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Abstract

During language acquisition, children follow a
typical sequence of learning stages, whereby
they first learn to categorize phonemes before
they develop their lexicon and eventually mas-
ter increasingly complex syntactic structures.
However, the computational principles that lead
to this learning trajectory remain largely un-
known. To investigate this, we here compare
the learning trajectories of deep language mod-
els to those of children. Specifically, we test
whether, during its training, GPT-2 exhibits
stages of language acquisition comparable to
those observed in children aged between 18
months and 6 years. For this, we train 48 GPT-
2 models from scratch and evaluate their syn-
tactic and semantic abilities at each training
step, using 96 probes curated from the BLiMP,
Zorro and BIG-Bench benchmarks. We then
compare these evaluations with the behavior of
54 children during language production. Our
analyses reveal three main findings. First, sim-
ilarly to children, the language models tend
to learn linguistic skills in a systematic order.
Second, this learning scheme is parallel: the
language tasks that are learned last improve
from the very first training steps. Third, some –
but not all – learning stages are shared between
children and these language models. Overall,
these results shed new light on the principles
of language acquisition, and highlight impor-
tant divergences in how humans and modern
algorithms learn to process natural language.

1 Introduction
Language acquisition is marked by a series

of successive stages (Dupoux, 2018; Kuhl, 2004;
Werker, 2018). Within their first year of existence,
humans infants successively acquire prosody con-
tours (Mehler et al., 1988), phonetic categories
(Werker and Tees, 1984; Kuhl et al., 1992; Mazuka
et al., 2011) and frequent words (Tincoff and
Jusczyk, 1999; Bergelson and Swingley, 2012).

∗Equal Contribution

They then learn to produce basic syntactic struc-
tures (e.g. “The boy sang” or “The boy fell”), ques-
tions (e.g. “What sound does a cow make?”) and
nested syntactic structures (e.g. “The boy that I saw
sang”), at approximately 12, 30, and 42 months,
respectively (Friedmann et al., 2021). Even though
some children may take slightly longer to learn
than others, there is a set order in which children
acquire various syntactic structures (Friedmann and
Reznick, 2021).

Our understanding of the entire learning trajec-
tory of children remains very coarse, however. This
partly stems from the difficulty of measuring lin-
guistic skills in young children. In babies, exper-
imenters typically measure eye gaze and sucking
rate while children process linguistic stimuli, as
these reflexive behaviors are known to increase dur-
ing surprising events. Such “implicit” approaches
have successfully been used to assess whether non-
speaking infants detect linguistic violations (Za-
muner, 2006), distinguish lexical from grammat-
ical words (Shi et al., 1999) or discriminate their
native language from a foreign language (Mehler
et al., 1988; Kuhl et al., 2006; Nazzi et al., 2000).
In older children, linguistic skills can also be more
explicitly measured from spontaneous speech and
sentence repetition. For example, a recent study by
Friedmann et al. (2021), to which we compare our
work in this paper, quantified the extent to which
18 month to 6 year-old children produce variably
complex syntactic structures. For both of these ap-
proaches, however, the measures from children at
such early ages can be noisy and fragmented.

Interestingly, these issues do not apply to mod-
ern language models. Deep learning architectures
trained to predict words from their proximal con-
texts have proved immensely effective at learning
to process natural language (Radford et al., 2019;
Devlin et al., 2019). Unlike humans, these algo-
rithms can be easily probed during training, at any
time point and rate, and with unlimited number of
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test stimuli, without interfering with their language
acquisition (Jawahar et al., 2019; Manning et al.,
2020; Bowman and Dahl, 2021). Furthermore,
high-performing deep nets have been shown to im-
plicitly (Lakretz et al., 2019; Gulordava et al., 2018)
or explicitly learn to represent and use syntactic
structures (Manning et al., 2020), as well as to use
features such as concreteness and lexical class to
learn language (Chang and Bergen, 2022). Finally,
and importantly, these deep neural networks have
recently been shown to represent lexical, syntactic
and compositional representations similarly to the
adult brain (Jain and Huth, 2018; Toneva and We-
hbe, 2019; Caucheteux and King, 2022; Pasquiou
et al., 2022, 2023; Caucheteux et al., 2023). Evi-
dencing similar learning trajectories in children and
language models could thus provide an invaluable
framework to better understand the computational
principles underlying language acquisition.

Here, we compare the trajectory of language
acquisition between human children and modern
language models. We focus on three main ques-
tions. First, do these models learn linguistic skills
in a systematic order? Second, is this trajectory se-
quential or parallel? Third, is this trajectory similar
to that of children? These hypotheses are illustrated
in Figure 1.

Specifically, we train 48 GPT-2 architectures
(Radford et al., 2019) from scratch, using a stan-
dard next-word prediction objective. We then eval-
uate, at each training step, their linguistic abilities
with 96 semantic and syntactic probes curated from
the BLiMP, Zorro and BIG-Bench benchmarks
(Warstadt et al., 2020; Huebner et al., 2021; Sri-
vastava et al., 2022). Finally, we compare a subset
of these probes to the behavior of 54 children aged,
between 18 months and 6 years (Friedmann et al.,
2021).

2 Approach

2.1 Language models

We consider two main language models. First, we
use a pretrained language model – GPT-2 – as pro-
vided by HuggingFace 1 and pretrained on 40 GB
of data (Radford et al., 2019). Second, we sepa-
rately train 48 versions of a 12-layer GPT-2 model
from scratch. We train each model on WikiText103
(Merity et al., 2016) with a distinct random seed
to set its initial parameters and data-loader. Each
model is evaluated on all linguistic probes every

1https://huggingface.co/gpt2

100 training steps. Further training details are pro-
vided in Appendix B.

