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Abstract

Language tasks involving character-level ma-
nipulations (e.g., spelling corrections, arith-
metic operations, word games) are challenging
for models operating on subword units. To ad-
dress this, we develop a causal intervention
framework to learn robust and interpretable
character representations inside subword-based
language models. Our method treats each char-
acter as a typed variable in a causal model
and learns such causal structures by adapting
the interchange intervention training method
of Geiger et al. (2022b). We additionally intro-
duce a suite of character-level tasks that system-
atically vary in their dependence on meaning
and sequence-level context. While character-
level models still perform best on purely form-
based tasks like string reversal, our method
outperforms character-level models on more
complex tasks that blend form, meaning, and
context, such as spelling correction in context
and word search games. Compared with stan-
dard subword-based models, our approach also
significantly improves robustness on unseen to-
ken sequences and leads to human-interpretable
internal representations of characters.

1 Introduction

Many common natural language tasks can fruitfully
be described in terms of character-level manipula-
tions. For instance, we resolve spelling mistakes
with character-level edits, we perform unit con-
versions by moving decimal points and changing
specific digits, and we play language games that
center around anagrams, word reversals, character
transpositions, and other operations on characters.

For some of these tasks, the best models may be
ones that tokenize their inputs and outputs at the
character level. Such models likely have the best
chance of learning character-level concepts and
operations. However, with only a few exceptions
(Xue et al., 2022; Tay et al., 2022; Clark et al.,
2022), our best general-purpose models at present

1. Character Reversal
txpraa ⇒ aarpxt

2. Unit Conversion
convert 1.23 m to cm ⇒ 123

3. Unscramble
tkneti ⇒ kitten

4. Single Word Spelling Correction
misspellde ⇒ misspelled

5. Spelling Correction with Context
the actuall name ⇒ the actual name

was actuall happy ⇒ was actually happy

6. Word Search
color: augustmacaronihsilgneerg ⇒ green

a written or spoken language:
augustmacaronihsilgneerg

⇒ english

Figure 1: Core tasks. System inputs are in green, outputs
in blue. The tasks are all form-based and differ in the
extent to which they depend on meaning and context.

do not tokenize their inputs into characters, but
rather into words and subword units (Liu et al.,
2019; Brown et al., 2020; Raffel et al., 2020; He
et al., 2021; Black et al., 2022; Scao et al., 2022;
Zhang et al., 2022). There is thus a tension between
solving character-level tasks and developing task-
agnostic solutions.

In this paper, we develop a causal intervention-
based framework for pushing subword-based mod-
els to encode character-level information in their
internal representations, in effect teaching them
which characters their tokens contain. The tech-
niques are based on the interchange intervention
training (IIT) method of Geiger et al. (2022b),
which trains neural hidden representations to cor-
respond to variables in a high-level causal model
capturing aspects of the task domain. We apply IIT
at the level of variable types (Type-level IIT), which
allows us to learn robust, position-independent rep-
resentations of characters in the hidden states of
subword-based models. We compare against ap-
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proaches that tokenize inputs and/or outputs at the
character level.

We introduce a suite of character-level evalua-
tion tasks (Figure 1). All of these tasks depend
heavily on character-level manipulation of forms,
but they differ in terms of how much they (a) in-
volve meaning and (b) depend on the full context
of the input string (see Table 1). We find that,
for tasks involving only meaning or only context
(tasks 1–4), pure character-level modeling is supe-
rior. However, for the more challenging and intri-
cate tasks that involve both meaning and context
(tasks 5 and 6), subword tokenization models prove
superior. Our Type-level IIT pushes these subword
models to represent characters internally, which
leads to the best overall models. Finally, we show
that Type-level IIT leads to subword-based models
with human-interpretable internal representations
of characters.1

2 Related Work

2.1 Subword and Character Modeling

Subword-based models tokenize their inputs into
words and word pieces, most of which are longer
than individual characters. The most prominent
subword tokenization methods are byte-pair encod-
ing (Sennrich et al., 2016), word-piece tokenization
(Schuster and Nakajima, 2012), and unigram lan-
guage models (Kudo, 2018; Bostrom and Durrett,
2020). These methods have become standard for
large pre-trained language models (Liu et al., 2019;
Brown et al., 2020; Raffel et al., 2020).

Character-level models, by contrast, represent
inputs as character sequences. These methods have
generally not been as widely employed for large
language models; the token sequences are much
longer, which introduces significantly higher costs
for both training and inference (Libovickỳ et al.,
2021; Mielke et al., 2021; Pinter, 2021). However,
a few recent character-level large language models
have proven highly successful on standard bench-
marks (Xue et al. 2022; Tay et al. 2022; Clark et al.
2022; see also Dos Santos and Zadrozny 2014; Be-
linkov and Bisk 2018; Rosales Núñez et al. 2021).

Another line of research has sought to create hy-
brid character-level and subword (or word) models
(Luong and Manning, 2016; Ma and Hovy, 2016;
Pinter et al., 2017; Peters et al., 2018; Schick and

1We release our dataset and code at https://github.
com/explanare/char-iit.

