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Abstract

Large language models have made remarkable
progress on a variety of NLP tasks. However, it
has been found that they tend to rely on shortcut
features that spuriously correlate with labels
for prediction, which weakens their general-
ization on out-of-distribution samples. In this
paper, we propose a human attention guided
approach to identifying and mitigating short-
cut learning, which encourages the LLM-based
target model to learn relevant features. We de-
fine an attention-based measurement to capture
both model and data bias and identify short-
cut tokens by exploring both human and neural
attention. In a self-distillation framework, we
mitigate shortcut learning by dynamically ad-
justing the distillation temperature according
to the detected shortcut tokens and estimated
shortcut degree. Additionally, we utilize human
attention as a supervisory signal to constrain
large language models to pay more attention to
relevant tokens. Experimental results on multi-
ple NLP tasks show that our proposed method
can effectively identify shortcut tokens, and
significantly improve the robustness of large
language models on OOD samples, while not
undermining the performance on IID data.

1 Introduction

Large language models (LLMs), e.g., BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), GPT-
3 (Brown et al., 2020), have achieved state-of-the-
art performance in a wide variety of NLP tasks.
However, recent studies show that these models
often exploit spurious correlations between short-
cut tokens and labels, rather than capture under-
lying semantics related to the target task (Utama
et al., 2020b; McCoy et al., 2019; Gururangan et al.,
2018). Such LLMs may suffer from the robust-
ness issue when confronted with out-of-distribution
(OOD) samples as spurious correlations (i.e., short-
cut features) learned from the training data are usu-
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ally absent in OOD samples (Wang and Culotta,
2021).

The main causes of shortcut learning include
data bias usually caused by data crowdsourcing
(Gururangan et al., 2018) and model bias towards
learning simple features (Shah et al., 2020). Previ-
ous works measure the degree of shortcut learning
often by data statistics and model interpretability
methods (McCoy et al., 2019; Du et al., 2021). Par-
ticularly, they estimate the shortcut degree of each
sample based on the tokens that are correlated with
labels. However, they do not distinguish shortcut
tokens (spuriously correlated tokens) from genuine
correlated tokens (Winship and Morgan, 1999).

With identified shortcut tokens, various ap-
proached have been proposed to suppress LLM-
based task-specific models learning shortcut fea-
tures by adjusting the loss function to mitigate
shortcut learning, such as sample re-weighting
(Schuster et al., 2019), product of experts (Sanh
et al., 2021). These methods have achieved signifi-
cant improvements on OOD samples, but at the cost
of undermining the performance of LLM-based
task-specific models on independent and identically
distributed (IID) samples (Utama et al., 2020a).
Additionally, recent studies have found that these
methods actually encode more biases to the inner
representations of LLMs (Mendelson and Belinkov,
2021).

In this paper, we propose to address these is-
sues via human attention that implicates the cogni-
tive processing behaviour of human brains. With
the aid of human attention, we want to encourage
LLM-based task-specific models to learn relevant
features, so as to improve the performance on both
IID and OOD samples. Incorporating human atten-
tion into neural models can be regarded as a human-
in-the-loop learning, where human feedback has
proven capable of not only effectively improving
both the accuracy and robustness of models, but
also building strong interpretability and credibil-
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ity for models (Wang et al., 2021; Stiennon et al.,
2020). Additionally, human attention based ap-
proaches have been successfully applied in a range
of NLP tasks recently, such as paraphrase genera-
tion (Sood et al., 2020), entity linking (Klie et al.,
2020).

Encouraged by these, we propose HuaSLIM,
a Human attention motivated Shortcut Learning
Identification and Mitigation framework for large
language models. Specifically, to identify short-
cut tokens, we introduce an attention-based local
mutual information metric that takes into account
both lexical bias and model behavior bias to de-
tect tokens highly correlated with certain labels.
We then automatically distinguish spurious correla-
tions from genuine correlations based on the orthog-
onal information between human attention-based
correlation and neural attention-based correlation,
instead of directly using the tokens that are highly
correlated with labels. Intuitively, ‘spurious’ to-
kens are paid more attention to during model train-
ing, while less attention in human reading. For
shortcut learning mitigation, we based HuaSLIM
on self-distillation (Furlanello et al., 2018). We uti-
lize the estimated shortcut learning degree of each
sample to dynamically adjust the temperature in
distillation, in the goal of softening the output distri-
bution of the teacher model, thereby discouraging
the reliance of LLM-based task-specific models on
shortcut learning.