2.2 Zero-shot linguistic probes

Zero-shot linguistic probes are sentences or phrases
crafted to evaluate whether a model has learned a
particular linguistic skill, without training or fine-
tuning the model on that particular skill. In prac-
tice, a zero-shot probe consists of comparing the
estimated probability of a grammatical sentence
with that of a matched ungrammatical sentence.
This two-alternative forced-choice approach can
be compared to "acceptability judgements", classi-
cally used in linguistics (Warstadt et al., 2019).

We evaluate our models on 96 different linguis-
tic probes, curated from three open source bench-
marks, the details of which are presented in Ap-
pendix C.

Specifically, we compare the probability of each
sentence in a grammatical/ungrammatical pair by
evaluating the sum of the logarithm of the loss
output by the softmax layer:

ng∑

i=0

log(f(Xg)i) <

nu∑

j=0

log(f(Xu)j) (1)

with f the softmax layer of the language model,
Xg and Xu the grammatical and ungrammatical
sentences, respectively, and ng and nu, the number
of tokens in the grammatical and ungrammatical
sentences, respectively.

The accuracy of a given probe is the percent-
age of pairs where the estimated probability of the
grammatical sentence is higher than that of the un-
grammatical sentence.

2.3 Assessing learning trajectory

To evaluate whether the trajectory of language ac-
quisition is shared across models, we rank the
probes by their "acquisition time", i.e. the num-
ber of steps taken by a model to reach 90% of its
final accuracy on a particular probe, for each model
independently. We then assess the correlation of
ranks between all pairs of the 48 models and take
the average of these correlations. To estimate the
statistical significance of this average correlation
we redo this calculation for all possible model pairs
after shuffling the ranks of one of the models in
each pair. We repeat this permutation 1,000 times,
getting 1,000 values for this shuffled correlation. If
in all cases this shuffled correlation is lower than
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the true average correlation, then the order of ac-
quisition time is shared across models with p <
0.001.

2.4 Parallel versus Sequential learning

Language acquisition may be characterized by a
"sequential" or a "parallel" learning scheme (Fig-
ure 1). "Sequential" learning designates the case
where a complex skill does not start to be learned
before simpler skills are mastered. By contrast,
"Parallel" learning designates the case where all
skills are acquired simultaneously, but at differ-
ent speeds. The null hypothesis is that the order
in which an agent learns linguistic skills varies
across agents. To determine the learning scheme of
language models, we consider whether the probes
have a positive derivative in the first three check-
points (parallel learning) or not (sequential learn-
ing), and whether they have statistically different
learning rates (by performing a one-way ANOVA
test) across the three groups.

2.5 Assessing linguistic skill from children’s
behavior

Friedmann et al. (2021) studied 54 Hebrew-
speaking children between the ages of 18 - 71
months and investigated the emergence of 11 lin-
guistic phenomena, which the authors propose to
organize into three stages (details in Appendix A).
For our analysis we select the following tests, one
from each stage:

• Stage 1: Simple sentences in subject-verb
(SV) order

• Stage 2: Wh Questions

• Stage 3: Relative Clauses

Data collection consisted of spontaneous speech
samples produced by each child at home. Each
sample was then manually annotated to detect the
presence of each of the linguistic phenomena. A
linguistic phenomenon was considered learned if
and only if it was present in the speech sample.
Speech samples had a mean length of 151 utter-
ances per sample and standard deviation of 37. The
aggregated data was made available directly in the
original paper (under Creative Commons Attribu-
tion 4.0 International License), and here used for
comparison with our language models. In Table 1
we show which probes in the models matched with
these tests.

3 Results
We aim to compare the learning trajectories of

deep language models to those observed in 54 chil-
dren aged between 18 months and 6 years. For
this, we trained variants of GPT-2 models (Radford
et al., 2019) from 48 different random seeds with
the WikiText103 dataset (Merity et al., 2016) and
evaluated each model on 96 linguistic probes every
100 steps.

At the end of this training, 64 probes (66%) were
achieved above chance level (50% accuracy) by
all models. In comparison, a pretrained version
of GPT-2 large (Radford et al., 2019) provided
by Hugging Face2, and trained on a much larger
dataset3, achieves above-chance performance on
93 of the 96 probes.

3.1 A systematic learning trajectory

For clarity, we focus on the learning dynamics of
the probes that ultimately achieve above-chance
performance in our training. Figure 2 lists all
probes learned above chance level, ordered by their
average acquisition time. We perform the permu-
tation analysis outlined in 2.3, to evaluate whether
the order of acquisition is shared between models,
and find that their order of acquisition is correlated
with R = 0.743 and p < 0.001. These results sug-
gest that there is a systematic learning trajectory
among models.

3.2 Learning is parallel across linguistic tasks

Are these linguistic skills learned sequentially or
in parallel (Figure 1)? To address this question,
we evaluate whether each linguistic probe starts to
improve from the very first training steps but with
different rates (i.e. a “parallel” learning scheme)
or, on the contrary, whether some probes only start
to improve once others have reached a particular
performance (i.e. a “sequential” learning scheme).
As the individual learning trajectories of each probe
were noisy, we group the 64 linguistic probes into
three categories: early, middle and late acquisition
time (Figure 3).