Schütze, 2019; Aguilar et al., 2021). These meth-
ods typically modify the input layer, define addi-
tional weights to learn character embeddings, and
construct character-to-word mappings.

2.2 Character Manipulation Tasks

Character manipulation tasks such as word scram-
bling and basic arithmetic are increasingly promi-
nent in large language model evaluations (Brown
et al., 2020; Wei et al., 2022). In addition, a num-
ber of recent efforts have focused on linguistic phe-
nomena that depend, at least in part, on character-
level manipulations. Examples include digit tok-
enization (Geva et al., 2020), creative blends like
‘hangry’ (Pinter et al., 2021), puns (Yu et al., 2020;
Mittal et al., 2022), and the wordplay involved in
crossword puzzle clues (Efrat et al., 2021; Rozner
et al., 2021; Wallace et al., 2022).

These studies tend to show that subword to-
kenization models do not fully encode informa-
tion about the characters contained in their tokens.
Itzhak and Levy (2022) test RoBERTa (Liu et al.,
2019) on a spelling task that requires it to map from
words to characters. RoBERTa can correctly spell
more than one-third of tested words, which is strik-
ing given its byte-pair encoding scheme but still
far from reliable. (Interestingly, CharacterBERT
(El Boukkouri et al., 2020) is not notably better at
the task.) Kaushal and Mahowald (2022) directly
probe models to see whether they implement token-
to-character mappings, finding that even the best
subword models are wrong about 10% of the time
about this conceptually simple relationship.

2.3 Intervention-Based Training Methods

Our core technique is based in the interchange in-
tervention method (IIT) of Geiger et al. (2022b).
With IIT, one can train a neural model to conform
to a high-level causal model of some aspect of the
task domain while still allowing it to learn from
data as usual. IIT belongs to a family of causal ab-
straction techniques (Beckers and Halpern, 2019;
Beckers et al., 2020) that have proven successful
for obtaining human-interpretable explanations of
complex neural networks (Geiger et al., 2021; Wu
et al., 2022). The key innovation of IIT is to extend
these explanation techniques to model training. For
an overview of these methods and additional con-
nections to the literature, see Geiger et al. 2022a.
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Task name Meaning Context Splits

Reversal – – 20/4/1K
Unit Conversion – ✓ 30/4/1K
Unscramble ✓ – 100/4/2K
Single Word SC ✓ – 100/4/4/6K
Contextual SC ✓ ✓ 100/5/4K
Word Search ✓ ✓ 90/1/5/6/4K

Table 1: Character manipulation tasks. “SC” stands
for spelling correction. All tasks are form-based, but
they vary in meaning and context aspects. Our task set
covers all combinations of meaning and context. The
splits are ordered by train/val/test. The test splits are
“In-Vocab (IV)” and “Out-Of-Vocab (OOV)” for tasks
1–3 based on whether source tokens are seen in training;
“IV”, “OOV”, and “Real” with natural spelling errors
for Task 4; “Independent” and “Dependent” for Task 5
based on whether a correction is context dependent;
“OOV”, “O” with overlapped words, “P” with para-
phrased definitions, and combined “O+P” for Task 6.

3 Character-level Manipulation Tasks

Our suite of tasks (Figure 1) is designed to test
models along aspects of form, meaning, and con-
text. We provide a loose categorization of each
task in Table 1. All character manipulation tasks
involve aspects of form. However, the roles for
meaning and context vary by task. Our task set
covers all combinations of values. We also test
two variants of spelling correction that differ in the
role of context. For evaluating the form aspect, we
construct In-Vocab (IV) and Out-Of-Vocab (OOV)
splits with the source tokens in or out of the training
vocab. For evaluating meaning and context aspects,
we construct task-specific test sets detailed below.

3.1 Character Reversal

The Character Reversal task is to reverse the char-
acters contained in the input string (e.g., txpraa
⇒ aarpxt). The inputs and outputs do not need
to be valid English words. Hence the task is form
only, with no meaning or context involved.

3.2 Unit Conversion

The Unit Conversion task takes a decimal number,
a source unit, and a target unit, and applies decimal
shifting (multiplication or division by power of 10),
as in convert 1.23 m to cm ⇒ 123. The units
are large number numerals (“million”, “billion”,
and “trillion”) or length units (“centimeter”, “me-
ter”, and “kilometer”). The correct way to move

the decimal point depends on the units, but the
manipulation of digits itself is a mechanical, string-
oriented process of moving a character. Hence we
categorize the task as involving form and context,
but not meaning. It is in principle possible for a
model to find a semantic (truly arithmetic) solution
to this task, but this is not necessary to solve it.

3.3 Unscramble
The Unscramble task takes a random permutation
of a word and outputs the unscrambled word (e.g.,
tkneti ⇒ kitten). Unlike Brown et al. (2020),
we do not constrain the first or last letter of the
permutations. Unscrambling involves meaning, as
models need to recognize the sequence of char-
acters in the output as valid English words. We
construct the dataset from 30K English words by
randomly permuting letters in each word.