Additionally, we force LLM-based task-specific
models to learn how humans understand language
by simulating human reading behavior. Specifi-
cally, we introduce a new training objective that
drives neural attention to fit human attention dis-
tribution. In this way, LLM-based task-specific
models are trained to explicitly pay more attention
to relevant tokens identified by human attention. To
avoid the effect of attention heads playing different
roles in Transformer (Clark et al., 2019b), we add
an additional soft attention layer after the last layer
of LLMs.

Human attention signals used in this paper are
deduced from human gaze duration generated by
EZ-Reader that has been widely used in the study of
human reading process (Reichle et al., 2009, 2013).
This avoid expensive collection of eye movement
signals.

In a nutshell, our contributions are listed as fol-
lows:

• We introduce a shortcut learning degree mea-

surement based on human attention to auto-
matically identify shortcut tokens. Our anal-
yses show that it can effectively distinguish
spurious correlations from genuine correla-
tions.

• We use the shortcut learning degree of sam-
ples to control the temperature in the self-
distillation of LLMs, significantly improving
their robustness.

• We propose a human attention guided short-
cut learning mitigation method, which forces
LLMs to shift attention from shortcut features
to genuine features implicated by human at-
tention.

• We conduct experiments on three NLP tasks:
NLI, fact verification and paraphrase identifi-
cation. Results suggest that proposed method
can significantly improve the performance on
both IID and OOD samples.

2 Related Work

Identification of Shortcut Learning. As short-
cut learning has significantly hurt the robustness of
neural models, a large number of studies have been
dedicated to identifying the shortcut learning prob-
lem and understanding how neural networks exploit
spurious correlations (Sagawa et al., 2020; Wang
and Culotta, 2020; Wang et al., 2022). In early
works, adversarial datasets are built to evaluate
the generalization ability of neural models on OOD
samples, such as HANS that evaluates whether NLI
models adopt fallible syntactic heuristics (McCoy
et al., 2019), Symmetrics that evaluates the effect
of shortcut tokens on fact verification (Schuster
et al., 2019). Data analysis and model interpretabil-
ity analysis are also used to detect shortcut tokens
that are considered highly correlated with final pre-
dictions by neural models, e.g., integrated gradient
(Du et al., 2021), neural attention (Wang et al.,
2022). Such extracted shortcut tokens facilitate the
alleviation of the shortcut learning issue in neural
models.

Mitigation of Shortcut Learning. A wide vari-
ety of model-centric approaches have been recently
proposed to mitigate shortcut learning, e.g., expla-
nation regularization (Liu and Avci, 2019), product
of experts (Sanh et al., 2021), sample re-weighting
(Schuster et al., 2019; Liu et al., 2021), confidence

12351



Figure 1: The diagram of the proposed HuaSLIM. It is based on self-distillation where the teacher and student
model have the same model architecture. The teacher model is trained to measure the shortcut learning degree of
samples with human attention. The estimated shortcut learning degree is integrated into the temperature coefficient
to dynamically smooth the output distribution. The student model is trained to learn human attention to guide
the model to pay attention to relevant features. An additional attention layer is employed to better model neural
attention.

regularization (Utama et al., 2020a), etc. Data aug-
mentation methods that aim at improving robust-
ness have also been explored (Wu et al., 2022; Si
et al., 2021). While most methods significantly
improve the performance on OOD samples by mit-
igating shortcut learning, they may undermine the
performance of IID samples (Mendelson and Be-
linkov, 2021). In addition to this, it is difficult
to analyze whether LLM-based task-specific mod-
els obtain more robust features. Significantly dif-
ferent from previous shortcut learning mitigation
approaches, we leverage human attention to learn
robust and interpretable features and attempt to
boost performance on both OOD and IID samples.

Human Attention in NLP. Human attention,
tracked by human gaze signals and implicating
the cognitive language comprehension process of
human brains (Henderson, 2003; Rayner, 1978),
has been attracting research interest in cognitive
science. Integrating human attention into neural
network models has been applied to a large number
of natural language processing tasks, such as pre-
diction of multiword expressions (Rohanian et al.,
2017), paraphrase generation (Sood et al., 2020),
machine reading (Li et al., 2018). In most works,
human gaze signals are used as additional input fea-
tures to enhance the performance of neural network
models for NLP tasks (Klerke and Plank, 2019;
Zhang and Zhang, 2019). Other studies regularize
neural networks in a multi-task learning framework,
where human attention prediction is treated as an

auxiliary task (Barrett et al., 2018; Klerke et al.,
2016). Unlike them, we use human attention as su-
pervisory signals to constrain the neural attention
of LLMs.