Overall, we observe parallel learning between
the three groups: their performances all increase
from the beginning of training: 95% of tests in
all three groups have a positive derivative within
the first three hundred steps. However, they have
different learning rates, as evaluated with a one-
way ANOVA test on the learning rate (i.e. change

2https://huggingface.co/tftransformers/gpt2-large
340 GB compared to the 181 MB of WikiText103
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Figure 1: Hypotheses. Skill performance (y-axis) as a function of training (x-axis) illustrated on three tasks (colors)
and two agents (model or children). Sequential learning implies that the learning of a complex skill (e.g. C, shown
in red) does not start before simplest skills (e.g. A in green and B in blue) are fully learned. Parallel learning implies
that all skills are acquired simultaneously, but at different speeds. Sequential and parallel learning may cross an
arbitrary performance threshold at the same training step. The frequency at which we can probe artificial networks
during learning is much greater than what is realistically possible in children, giving us the timescale granularity to
distinguish sequential and parallel learning trajectories. We also present a null hypothesis, that artificial networks
with different random seeds may learn skills in a different order.

Stage Children Language Model
1 Simple sentences in Subject-Verb (SV) order SV agreement across simple sentences
2 Wh-questions SV agreement in questions
3 Relative Clauses (RCs) SV agreement across object RCs

Table 1: Linguistic phenomena in children selected for comparison with probes in the language models.

of accuracy over time) obtained in each group and
in each model (p < 10−23).

3.3 Comparison with children

Do these learning trajectories match the behavior
of human children? For the three probes that cor-
respond to the three stages identified in children’s
language acquisition (Table 1), we observe that the
order in which these three probes are learned by
the language models is the same as those of chil-
dren (Figure 4). This effect is robust across random
seeds: 46 of our 48 GPT-2 models follows this
order, where chance level is (1/3!)46 = 1.60e−36.
For this subset of language abilities, models and
children thus seem to acquire syntactic skills in a
similar order.

3.4 Learning of theoretically-defined stages is
parallel

In part 3.1, we showed that GPT-2 learns its lan-
guage abilities in parallel. Does this learning
scheme also characterize the three syntactic skills
investigated in children? To address this question,
we now look at the learning curves of the skills
defined in Table 1, as well as an additional probe:
Nounpp, as it can be separated into congruent and
incongruent cases which is important for the anal-

ysis in section 3.5. Overall, we observe that these
probes are all learned in parallel in the model (Fig-
ure 5A).

3.5 Models use both syntax and heuristics

Both an understanding of syntactic rules and a su-
perficial heuristics can lead to above-chance per-
formances on these probes. Indeed, in many sen-
tences (e.g. The cat [subject] of the lady [attractor]
is [verb] hungry.), the number of the verb is con-
gruent with the number of the adjacent attractor,
even if the two are not related syntactically. To
verify that the GPT-2 models effectively learn the
syntactic rules, we thus separately examine con-
gruent and incongruent cases. Incongruent cases
require knowledge of the syntax of the sentence
as the correct verb number is different from the
number of the attractor. Empirically, we observe
that the models do not learn the incongruent case
in stage three above chance level, and just barely
reach chance level on the incongruent case in stage
two (Figure 5B), indicating that our models are us-
ing heuristics rather than syntactic rules to achieve
high accuracy on the congruent cases (leading to
above chance performance on the probe overall in
Figure 5A). On the contrary, the pretrained GPT-
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[Correct]/[Incorrect] ExampleLinguistic Probe
The Lutherans couldn't [skate around]/[disagree with].

[Danielle]/[The eye] visited Irene.
Chris reached []/[who] the bear [that]/[] is washing trains.

There aren't [many][all] lights darkening.
Tara thinks that [she]/[herself] sounded like Wayne.

[They gave the person the tour]/[The person gave they the tour].
Those banks had [not][really] ever lied.

Rachel was [apt]/[exciting] to talk to Alicia.
Most cashiers are [disliked]/[flirted].

Cheryl thought about []/[who] some dog that upset Sandra.
Bruce knows [who]/that person that Dawn likes [that]/[] argued about a lot of guys.

Danielle finds out [that]/[who] many organizations have alarmed Chad.
Christina forgot [that]/[who] all plays that win worry Dana.

Regina [wanted]/[forced] it to be obvious that Maria thought about Anna.
[They built the mouse that farm]/[The mouse built that farm they].

Amanda was respected by some [waitresses]/[picture].
William has [declared]/[obliged] there to be no guests getting fired.

Carlos said that Lori helped [him]/[himself].
Laura got [the suit that the bird cut]/[what the suit cut the bird].

Sarah [spoke]/[spoken] without thinking last night.
Edward [hid]/[hidden] the cats.

Will robert [eat]/[force]?
No bird could catch [more than]/[at least] six plants.

Jeffrey's sons are [insulted]/[smiled] by Tina's supervisor.
[David would cure what snake]/[What would David cure snake]?

Jeffrey [hasn't]/[haven't] criticized Donald.
A lot of actresses' nieces have [toured]/[coped] that art gallery.

What did sarah [and the person work for]/[work for and the person]?
The [brother][brothers] by the lion is red.

Many teenagers were helping [themselves]/[herself].
Look at this happy [piece]/[pieces].

What color was the [piece]/[pieces]?
My brother moves [fast]/[to].

Those ladies walk through [those]/[that] oases.
Craig explored that grocery [store]/[stores].

Carl cures [those]/[that] horses.
She will give [herself]/[himself] the wire.

The actor that the boy [attracts]/[attract].
There was [a]/[most] leg that anne made.

Sarah thinks about herself [making]/[makes] a tree.
The [dress]/[dresses] crumples.

Phillip was lifting this [mouse]/[mice].
Tracy praises those lucky [guys]/[guy].