3.4 Single Word Spelling Correction
The Single Word Spelling Correction task takes a
word with a spelling error and outputs the correct
word (e.g., misspellde ⇒ misspelled). We fol-
low the setup of Belinkov and Bisk (2018) to intro-
duce four types of synthetic errors: swapping two
adjacent characters, substituting a character with
its neighbors on the keyboard, deleting a character,
and repeating a character. Similar to the Unscram-
ble task, spelling correction involves meaning be-
cause the correction needs to create an attested
English word. We construct the dataset from 30K
English words by adding synthetic errors to each
word. We also evaluate on the real spelling errors
collected by Belinkov and Bisk (2018).

3.5 Spelling Correction with Context
Spelling Correction with Context adds contextual
aspects to the previous single-word spelling cor-
rection task. Context can be critical in spelling
correction as some spelling errors have multiple
potential corrections; as shown in Figure 1, the er-
ror in “actuall” can either be a repeat of the letter “l”
or a deletion of the letter “y”, and the correct choice
depends on the surrounding context. We extract
sentences from the Wikipedia corpus2 as context
and introduce the same spelling errors as in our
Single Word task. The context length is capped at
64 characters. For test sets, our focus is the context
“Dependent” condition, as in our “actuall” example.
We also evaluate an “Independent” condition in

2We use the version pre-processed by HuggingFace at
https://huggingface.co/datasets/wikipedia
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which only one correction is valid. This trivializes
the role of the context and thus brings us closer to
Single Word Spelling Correction.

3.6 Word Search

Our Word Search task is adapted from the popular
Word Search Puzzle,3 in which players find hidden
words in a letter grid matching a theme, such as
colors or animals. The task involves relating the
meaning of the letters to the theme, i.e., the context.

We generate synthetic puzzles with the struc-
ture definition: letters, where letters con-
tains 24 characters. The task is to find in letters
a substring that, when reversed, is defined by
definition. We use reversed words to avoid the
confound that subword tokenization trivially re-
veals forward words. We use definitions from
WordNet Synsets (Miller, 1995) and a set of at
least 5 hyponyms per Synset. The task assumes a
fixed set of words per definition.

For training, we generate examples where the
letters contains two reversed English words at
random positions, with only one matching the def-
inition. The rest of letters contains words in
the forward direction. For instance, in Figure 1,
augustmacaronihsilgneerg embeds green at
the end and english at the 4th to last position.

For test sets, we consider four variations: “OOV”
with unseen tokenization of hidden words; “O”
with the two backward words overlapped, as shown
in our example above, which stress-tests the ability
to recognize words; “P” with “paraphrased” def-
initions from The Online Plain Text English Dic-
tionary,4 testing the ability to understand context;
“O+P” with both overlapped words and paraphrased
definitions. Our expectation is that the “O+P” test
scenario is the hardest in that it requires reason-
ing about the meaning of the full paraphrase and
sophisticated character-level relations.

Unlike Task 5, where meaning and context
mainly lie on the target side, Task 6 has context
on the source side only, but meaning on both sides,
allowing us to study the effects of subwords and
characters on input/output.

4 Character-level Interventions

Character-level inputs or outputs provide models
with direct evidence for learning about characters

3https://en.wikipedia.org/wiki/Word_search
4https://github.com/eddydn/DictionaryDatabase

(a) Intervention on the high-level causal model for the Reversal
task. The variable representing the last character of the word
“abc” is set to the value of the variable representing the first
character of the word “def”. The effect of intervention is the
output of the base example is changed from “cba” to “dba”.

(b) Aligned intervention on the neural model. Each character
in the subword is mapped sequentially to a 16d vector in En-
coder i th layer hidden states, at the same step as the subword.
As the hidden state dimension is 512 and the max number of
character per subword token is 16, the last 256 dimensions are
reserved for non-character features.

Figure 2: Intervention for the Reversal task.

as independent units or concepts. Subword tok-
enization methods do not provide such direct evi-
dence, and it seems clear that these models do not
reliably learn character-level concepts on their own
(Section 2.2). In the current section, we present a
method that seeks to address this shortcoming of
subword models by training models to internally
represent characters and the subword-to-character
mappings needed for character manipulations.

Our core method for doing this is interchange
intervention training (IIT; Geiger et al. 2022b). IIT
has three steps. (1) Define a high-level causal
model of the problem domain. (2) Align a vari-
able V in that causal model with a set of neurons
N in one’s target neural model. (3) Train the neural
model to make predictions according to the causal
model using not only standard input–output pairs,
but also interchange interventions: counterfactual
instances created by replacing the values of N in a
target example with those obtained by processing
a distinct input, with the counterfactual label pro-
vided by the causal model from step (1). The effect
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of this process is to train the model to represent
the variable V in the neurons N , which leads to
modular internal structure for the network.

4.1 Causal Models for Characters

The first step for IIT is defining a high-level causal
model. To illustrate this, we focus on the Charac-
ter Reversal task and then sketch how the needed
causal models can be defined for our other tasks.

Our causal model for Character Reversal is given
in Figure 2a. The input to this model is a single
string; for illustrative purposes only, we specify
that the string has length 3. The model creates
three intermediate variables V1, V2, and V3, one per
character, and outputs the values of those variables
in reverse order, concatenated back into a string.