3 Methodology

Our HuaSLIM aims to use human attention to guide
model training, introducing human prior knowl-
edge and reasoning ability into LLM-based task-
specific models, thereby improving the robustness
of LLM-based task-specific models. The architec-
ture of HuaSLIM is illustrated in Figure 1. We use
human attention produced by EZ-reader (Reichle
et al., 2003) to identify shortcut tokens. To quan-
titatively detect shortcut learning, we propose a
human attention-based sample shortcut degree mea-
surement. With estimated shortcut learning degree
scores, we inhibit LLM-based task-specific models
from making overconfident predictions for sam-
ples containing shortcut features by dynamically
adjusting temperature. To further force LLM-based
task-specific models to focus on relevant features,
we minimize the distance between human attention
and neural attention with an attention loss.

3.1 Human Attention

In cognitive science, human gaze duration is usu-
ally used to track human attention to tokens during
reading process (Lindsay, 2020). However, build-
ing a real human eye-tracking dataset is very ex-
pensive. Instead, we use the cognitively inspired
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model EZ-reader (Reichle et al., 2003), which has
proven an effective way to closely resemble real
eye movement signals (Eberle et al., 2022), to sim-
ulate human attention for different NLP tasks. To
match LLMs, we feed tokenized inputs into EZ-
reader. Token-level gaze durations generated by
EZ-reader are hence considered as human attention
in this work.

3.2 Identifying Shortcut Learning
In general, a shortcut token co-occurs more fre-
quently with a target label than other tokens in
training data (Gururangan et al., 2018) and neu-
ral models tend to learn simple features like this
(Shah et al., 2020). Most shortcut learning identifi-
cation methods capture the tokens that are highly
correlated with labels by analyzing data distribu-
tion or model behavior, then identify the top-K
most important tokens as shortcut tokens. In this
paper, we propose an attention-based Local Mutual
Information (LMI) (Evert, 2005) metric to identify
shortcut tokens. LMI is usually used to measure
the correlation between a token and a particular
label in data statistics (Schuster et al., 2019; Du
et al., 2021). The proposed attention-based metric
can take into account both lexical bias and model
behavior bias to capture the token-label correlation
as we replace the token frequency term in tradi-
tional LMI with attention weights. Specifically, the
co-occurrence number count(t, y) of token t with
label y in traditional LMI is replaced by the sum
of attention weights attention(t, y) between token
t and label y in the training data. The proposed
attention-based metric ALMI between token t and
label y, is calculated as follows:

ALMI(t, y) = p(t, y) · log(p(y|t)
p(y)

) (1)

where p(t, y) = attention(t,y)
|D| , p(y|t) = attention(t,y)

attention(t) ,

p(y) = attention(y)
|D| . attention(t, y) is the sum of

attention weights between token t and label y.
attention(t) is the sum of attention weights of
‘[CLS]’ token in the last layer of LLM for token t.
attention(y) is the sum of attention weights for all
tokens in the samples labeled y. |D| is the sum of
attention weights for all tokens in the training data.

Obviously, the correlations detected in the above
way contain both spurious and genuine correla-
tions, since they are both strongly associated with
labels. The genuine correlations have a causal ef-

fect on model predictions, while the spurious cor-
relations cannot causally affect model predictions
although they are highly correlated with specific
labels (Wang et al., 2022).

We hence need to recognize the spurious corre-
lations from the obtained correlations. Intuitively,
humans rarely rely on shortcut words for compre-
hension and reasoning, focusing instead on relevant
words. Inspired by this, we propose to identify gen-
uine correlations according to human attention, and
detect shortcut tokens according to the difference
between neural attention based correlations and
human attention based correlations. Particularly,
we obtain a correlation list based on human atten-
tion and a correlation list based on neural attention
on the same data via the proposed attention-based
LMI. Then, we use MinMax to normalize the cor-
relation scores from the two lists to the range of
[0,1]:

Iscale =
I −min(I)

max(I)−min(I)
(2)

where I is the correlation scores based on human
attention or neural attention. In this way, we ob-
tain normalized correlation scores for both neural
attention and human attention: Inscale, I

h
scale. We

then calculate (Inscale − Ihscale)/I
n
scale as token-level

shortcut degree and re-rank tokens according to
their degree scores. Intuitively, tokens with higher
shortcut degree scores indicate that they are treated
more important in model prediction but less impor-
tant in human reading. Therefore, they are more
likely to be shortcut tokens.

With estimated token-level shortcut degree, we
further propose a measurement to calculate sample-
level shortcut degree. Specifically, we consider
top-N tokens in terms of their token-level short-
cut degree as shortcut tokens, and normalize their
shortcut degree scores to the range of [0,1]. Given a
training sample xi, the sum of token-level shortcut
degree scores in the sample is defined as the sample
shortcut degree βi. In the following subsections,
we utilize βi to guide the model distillation.