Who will [Elizabeth and Gregory cure]/[Elizabeth cure and Gregory]?
[Only]/[Even] his rabbit will ever be in her magic.

Mark imagines Erin might admire [herself]/[himself].
The actor that the boy beside the woman [attracts]/[attract].

That adult has brought [that]/[those] purple octopus.
This goose [isn't]/[weren't] bothering Edward.

The [pages]/[page] that i like were dirty.
Aaron [breaks]/[appeared] the glass

The [hidden]/[hid] offspring aren't confident.
This person shouldn't criticize this upset [child]/[children].

The actor that the boy beside the woman attracts [greets]/[greet].
Some actors buy [these]/[this] gray books.

There was [bound]/[unable] to be a fish escaping.
The actor that the boy attracts [blocks]/[block].

The athlete behind the bike [approves]/[approve].
The athlete [admires]/[admire].

Stacy imagines herself [praising]/[praises] this actress.
Curtis's boss discussed four [sons][happy sons] and Andrew discussed five [sick sons][sick].

The [woman]/[women] cleans every public park.
A sketch of lights [doesn't]/[don't] appear.

Allen got one [roman]/[] brain and chris got two []/[roman].

0 2500 5000 7500 10000 12500 15000
Training Step

Aquisition Time

Figure 2: The performance of the models on each linguistic probe over time is smoothed using a moving average
filter with window size of 6 checkpoints then the number of steps required to reach 90% of final accuracy (acquisition
time) is calculated. Probes are ordered by increasing average acquisition time. Results shown for 48 models. Only
probes which have final accuracy greater than chance (50%) are shown. This demonstrates that probes tend to be
learned in the same order by all agents with R = 0.743, p < 0.001, disproving the null hypothesis.

2 large achieves above 75% accuracy also on the
incongruent cases of these probes. Thus for the
models trained on the WikiText103, syntax is only
learned for stages one and two, and heuristics seem
to explain the above chance accuracy in stage three.
A larger training dataset is required to learn syn-
tax and not only heuristics for the most difficult

examples.

3.6 Impact of number biases in congruent and
incongruent sentences

In previous work, it was found that a variety of
language models have a bias towards plural English
verbs, and several studies (Jumelet et al., 2019;
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Figure 3: Linguistic probes grouped into 3 groups to
avoid plotting one line per probe. The probes in each
group correspond to the colours in Figure 2. Probes
which have final accuracy less than chance (50%) are
placed in their own group, and tend to zero likely due to
biases towards plural verbs in English (c.f. 3.6). Shading
is standard error of the mean across probes in the group.
This figure demonstrates that linguistic skills are learned
in parallel not in sequence.

Lakretz et al., 2021a,b) determined that LSTM-
based models have a default number and gender
prediction preference. To examine whether number
bias has a significant effect on our analysis, we
compare congruent sentences with only singular or
only plural verbs and incongruent sentences with a
plural or a singular verb. Accuracy on predicting
plural verbs increases sharply from the start of the
training and then drops. By contrast, the accuracy
of singular cases first drops and then rises (Figure
5C), indicating that the models are biased towards
plural verbs at the beginning of training. This bias
is overcome for the stage one probe but for stage
two and three it remains throughout training. This
explains the initial downward trend in Group 3
and why the unlearned probes tend toward zero in
Figure 3.

4 Discussion
The stages followed by children to acquire

language has been the topic of intense research
(Dupoux, 2018; Kuhl, 2004; Werker, 2018). While
this learning trajectory is becoming clearer for sub-
lexical representations (Dupoux, 2018), the acquisi-
tion of higher-level syntactic and semantic process-
ing remains largely unclear. Here, we approach this
long-lasting question through the lens of a deep lan-
guage architecture, GPT-2 (Radford et al., 2019),

to test whether this model follows a learning trajec-
tory similar to children.

4.1 Language acquisition: similarities and
differences between humans and GPT-2

First, we show that GPT-2 models tend to learn a
battery of linguistic phenomena (Warstadt et al.,
2020; Lakretz et al., 2019; Huebner et al., 2021) in
a consistent order. It is the reliability of the acquisi-
tion trajectory that allows a direct comparison with
the learning trajectory of children (Friedmann et al.,
2021). However, this consistency in GPT-2 mod-
els may result from two non-mutually exclusive
factors, that remain to be disentangled: either the
acquisition time of each linguistic phenomenon re-
lates to its frequency in natural language (e.g. Sim-
ple subject-verb-complement are more frequent in
natural language than nested syntactic structures;
Karlsson 2007), and/or it relates to their intrinsic
complexity (e.g. sentences with nested structure re-
quire more operations to be composed than simple
sentences). Future work systematically controlling
for these relative frequencies is thus necessary to
distinguish these two possibilities, and would build
upon work by Weber et al. (2021) who found that
less frequent linguistic phenomena can be learned
from fewer examples, though later in training.