This causal model is fully deterministic, and so
we know exactly what will happen if we intervene
on one of the variables Vi to change its value to
another character. For example, if the input is abc
but we set V3 = x, then the model will output xba.

For IIT, we perform such interventions using
pairs of examples, a base input (left) and a source
input (right) as in Figure 2a. We then take the
value created at our target variable V3 in the source
example and use it in place of the value of V1 in
the base example. In our example, this amounts to
replacing c with d, leading to output dba.

In most prior work on IIT, these interventions tar-
get the same variable in the base and source. Such
interventions are certainly useful, but they would
instruct the model to learn both the character and
its position, whereas our tasks depend on charac-
ters as unified concepts. Thus, we allow type-level
interventions like the one described in Figure 2a:
V1 can take on the value of V3 because both have
the same type. Type-level IIT is briefly explored
in Geiger et al. 2022b, where it is used to achieve
similarly position-independent representations for
handwritten images.

A similarly simple model can be defined for
our other purely form-based task, Unit Conversion,
which simply moves decimal places around based
on the unit specified in the input string. For tasks
involving meaning, the programs are somewhat
more complex due to their dependence on English.
For example, the Unscramble causal model forms
intermediate representations of the characters in its
input, as in Figure 2a, but the mapping to an output
depends on a lexicon. The spelling correction and
word search tasks are similarly constrained by a

lexicon. However, the important common theme
of all these programs is that they create character-
level intermediate variables as the basis for their
final output behavior.

4.2 Aligning the Causal and Neural Models
The second step for IIT is to define an alignment of
variables in the causal model with sets of neurons
in the target neural model. We again illustrate with
the Character Reversal task. Figure 2b summarizes
our alignment: the character variables V1, V2, and
V3 are mapped to the first-layer hidden states of
the Transformer Encoder. Each character in the
subword is mapped sequentially to a 16d vector of
the hidden state, at the same step as the subword.

For form-only tasks such as Reversal, the choice
of Encoder layer is less critical, as the Decoder
alone is sufficient to handle the task logic. For
semantic tasks, where the task logic is dependent
on the character values, character variables are best
mapped to early layers in the network.

4.3 Training with Character Interventions
The third and final step for IIT is model training.
IIT objectives have two core parts: a standard train-
ing objective and a counterfactual objective. The
standard objective simply uses the available train
data in the usual fashion. The counterfactual ob-
jective additionally requires models to conform to
the high-level causal model under interventions of
the sort depicted in Figure 2b. These two loss com-
ponents are weighted by coefficients λ1 and λ2.
(For a technical description of the IIT objective,
see Appendix A.2.)

This process can be thought of in two steps. First,
we intervene on the causal model as in Figure 2a:
given a base and a source example, we select a
character variable Vb from the base and Vs from
the source, in this case, variables representing the
third and first characters. Our chosen intervention
assigns the value of Vs to Vb, i.e., Vb ← d. This
leads to the output dba. This output will play the
role of a train label.

Next, we intervene on the neural model as in
Figure 2b. For this, we copy the 16d vector cor-
responding to Vs computed from the source input
to the 16d vector corresponding to Vb computed
from the base input, carrying the gradients with this
vector for backpropagation. This leads the model
to predict some output string s. Unlike with the
causal model, we do not know a priori what s will
be. However, comparing s with the output of our
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Figure 3: Resolving out-of-vocab inputs with inter-
pretable character representations. To reverse the unseen
token “stressed”, we first replace the unseen token with
random tokens seen in training. In this case, tokens
from “smargana”, the reverse of “anagrams”. We then
populate each position with an averaged representation
of each character in the unseen vocab.

causal model (dba) gives us an error signal. The
aggregate effect of these counterfactual updates is
to push the model to localize information about the
variables Vs and Vb in these aligned states.

4.4 Handling Out-of-Vocab Items

On its own, the above procedure does not provide a
way to generalize to input tokens unseen in training.
However, the interpretable character representa-
tions learned with Type-level IIT provide a natural
solution. Figure 3 summarizes our approach. We
first extract the 16d character representations from
a set of training subword tokens and compute an
averaged representation per character. Given an
unseen subword token, we substitute the unseen to-
ken with seen tokens and populate representations
of seen tokens with the averaged representation of
each character in the unseen token. We show ex-
perimentally (Section 5) that this method leads to
robust character manipulations over novel words.

5 Experiments

To evaluate how character, subword, and
intervention-based models generalize with respect
to form, meaning, and context, we experiment on
the six character manipulation tasks in Figure 1.

5.1 Baselines

We consider three groups of tokenization ap-
proaches: (1) subword-based models (without IIT);
(2) subword-based models with character-level in-
put and/or output; and (3) character-level models.
For (1), we fine-tune the pre-trained T5-small (Raf-

fel et al., 2020).5 We also experiment with in-
context learning by prompting GPT-3 (Brown et al.,
2020).6 For (2), we simply change the tokenization
of models in (1). For T5-small, we tokenize input
and/or outputs into characters (for Unit Conversion,
we only split digits and the decimal point). For
GPT-3, we insert hyphen/space between characters
in input and output. For (3), we fine-tune the pre-
trained ByT5-small (Xue et al., 2022).7 We choose
T5/ByT5 for its Encoder–Decoder architecture.

