported in Fig-
ure 5(b).

C.2 Semi-supervised labeling
We used a semi-supervised approach to annotate
HappyDB-expand and the Kaggle Emotion datasets
with Agency and Social Interaction labels with the
help of the best-performing BERT-PsyAM classi-
fiers trained on CLAff-HappyDB. By loading the
pretrained parameters of Agency and Social task-
specified psychological constructs adaptor mod-
ules(PCAMS), the BERT-PsyAM can easily pre-
dict psychological constructs labels. Furthermore,
they can be applied to the main task of fine-tuning
emotion classification in HappyDB-expand and the
Kaggle Emotion datasets settings. Classification
accuracies are reported in Table 8.

Table 8: Classification accuracies for models trained
independently on agency and social interaction la-
bels from CLAff-HappyDB. We used the BERT-
PsyAM models to generate further labels on HappyDB-
extended, SA-Emotions, and GoEmotions.

Approach Agency Social
Mlpclassifier 79.82 88.98
Bert base 84.89 91.54
Bert finetune 85.43 92.49
(Yu et al., 2021) 85.51 92.68
BERT-PsyAM 85.70 92.40
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(a)

(b)

Figure 5: (a) Participant instructions to curate happy moments, sourced from the original HappyDB data collection (Asai et al.,
2018).
(b) Annotation instructions to label happy moments with Agency and Social Interaction labels, sourced from the original
CLAff-HappyDB task (Jaidka et al., 2019).
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