Second, we show that the order in which lin-
guistic skills are acquired is similar between chil-
dren and GPT-2 – at least on the syntactic phenom-
ena that were evaluated in these two cohorts, and
with the limitation of using number agreement as
a proxy to whether the models acquire the corre-
sponding syntactic structure. Similarly to children,
GPT-2 models master subject-verb agreement in
SV sentences before they master it in questions,
or across nested center-embedded clauses (object-
relative clauses). This result thus complements
a series of studies comparing modern language
models and humans. For example, a recent study
showed that transformers trained on child-directed
data can achieve comparable accuracy on linguis-
tic probes to large pre-trained models (Huebner
et al., 2021). Similarly, several studies have re-
cently shown that the representations of GPT-2
become increasingly similar to those of the adult
human brain during its training (Caucheteux and
King, 2022). Finally, Lavechin et al. (2022) showed
that models trained on audio in a self-supervised
fashion learn phoneme and lexical abilities in a
similar trajectory to children.
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above 55%.
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Figure 5: Subject verb agreement. Shading is standard error of the mean across seeds. S: Singular. P: Plural. A.
Parallel learning is observed in the three stages defined by Friedmann et al. (2021), when results are averaged across
congruent and incongruent cases. B. Subject verb agreement on incongruent cases which indicate whether the model
understands syntax. The networks do not learn some syntax structures as the incongruent case of Short Nested
Outer does not reach above chance level. C. Development trajectories of the bias towards plural number in English.

4.2 A work in progress

It is important to stress that significant work re-
mains to be done before drawing any definitive con-
clusions about the similarities between language
acquisition in humans and algorithms.

First, we only consider a single architecture
(GPT-2, Radford et al. (2019)) with a unique tex-
tual corpus (WikiText103). Testing whether our

results hold true independently of the model and
training corpus remains an important milestone for
future research.

Second, linguistic abilities are not tested with the
same protocols in children and in the models: the
models are explicitly tested on next word predic-
tion, with a two-alternative forced-choice metric,
whereas children were implicitly evaluated on their
ability to spontaneously use specific syntactic struc-
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tures during natural speech.
Third, there were only three linguistic features

that were directly comparable between the model
probes and the data in children, and all were syntac-
tic. This leaves a significant margin of progress to
modulate our conclusion, and investigate whether
the lexicon, narrative structures, pragmatics and
world-knowledge are acquired in the same order in
humans and algorithms.

Fourth, the order in which some linguistic skills
were learned by GPT-2 does not trivially fit with
linguistic theory. For example, the probe “Sim-
ple”, which examines subject-verb agreement in a
simple sentence, was one of the last probes to be
learned by GPT-2 (it is part of group three in Figure
2). By contrast, "Wh Questions Subject Gap Long
Distance" was among the first probes to be to be
learned, even though it would be expected to be
much harder than “Simple”. This unexpected result
may be due to the way we approximate "Acquisi-
tion Time", namely, the moment when the probes
reaches 90% of the final accuracy. Consequently,
probes with very low final accuracy could end up
with a shorter Acquisition Time, because noise
may lead to crossing the 90% threshold relatively
quickly.

Finally, we show that our models appear to use
heuristics rather than a deep understanding of syn-
tax for the most difficult linguistic probes (incon-
gruent numbers between verbs and their attrac-
tors) and were biased towards plural English verbs.
While our models learn only 66% of tasks to above
chance level, a larger GPT-2 pretrained on consid-
erably more texts successfully perform on 97% of
the tasks, and has an accuracy above 75% on the
incongruent examples, meaning this bias and re-
liance on heuristics could potentially be solved by
training on a larger dataset.

In sum, additional work remains necessary to
identify the exact elements of convergence and di-
vergence between the acquisition of language in
models and in children.

4.3 Fueling the debate between nativism
versus empiricism

The present study fuels a long-lasting debate on
the acquisition of language. While “empiricists“
argue that language can be acquired with a statis-
tical approach (Clark, 2002; Kolodny et al., 2015;
Chater and Christiansen, 2018; McCauley and
Christiansen, 2019), “nativists“ maintain that this
ability depends on a core and innate operation, spe-

cific to humans (Chomsky, 1959, 1971).
The present study shows how modern language

models may contribute to resolving this debate, by
systematically studying which components of a
model (e.g. architecture) or properties of the train-
ing data (e.g., frequency of sentence structures)
contribute to shape the trajectory of language ac-
quisition. Claims about an innate Universal Gram-
mar could be understood as an inductive bias of a
language model, implemented in its architecture
and dynamics, which tightly constrains learning
trajectories across models. If this bias is hierar-
chical (rather than linear) then this could lead to
learning trajectories that follow the structure of the
syntactic tree, consistently with the hypothesis of
three linguistic stages presented by Friedmann et al.
(2021) in humans and what we find in this study
in language models. Indeed, neural language mod-
els have been previously shown to have a weak
inductive bias towards hierarchical processing (Mc-
Coy et al., 2020; Kharitonov and Chaabouni, 2020),
which can partially explain our results.

This result echos the recent observation that syn-
tactic trees spontaneously emerge in the middle
layers of neural language models (Hewitt and Man-
ning, 2019). Together, these elements thus suggest
that modern neural networks provide fruitful mod-
els of language acquisition and could reconcile or
settle the confronting theories of language acquisi-
tion (Warstadt and Bowman, 2022).

4.4 Conclusion

Overall, the similarities identified between children
and GPT-2 suggest that there may be a small set of
means by which to efficiently acquire language.
This result is anything but trivial: humans and
deep neural networks have extraordinarily differ-
ent architectures, training, and language exposure.
If generalized, this systematic learning trajectory
would support the existence of an intrinsic hierar-
chy of linguistic structures that both machines and
humans must climb, be that through inductive bi-
ases or properties of the training data, to master the
faculty of language. And while these hypotheses
remain open, the path to resolve them has never
been clearer.

12212



Acknowledgements
We would like to thank Dieuwke Hupkes, Naama

Friedmann, Marco Baroni and the attendees of the
EviL meetings for their comments and suggestions.