For Tasks 5–6, we also consider context-only
baselines to show that solving the task indeed re-
quires form. For Task 5, we replace each typo with
a mask token and fill with T5-small, which leads
to 0% accuracy. For Task 6, we randomly select a
word from the definition to words mapping, which
has 9.4% accuracy on both “OOV” and “O” splits.

5.2 Intervention-based Models
We apply our character intervention-based method
to the pre-trained T5-small model. The coefficients
λ1 and λ2 for the base and IIT losses are set to 1.

5.3 Evaluation
We use the test sets described in Section 3 (Table 1).

For metrics, we use the sequence-level accuracy,
i.e., the percentage of outputs that exactly match the
label. For Unscramble, we allow anagrams of the
label that are valid English words and non-identical
to input. For Single Word Spelling Correction,
we allow any valid English words that satisfy the
synthetic error rules. We report average accuracy
across runs.

For decoding, the T5/ByT5 models use greedy
decoding. For IIT models, OOV splits are evaluated
with the average-pooled character representations,
computed from 2K randomly sampled training ex-
amples (see Section 4.4 for details).

5.4 Results
Table 2 presents our results for all our tasks,
grouped by the informal typology in Table 1.

Our task suite reveals the accuracy trade-offs
between subword and character models when gen-
eralizing with respect to form, meaning, and con-
text. For form-based tasks (Tasks 1–2, Table 2a),
pure character-level models (Char-ST and ByT5)
achieve a clear win. As the meaning aspect is added
to the output (Tasks 3–4, Table 2b), the best overall

5https://huggingface.co/t5-small
6GPT-3 davinci-003 engine, used in December 2022.
7https://huggingface.co/google/byt5-small
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Reversal Unit Conversion
Method IV OOV IV OOV

Subword 49.29 0.25 86.84 65.00
+IIT 59.72 28.01 95.02 67.65

Char-T 99.15 5.73 99.58 69.29
+IIT 99.73 87.72 99.98 75.10

Char-S 53.42 17.94 94.07 79.08
Char-ST 99.80 97.26 99.98 86.63
ByT5 99.22 99.09 99.68 84.39

GPT-3 46.40 45.00∗ 84.20 94.20∗

GPT-3-C 75.80 73.40∗ 56.20 58.80∗

(a) Tasks without significant meaning components. Rever-
sal is not contextual whereas Unit Conversion is.

Unscramble Spelling Correction
Method IV OOV IV OOV Real

Subword 97.80 2.91 69.29 63.21 44.85
+IIT 98.97 72.63 77.02 63.91 51.79

Char-T 92.29 3.67 71.11 23.00 30.08
+IIT 96.17 69.98 76.74 70.14 38.46

Char-S 99.46 72.96 78.54 82.08 55.59
Char-ST 97.68 71.21 74.62 77.37 25.70
ByT5 99.19 74.71 76.14 80.08 31.32

GPT-3 50.80 38.20∗ 78.80 78.40∗ 73.00
GPT-3-C 16.20 14.00∗ 64.00 71.00∗ 63.80

(b) Tasks with significant meaning components but no contextual
modulation.

Method Independent Dependent

Subword 58.11 36.59
+IIT 67.00 46.55

Char-T 69.25 35.00
Char-S 73.49 45.26
Char-ST 69.50 30.98
ByT5 72.88 33.66

GPT-3 87.00 78.40

(c) Spelling Correction with Context, with significant form
and meaning components. The “Dependent” split shows sig-
nificant contextual effects, while the context “Independent”
split does not.

Method OOV O P O+P

Subword 24.07 93.65 71.17 64.13
+IIT 61.27 94.27 72.19 64.82

Char-T 6.73 73.18 74.89 50.52
Char-S 85.74 91.79 62.70 51.11
Char-ST 56.18 57.08 73.11 42.67
ByT5 68.62 72.67 84.06 57.52

GPT-3 60.00∗ 75.61 48.54 47.14

(d) Word Search with significant form and meaning com-
ponents. “OOV”: Hidden words with unseen tokenization;
“O”: Overlapping hidden words; “P”: Paraphrased definitions;
“O+P”: Both overlapping words and paraphrased definitions.

Table 2: Sequence-level accuracy, with best non-GPT results in bold. “Subword”: T5 subword model. “+IIT”: Joint
training with character-level interventions. “Char-T”: T5 with character-level target sequences. “Char-S”: T5 with
character-level source sequences. ‘Char-ST”: T5 with character-level source and target sequences. “ByT5”: ByT5
character model. “GPT-3”: GPT-3 davinci-003. “GPT-3-C”: GPT-3 with hyphen or space separated characters in
source and target. ∗For GPT-3, the IV vs. OOV distinction is tricky, since the subword vocab is different from the
T5 one.

(a) Character representations from model trained with
character-level interventions. Characters corresponding to
the same letter share similar representations.

(b) Representations extracted at the same locations from a
baseline model.