This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innova-
tion program under the Marie Skłodowska-Curie
grant agreement No 945304, for L.E for her work
at PSL. This work was funded in part by FrontCog
grant ANR-17-EURE-0017 for the work of L.E.
and J.R.K. for their work at PSL.

References
Elika Bergelson and Daniel Swingley. 2012. At

6–9 months, human infants know the meanings of
many common nouns. Proceedings of the National
Academy of Sciences, 109:3253–3258.

Samuel R. Bowman and George Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4843–4855.

Charlotte Caucheteux, Alexandre Gramfort, and Jean-
Rémi King. 2023. Evidence of a predictive coding
hierarchy in the human brain listening to speech. Na-
ture Human Behaviour, pages 1–12.

Charlotte Caucheteux and Jean Rémi King. 2022.
Brains and algorithms partially converge in natural
language processing. Communications Biology, 5(1).

Tyler A. Chang and Benjamin K. Bergen. 2022. Word
acquisition in neural language models. Transactions
of the Association for Computational Linguistics,
10:1–16.

Nick Chater and Morten H Christiansen. 2018. Lan-
guage acquisition as skill learning. Current opinion
in behavioral sciences, 21:205–208.

Noam Chomsky. 1959. Review of verbal behavior.
35(1):26–58. Publisher: Linguistic Society of Amer-
ica.

Noam Chomsky. 1971. Problems of Knowledge and
Freedom. New York,: W.W. Norton.

Alexander Clark. 2002. Unsupervised language ac-
quisition: Theory and practice. arXiv preprint
cs/0212024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova Google, and AI Language. 2019.
Bert: Pre-training of deep bidirectional transformers
for language understanding. Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186.

Emmanuel Dupoux. 2018. Cognitive science in the
era of artificial intelligence: A roadmap for reverse-
engineering the infant language-learner. Cognition,
173:43–59.

Naama Friedmann, Adriana Belletti, and Luigi Rizzi.
2021. Growing trees: The acquisition of the left
periphery. Glossa: a journal of general linguistics,
39(1).

Naama Friedmann and Julia Reznick. 2021. Stages
rather than ages in the acquisition of movement struc-
tures: Data from sentence repetition and 27696 spon-
taneous clauses. Glossa: a journal of general lin-
guistics, 39(1).

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1195–1205, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4129–4138.

Philip Huebner. 2022. Unmasked. https://
github.com/phueb/UnMasked. (Accessed
2023/05/24).

Philip A Huebner, Elior Sulem, Cynthia Fisher, and Dan
Roth. 2021. BabyBERTa : Learning More Grammar
With Small-Scale Child-Directed Language. Pro-
ceedings of the 25th Conference on Computational
Natural Language Learning, pages 624–646.

Shailee Jain and Alexander Huth. 2018. Incorporating
context into language encoding models for fmri. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657.

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes.
2019. Analysing neural language models: Contex-
tual decomposition reveals default reasoning in num-
ber and gender assignment. Proceedings of the 23rd
Conference on Computational Natural Language
Learning (CoNLL), pages 1–11.

Fred Karlsson. 2007. Constraints on multiple center-
embedding of clauses. Journal of Linguistics,
43(2):365–392.

12213

https://doi.org/10.1073/pnas.1113380109
https://doi.org/10.1073/pnas.1113380109
https://doi.org/10.1073/pnas.1113380109
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://www-nature-com.insb.bib.cnrs.fr/articles/s41562-022-01516-2
https://www-nature-com.insb.bib.cnrs.fr/articles/s41562-022-01516-2
https://doi.org/10.1038/s42003-022-03036-1
https://doi.org/10.1038/s42003-022-03036-1
https://doi.org/10.1162/TACL_A_00444/109271
https://doi.org/10.1162/TACL_A_00444/109271
https://scholar.google.com/
https://scholar.google.com/
https://doi.org/10.2307/411334
https://arxiv.org/abs/cs/0212024
https://arxiv.org/abs/cs/0212024
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www-sciencedirect-com.insb.bib.cnrs.fr/science/article/pii/S0010027717303013
https://www-sciencedirect-com.insb.bib.cnrs.fr/science/article/pii/S0010027717303013
https://www-sciencedirect-com.insb.bib.cnrs.fr/science/article/pii/S0010027717303013
https://doi.org/10.16995/glossa.5877
https://doi.org/10.16995/glossa.5877
https://www.glossa-journal.org/article/id/5716/
https://www.glossa-journal.org/article/id/5716/
https://www.glossa-journal.org/article/id/5716/
https://www.glossa-journal.org/article/id/5716/
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://aclanthology.org/N19-1419/
https://aclanthology.org/N19-1419/
https://github.com/phueb/UnMasked
https://github.com/phueb/UnMasked
https://github.com/phueb/UnMasked
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/K19-1001
https://doi.org/10.18653/v1/K19-1001
https://doi.org/10.18653/v1/K19-1001
https://www.jstor.org/stable/40057996
https://www.jstor.org/stable/40057996


Eugene Kharitonov and Rahma Chaabouni. 2020. What
they do when in doubt: a study of inductive biases in
seq2seq learners. arXiv:2006.14953.

Oren Kolodny, Arnon Lotem, and Shimon Edelman.
2015. Learning a generative probabilistic grammar
of experience: A process-level model of language
acquisition. Cognitive Science, 39(2):227–267.

Patricia K. Kuhl. 2004. Early language acquisition:
cracking the speech code. Nature Reviews Neuro-
science, 5:831–843.

Patricia K Kuhl, Erica Stevens, Akiko Hayashi,
Toshisada Deguchi, Shigeru Kiritani, and Paul Iver-
son. 2006. Fast-track report infants show a facilita-
tion effect for native language phonetic perception
between 6 and 12 months. Developmental Science,
9:13–21.

Patricia K. Kuhl, Karen A. Williams, Francisco Lac-
erda, Kenneth N. Stevens, and Bjorn Lindblom. 1992.
Linguistic experience alters phonetic perception in
infants by 6 months of age. Science, 255:606–608.

Yair Lakretz, Théo Desbordes, Dieuwke Hupkes, and
Stanislas Dehaene. 2021a. Causal transformers per-
form below chance on recursive nested constructions,
unlike humans. arXiv:2110.07240.

Yair Lakretz, Dieuwke Hupkes, Alessandra Vergallito,
Marco Marelli, Marco Baroni, and Stanislas Dehaene.
2021b. Mechanisms for handling nested dependen-
cies in neural-network language models and humans.
Cognition, 213:104699. Special Issue in Honour of
Jacques Mehler, Cognition’s founding editor.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syntax
units in LSTM language models. Association for
Computational Linguistics, pages 11–20.

Marvin Lavechin, Maureen De Seyssel, Hadrien Ti-
teux, Hervé Bredin, Guillaume Wisniewski, Alejan-
drina Cristia, and Emmanuel Dupoux. 2022. Statis-
tical learning bootstraps early language acquisition.
PsyArXiv.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the Ability of LSTMs to Learn
Syntax-Sensitive Dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Christopher D. Manning, Kevin Clark, John Hewitt,
Urvashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences of the United States of
America, 117:30046–30054.

Reiko Mazuka, Yvonne Cao, Emmanuel Dupoux, and
Anne Christophe. 2011. The development of a
phonological illusion: A cross-linguistic study with
japanese and french infants. Developmental Science,
14:693–699.

Stewart M McCauley and Morten H Christiansen.
2019. Language learning as language use: A cross-
linguistic model of child language development. Psy-
chological review, 126(1):1.

R Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Computa-
tional Linguistics, 8:125–140.

Jacques Mehler, Peter Jusczyk, Ghislaine Lambertz,
Nilofar Halsted, Josiane Bertoncini, and Claudine
Amiel-Tison. 1988. A precursor of language acquisi-
tion in young infants. Cognition, 29:143–178.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv:1609.07843.

Thierry Nazzi, Peter W. Jusczyk, and Elizabeth K. John-
son. 2000. Language discrimination by english-
learning 5-month-olds: Effects of rhythm and famil-
iarity. Journal of Memory and Language, 43:1–19.

Alexandre Pasquiou, Yair Lakretz, John Hale, Bertrand
Thirion, and Christophe Pallier. 2022. Neural lan-
guage models are not born equal to fit brain data,
but training helps. In ICML 2022-39th International
Conference on Machine Learning, page 18.

Alexandre Pasquiou, Yair Lakretz, Bertrand Thirion,
and Christophe Pallier. 2023. Information-restricted
neural language models reveal different brain re-
gions’ sensitivity to semantics, syntax and context.
arXiv:2302.14389.

Yada Pruksachatkun, Phil Yeres, Haokun Liu, Jason
Phang, Phu Mon Htut, Alex Wang, Ian Tenney, and
Samuel R. Bowman. 2020. jiant: A software toolkit
for research on general-purpose text understanding
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 109–117, Online. As-
sociation for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners. Se-
mantic Scholar. (Accessed 2023-05-04).

Rushen Shi, Janet F Werker, and James L Morgan. 1999.
Newborn infants’ sensitivity to perceptual cues to
lexical and grammatical words. Cognition, 72:B11–
B21.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models. arXiv 2206.04615.

Ruth Tincoff and Peter W. Jusczyk. 1999. Some be-
ginnings of word comprehension in 6-month-olds.
Psychological Science, 10:172–175.

12214

https://arxiv.org/
https://arxiv.org/
https://arxiv.org/
https://doi.org/10.1038/nrn1533
https://doi.org/10.1038/nrn1533
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7687.2006.00468.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7687.2006.00468.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1467-7687.2006.00468.x
https://doi.org/10.1126/SCIENCE.1736364
https://doi.org/10.1126/SCIENCE.1736364
https://doi.org/10.48550/arXiv.2110.07240
https://doi.org/10.48550/arXiv.2110.07240
https://doi.org/10.48550/arXiv.2110.07240
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104699
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104699
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.18653/v1/N19-1002
https://psyarxiv.com/rx94d/
https://psyarxiv.com/rx94d/
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1073/PNAS.1907367117
https://doi.org/10.1073/PNAS.1907367117
https://doi.org/10.1073/PNAS.1907367117
https://doi.org/10.1111/j.1467-7687.2010.01015.x
https://doi.org/10.1111/j.1467-7687.2010.01015.x
https://doi.org/10.1111/j.1467-7687.2010.01015.x
https://psycnet.apa.org/record/2018-67240-001
https://psycnet.apa.org/record/2018-67240-001
https://aclanthology.org/2020.tacl-1.9/
https://aclanthology.org/2020.tacl-1.9/
https://aclanthology.org/2020.tacl-1.9/
https://doi.org/10.1016/0010-0277(88)90035-2
https://doi.org/10.1016/0010-0277(88)90035-2
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.1006/jmla.2000.2698
https://doi.org/10.1006/jmla.2000.2698
https://doi.org/10.1006/jmla.2000.2698
https://arxiv.org/abs/2207.03380
https://arxiv.org/abs/2207.03380
https://arxiv.org/abs/2207.03380
https://arxiv.org/abs/2302.14389
https://arxiv.org/abs/2302.14389
https://arxiv.org/abs/2302.14389
https://doi.org/10.18653/v1/2020.acl-demos.15
https://doi.org/10.18653/v1/2020.acl-demos.15
https://doi.org/10.18653/v1/2020.acl-demos.15
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://doi.org/10.1016/S0010-0277(99)00047-5
https://doi.org/10.1016/S0010-0277(99)00047-5
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
https://doi.org/10.1111/1467-9280.00127
https://doi.org/10.1111/1467-9280.00127