Figure 4: Comparison of character representations from a Reversal task model trained with character-level inter-
ventions and a baseline model. We use layer 1 for both. Each dot represents a character extracted from different
subword tokens, where the color represents the value of the character and the numerals give the string position.
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model becomes the one with character inputs and
subword outputs (Char-S). With more complicated
interactions between form, meaning, and context
(Tasks 5–6), subword-based models have a clear
advantage on splits where form alone is insuffi-
cient to determine the output. For the “Dependent”
split in Table 2c, subword models on the target side
(Subword+IIT, Char-S) are the best. For the “O+P”
split in Table 2d, subword models on both sides
(Subword, Subword+IIT) are the best. These obser-
vations align with the expectations one might have
based on prior literature.

Our IIT models are able to combine the advan-
tage of subword models with character models,
leading to the best accuracy on tasks involving
form, meaning, and context. On the “Dependent”
and “O+P” splits, Subword+IIT models outperform
the second best models Char-S and Subword by
1.29%/14.30% and 9.96%/0.69%. Moreover, for
form-based generalization, IIT also substantially
boosts accuracy on all five OOV splits by an aver-
age of 28.21% compared to the Subword model,
improving robustness on unseen token sequences.

Even with 175B parameters, GPT-3 is affected
by tokenization. We observe similar trade-offs be-
tween subword vs. character input/output on Rever-
sal, Unscramble, and Spelling Correction, with the
exceptions possibly due to character inputs reduc-
ing the value of GPT-3’s pretraining.

6 Analysis and Discussion

6.1 Error Analysis on Word Search

To further understand models’ biases towards us-
ing form, meaning, and context, we analyze perfor-
mance on the Word Search task. Specifically, we
measure how well the predictions match characters
in the letters or the meaning of the definition.
We define two new metrics: CharMatch, the per-
centage of predictions that are a substring of the
reversed letters, and DefMatch, the percentage
of predictions that matches the definition. Both
metrics would be 100% for a model with 100%
sequence-level accuracy. However, they diverge
when models make wrong predictions that only
capture some aspects of form, meaning, or context.
A model biased towards using form would have
high CharMatch but low DefMatch, and vice versa
for a model biased towards meaning and context.

Table 3 shows the results of this analysis.
Subword-based models are biased towards using
meaning and context for generalization and so have

Method CharMatch DefMatch

Subword 67.80 67.75
+IIT 72.96 67.97

Char-T 96.68 50.74
Char-S 66.64 51.99
Char-ST 99.75 42.87
ByT5 99.68 57.67

Table 3: CharMatch and DefMatch on the O+P split of
Word Search task.

higher DefMatch scores, whereas character-level
models are biased towards using form and so have
higher CharMatch scores. These findings are con-
sistent with what we observed in previous experi-
ments. For the “P” split, character-level models
(ByT5, Char-ST) perform well, as they exploit
shortcuts in the letters to identify word bound-
aries, which are removed in the “O” and “O+P”
splits. For this task, only Subword models appear
to be viable, and Subword+IIT is the best variant.

6.2 Interpretable Character-Level Structure

Finally, we note a qualitative advantage of the Sub-
word+IIT models: they embed accurate, coherent
representations of characters, illustrated in Fig-
ure 4a, with some meaningful clustering of charac-
ters (e.g., vowels cluster towards the left). The char-
acter representations are 16d vectors extracted at
the intervention sites (as shown in Figure 2b) over
2K examples. We use Principal Component Analy-
sis (PCA) to reduce the vectors to 2d and plot the
results. As a comparison, we also plot representa-
tions extracted at the same locations from the “Sub-
word” baseline model in Figure 4b. As expected,
these show no evidence of internal character-level
representations. (Appendix D provides similar vi-
sualizations for our other tasks.)

7 Conclusion

Character-level tasks have emerged as an Achilles
heel for large language models that use subword to-
kenization. These models do not reliably represent
the mapping from subword tokens to the characters
they contain, and thus they stumble with character-
level manipulations. We showed that Type-level
IIT can help. Using Type-level IIT, we trained net-
works to internally represent characters, and we
introduced a new suite of tasks that assess models
on character-level tasks involving different combi-
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nations of form, meaning, and context. While our
Subword+IIT models lag behind character-level to-
kenization models on simple character-level tasks,
they are superior for tasks that blend form, mean-
ing, and context. Overall, these findings suggest
that intervention-based methods like IIT provide a
powerful set of techniques for training models to
modularly represent different kinds of information
at different levels of abstraction.
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Limitations

The datasets and models produced by this work
are intended for research purposes only, not for
real world applications. In light of this, we do not
see any serious risks with the artifacts produced,
though we acknowledge that there can be subtle but
significant biases caused by how our task examples
interact with how our base models were pretrained.
This concern is perhaps especially noteworthy for
GPT-3, as we have only partial knowledge of its
structure and training inputs.