Mariya Toneva and Leila Wehbe. 2019. Interpreting and
improving natural-language processing (in machines)
with natural language-processing (in the brain). In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Alex Warstadt and Samuel R Bowman. 2022. What
artificial neural networks can tell us about human
language acquisition. arXiv:2208.07998.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng Fu Wang, and Samuel R.
Bowman. 2020. Erratum: “blimp: The benchmark of
linguistic minimal pairs for english”. Transactions of
the Association for Computational Linguistics, 8:867–
868.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Lucas Weber, Jaap Jumelet, Elia Bruni, and Dieuwke
Hupkes. 2021. Language modelling as a multi-task
problem. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2049–2060,
Online. Association for Computational Linguistics.

Janet F. Werker. 2018. Perceptual beginnings to
language acquisition. Applied Psycholinguistics,
39:703–728.

Janet F. Werker and Richard C. Tees. 1984. Cross-
language speech perception: Evidence for perceptual
reorganization during the first year of life. Infant
Behavior and Development, 7:49–63.

Tania S. Zamuner. 2006. Sensitivity to word-final
phonotactics in 9- to 16-month-old infants. Infancy,
10:77–95.

Appendix
A Tests in Children

Detailed description of tests available in children,
in the three linguistic stages defined by (Friedmann
et al., 2021):

• Stage 1: Subject-Verb Simple, Subject-Verb
Unaccusative, Verb-Subject Unaccusative

• Stage 2: Root WH-Argument, WH-Adjunct
Excluding Why, Preposed Adverb, Root y/n

• Stage 3: Why, Relative Clause, Topicalisation,
Embedding

The probes chosen for comparison (stated in Ta-
ble 1), were the only probes that matched well with
one of the test available in children. In addition
Nounpp was examined in the models, as it fits into

the linguistic stage 2, and, as it is part of the BIG-
Bench probes, could be separated into congruent
and incongruent sentences.

B Model Training
To evaluate linguistic abilities of a high-

performance language model, we first use the
HuggingFace pretrained GPT-2 large which has
774M parameters and is trained on 40GB of data.
This model has one-shot perplexity of 22 on Wiki-
Text103 (Radford et al., 2019).

Then, to evaluate how linguistic abilities vary
with language acquisition, we separately trained 48
models (each with a distinct random seed which
set the model’s initial parameters and the seed of
the dataloader) using the 12-layer GPT-2 architec-
ture (Radford et al., 2019) provided by Hugging-
Face4 on WikiText103 (Merity et al., 2016) with
a learning rate of 10−5 and a batch size of 16 dis-
tributed over 8 GPUs, making a total batch size
of 64 and a context size of 128. Training was
stopped when then validation loss plateaued, reach-
ing final perplexity of 28 after 10 epochs. This is
lower perplexity than the one-shot performance of
the HuggingFace pretrained 12-layer GPT-2 which
was 37.5, which is logical as our model was trained
specifically on this dataset.

In all cases we used the pretrained tokenizer
which has vocabulary size of 50,257. All other
parameters were the default training arguments for
the transformer provided by HuggingFace. The
HuggingFace architectures are publicly available
under an MIT license, and WikiText103 is available
under Creative Commons Attribution-ShareAlike
License.

C Linguistic Probe Benchmarks
We use three different zero-shot benchmarks.

The first benchmark, ‘BLiMP’ (The Benchmark
of Linguistic Minimal Pairs for English) (Warstadt
et al., 2020) contains 67 different probes, each in
the form of 1,000 pairs of grammatical and un-
grammatical sentences designed to isolate a spe-
cific linguistic phenomenon. Adult human perfor-
mance on BLiMP is 96.4% (Warstadt et al., 2020).
The second benchmark, ‘Zorro’ 5, was developed
with a vocabulary frequent in child-directed cor-
pora. Zorro contains 13 probes, each consisting of
2,000 pairs of sentences. Finally, the third bench-
mark is the Subject-Verb Agreement Task of BIG-

4https://huggingface.co/gpt2
5https://github.com/phueb/Zorro
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Bench (Srivastava et al., 2022; Lakretz et al., 2019,
2021b; Linzen et al., 2016; Gulordava et al., 2018).
We focus on the syntactic probes, namely: "Sim-
ple English" which contains 600 pairs, "NounPP"
which contains 2,400 pairs, and "Short Nested In-
ner", "Short Nested Outer", "Long Nested Inner"
and "Long Nested Outer" which each contain 4,096
pairs of grammatical and ungrammatical sentences.

Accuracy on a linguistic probe is evaluated with
the Jiant (Pruksachatkun et al., 2020) and Un-
Masked method (Huebner, 2022). In practice, sen-
tences are input to the model in batches of 300,
with padding on the left to make all sentences the
length of the longest sentence in the batch. The
logit values of punctuation are discarded when esti-
mating the probability of a sentence.

Zorro, Jiant and UnMasked are publicly avail-
able under the MIT License, BLiMP under a CC
BY License, and BIG-Bench under the Apache
License 2.0.
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