There are potential risks stemming from IIT as
well. With IIT, one shapes aspects of the training
process using a high-level causal model. To the ex-
tent that this model is intentionally or unintention-
ally biased in problematic ways, those biases are
likely to be amplified in the target model. However,
for the current work, the risks here seem minimal,
as we are focused on character-level tasks that are
mostly games.
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Supplementary Materials

A Training Details

A.1 IIT Data Generation

Given a training dataset D, generating character-level IIT data can be viewed as sampling triplets of a base
example (xb, yb) ∈ D, a source example (xs, ys) ∈ D, and an intervention example (xinv, yinv) where the
i-th character of xinv either comes from the i-th character of xb (no intervention on i-th character) or a
character in xs (an intervention on i-th character) and yinv is the intervention label. Note that (xinv, yinv)
does not need to be in D.

Now we describe the generation algorithm: (1) randomly sample a base example (xb, yb); (2) construct
xinv by randomly selecting a subset of characters C from xb as the intervention variables and randomly
assign each character in C an intervention value. In our experiments, for each base example, we use
a subset of at most 8 characters in tasks 1–4, up to all 64 input characters in task 5, and up to all 24
characters in the letters in task 6; (3) For tasks with simple causal models, such as Reversal and Unit
Conversion, compute the intervention label yinv based on xinv. If the causal model is not defined over xinv,
go back to step (2) to re-sample xinv. Alternatively, for tasks with more complicated causal models, check
if there exists an example in D with input equals to xinv. If so, use its label as yinv. If not, go back to step
(2) to re-sample xinv; (4) Search for a source example (xs, ys) ∈ D where xs contains all the intervention
values needed to construct xinv. If no such xs exists, go back to step (2) to re-sample xinv. Otherwise,
yield the triplet and go back to (1) until the program generates a total of N triplets. In our experiment, we
use an N to be 5 to 10 times larger than the size of D.

A.2 IIT Training Objectives

Given a generative language model f , we can decompose f into pre-intervention layers fpre and post-
intervention layers fpost, i.e. f = fpre ◦ fpost. For a model trained with the standard maximum likeli-
hood objective L(f(x), y) over input x, output f(x), and label y, we can simply add the IIT objective
L(y′inv, yinv), where y′inv = fpost(g(fpre(xb), fpre(xs))) is the intervention output computed from base input
xb and source input xs with intervention g (which sets a subset values of fpre(xb) to a subset of values of
fpre(xs)), and yinv is the intervention label. The final loss function is a linear combination of the two
terms L = λ1L(f(x), y) + λ2L(y

′
inv, yinv), where λ1 and λ2 are coefficients balancing the two terms.

A.3 Training Hyperparameters

For each task, models are trained until convergence, which leads to approximately 100% accuracy on
the training set and over 95% accuracy on validation sets. For T5-based models, the training takes up to
40/20/20/40/30/60 epochs for tasks 1–6. ByT5 models, due to its large size, tend to converge early and
overfit on task 1–2, hence we reduce the training epochs on the first two tasks to 10 and 5. All models are
trained with a batch size of 16, using Adam optimizer with an initial learning rate of 0.0005 and a linear
learning rate decay that halves the learning rate at the end.

A.4 Model Size and Computational Cost

The pre-trained T5-small model has 6 encoder layers and 6 decoder layers, with 60 million parameters
in total. The pre-trained ByT5 model has 12 encoder layers and 4 decoder layers, with 300 million
parameters in total. Our character-level intervention method does not add any additional weights to the
pre-trained model.

We train all models on a single NVIDIA TITAN RTX card with 24GB memory. For the Subword
baseline, the training time varies per task from 0.25 to 6 hrs, unit conversion being the fastest and
contextual spelling correction being the longest. Compared with Subword models, IIT models take 2.5
times (as IIT training is added on top of base training). Char-T, Char-S, Char-ST models take 1.5 times
(due to longer input sequences up to a factor of 3 and output sequences up to a factor of 2). ByT5 models
take 4 times. For inference cost, the ratio roughly holds except for IIT, which has the exact same inference
cost as Subword baseline.
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B In-context Learning Details for GPT-3

To assess whether large language models like GPT-3 have the ability to learn character-level manipulations,
we evaluate one of the largest publicly available foundation models GPT-3 (davinci-003 175B) on four
of our tasks: reversal, unit conversion, unscramble and single-word spelling correction. For all of our tasks,
we adapt the in-context learning paradigm without further fine-tuning. We provide k-shots in-context
learning demonstrations with input-output pairs before query model results for an unseen testing input.
We set the temperature to 0.0 with a short task description in the beginning. We allow maximally 64
generated tokens. In addition, we evaluate performance by providing character-level parsing by separating
a word character-by-character using the hyphen (i.e., “-”) for alphabet letters or space for number (since
“-.” is a single token in GPT-3 vocab). Hyphens are added for both the input and output strings. Spaces
are inserted before digits and decimal point only, where the space and the digit is tokenized into a single
token. We choose k to be 50 without character-level parsing, and 25 with character-level parsing to avoid
exceeding the prompt length restriction. For evaluation, we follow the metrics for evaluating T5-based
models. We use GPT-3 models from OpenAI for all of our experiments.8 Examples for each task are
included in Figure 5 to 8.

Please follow the instructions to manipulate the characters of the INPUT string
and generate the desired OUTPUT string. Please reverse the input string.

INPUT: rewols
OUTPUT: slower

[additional demonstrations abbreviated to save space]

INPUT: etaivbo
OUTPUT: obviate

Figure 5: Example GPT-3 prompt (gray) and targeted GPT-3 completion (bold) for the word reversal task.

Please follow the instructions to convert the unit of the number mentioned in
the INPUT string and generate the desired OUTPUT string.

INPUT: unit conversion: 91.2 cm to m
OUTPUT: 0.912

[additional demonstrations abbreviated to save space]

INPUT: 755.7 km in m
OUTPUT: 755700

Figure 6: Example GPT-3 prompt (gray) and targeted GPT-3 completion (bold) for the unit conversion task.

C License and Distribution

Below are the license and distribution of artifacts used in this research.
Wikipedia corpus: The Wikipedia dump is licensed under the Creative Commons Attribution-

ShareAlike 3.0 Unported License (CC BY-SA) and the GNU Free Documentation License (GFDL).
We access it through a pre-processed subset “20220301.en” provided by HuggingFace9.

8https://openai.com/api/
9https://huggingface.co/datasets/wikipedia#licensing-information
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Please follow the instructions to manipulate the characters of the INPUT string
and generate the desired OUTPUT string. Please unscramble the input string.

INPUT: m-e-o-s-h
OUTPUT: h-o-m-e-s

[additional demonstrations abbreviated to save space]

INPUT: l-e-a-s-t
OUTPUT: t-a-l-e-s

Figure 7: Example GPT-3-C prompt (gray) and targeted GPT-3-C completion (bold) for the word unscramble task.

Please follow the instructions to manipulate the characters of the INPUT string
and generate the desired OUTPUT string. Please reverse the input string.

INPUT: r-e-w-o-l-s
OUTPUT: s-l-o-w-e-r

[additional demonstrations abbreviated to save space]

INPUT: n-e-g-e-d
OUTPUT: d-e-g-e-n

Figure 8: Example GPT-3-C prompt (gray) and targeted GPT-3-C completion (bold) for the word reversal task.

Please follow the instructions to manipulate the characters of the INPUT string
and generate the desired OUTPUT string. Please correct any spelling error of
the input string.

INPUT: transported in an impure alfalfz seed shipment coming
OUTPUT: transported in an impure alfalfa seed shipment coming

[additional demonstrations abbreviated to save space]

INPUT: letter nold from the corresponding slot in a font
OUTPUT: letter mold from the corresponding slot in a font

Figure 9: Example GPT-3 prompt (gray) and targeted GPT-3 completion (bold) for the spelling correction with
context task.

The Online Text Plain English Dictionary: The Online Text Plain English Dictionary (OPTED) is
distributed under the license here10. We access the JSON version publicly available on GitHub11.

WordNet and NLTK: The WordNet software and database is distributed under WordNet 3.0 license12.
We access it through the NLTK 3.7 package, which is distributed under the Apache 2.0 License13.

Huggingface packages: We use the transformers 4.22.2 and the datasets 2.5.2 packages, both are
distributed under Apache License 2.0.14

10https://www.mso.anu.edu.au/~ralph/OPTED/
11https://github.com/eddydn/DictionaryDatabase
12https://wordnet.princeton.edu/license-and-commercial-use
13https://github.com/nltk/nltk/wiki/FAQ
14https://github.com/huggingface/transformers/blob/main/LICENSE
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Please follow the instructions to manipulate the characters of the INPUT string
and generate the desired OUTPUT string. Please find an reversed valid English
word from the provided letters. The meaning of the word is expressed in the
input string.

INPUT: a motor vehicle with four wheels: tseuqninoteahpnarrowness
OUTPUT: phaeton

[additional demonstrations abbreviated to save space]

INPUT: a small vehicle moved on wheels: elbitrevnocbamboonootrac
OUTPUT: convertible

Figure 10: Example GPT-3 prompt (gray) and targeted GPT-3 completion (bold) for the word search task.

PyTorch packages: We use PyTorch 1.12.1 distributed under BSD License (BSD-3)15.
Pre-trained T5-small and ByT5-small models: Both models are distributed under the Apache 2.0

License1617. We download the models from Huggingface.

D Visualization of IIT character representations

We visualize the character representations extracted from models trained with character-level interventions.
The character representations encode human-interpretable structures including (1) clear character-based
clusters in low-dimension projection of hidden representations (2) larger inter-cluster distance between
vowels and consonants (with letter “y” mostly in between).

15https://pypi.org/project/torch/
16https://huggingface.co/t5-small
17https://huggingface.co/google/byt5-small
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(a) Reversal with letters a to z. (b) Unit Conversion with digits 0 to 9 and the decimal point.

(c) Unscramble with letters a to z. (d) Spelling correction with letters a to z.

(e) Contextual Spelling Correction with letters A to Z and a
to z. Tint colors represent the upper cases, while darker colors
represent the lower cases. We omit clusters of digits, punctuation
marks, and white space due to their large inter-cluster distances
to letters.

(f) Word Search with letters a to z.

Figure 11: Character representations from subword models trained with character-level interventions. Each dot
represents a character extracted from different subword tokens, where the color represents the value of the character.
The character label for each cluster is anchored at the cluster center. Figure best viewed in color.
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