3.3 Self-Distillation for Mitigating Shortcut
Learning

Our shortcut learning mitigation is based on self-
distillation (Furlanello et al., 2018), where the
teacher model and the student model have iden-
tical architecture. In traditional knowledge distil-
lation (Hinton et al., 2015), temperature T of soft
target is used to control the softening degree of the
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output probability of the teacher model. A higher
temperature makes the distribution smoother, thus
increasing the difficulty of model training (Li et al.,
2022).

For training samples with a high shortcut degree,
we increase the temperature to soften the target
distribution, improving the learning difficulty of
the student model on them, so as to inhibit LLMs
to make overconfident predictions. Based on the
teacher model and shortcut degree of each sample,
we smooth the soft target by dynamically adjusting
the temperature coefficient:

si,j =
exp(P t

i,j/(T + βi))∑L
l=1 exp(P

t
i,l/(T + βi))

(3)

where L denotes the number of labels, and P t is
the output of the teacher model. The temperature
coefficient corresponding to sample xi is the sum
of the constant temperature T and sample shortcut
degree βi, which is dynamically adjusted with the
sample shortcut degree.

3.4 Attention Layer

Since attention heads in transformer encode dif-
ferent semantic information (Clark et al., 2019b;
Vig and Belinkov, 2019), it is difficult to determine
which heads should be supervised by human atten-
tion will benefit the most. We stack an additional
attention layer that is the same as soft-attention
(Shen and Lee, 2016) which explicitly generates
token-level attention weights, over the last layer
of the transformer. The calculation of the stacked
attention αn is as follows:

αn = softmax(vT tanh(WattH
s + batt)) (4)

where Watt, batt, v are trainable parameters, and
Hs denotes the hidden state of last layer in student
model. αn indicates the degree of the importance
of each token to model prediction after softmax
normalization. The final sentence representation of
the student model can be formulated as:

hs =

N∑

i=1

αn
i H

s
i (5)

We then obtain the normalized prediction probabil-
ity P s of the student model by softmax function:

P s = softmax(Wsh
s + bs) (6)

3.5 Training Objective

The training objective of the self-distillation in
HuaSLIM is similar to that of traditional knowl-
edge distillation framework, including the distil-
lation loss for learning the scaled output of the
teacher model and the student loss for learning
the ground truth. The role of distillation loss is
to transfer knowledge from teacher model to stu-
dent model. The total loss of self-distillation is
computed as follows:

Ldis = −
K∑

k=1

((1− λ)yklogP
s
k + λsklogP

s
k ) (7)

where K denotes the number of samples and y
denotes the ground-truth label. Hyperparameter λ
denotes the balancing weight for controlling the
importance of each training objective.

To encourage the student model to focus on more
relevant tokens, we use human attention as the in-
ductive bias of neural attention. Therefore, we
introduce an additional loss to fit human attention,
allowing the student model to learn prior knowl-
edge from humans. The additional training objec-
tive is to minimize the mean square error between
neural attention of the stacked additional attention
layer and human attention:

Latt =
1

KN

K∑

k=1

N∑

i=1

(αn
i − αh

i )
2 (8)

where ahi denotes the human attention score for
token i in sentence k and N is the number of tokens
in the sample.

The final training objective that we minimize
during training is as follows:

L = Ldis + Latt (9)

During training, only the parameters of the stu-
dent model are updated, while the parameters of
the teacher model are fixed. For inference, we
therefore only use the student model.

4 Experiments

4.1 Datasets

We used three datasets to evaluate the proposed
HuaSLIM.
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MNLI The first dataset we used is MNLI
(Williams et al., 2018), a natural language infer-
ence dataset for training models that classify the
entailment of a given pair of premise and hypothe-
sis into classes (e.g., entailment, neutral, and con-
tradiction). MNLI consists of development sets and
test sets in two different domains, one is MNLI-m,
which matches the domain of the training set, while
the other is MNLI-mm, which is out of the domain
of the training set. Additionally, the adversarial
dataset HANS (McCoy et al., 2019) was used to test
the robustness of LLMs on OOD samples. HANS
is constructed based on the strong correlations be-
tween lexical overlap and entailment labels, which
is widely used for robustness evaluation (Utama
et al., 2020a; Du et al., 2021).

FEVER The second dataset is FEVER (Thorne
et al., 2018), a dataset for the fact verification task
predicting whether the claim sentences are labeled
in the context of evidence sentences as support, re-
futes, or not enough information. There are two
adversarial datasets associated with FEVER: Sym-
metric v1 and v2 (Sym1 and Sym 2), which test the
model’s reliance on claim-only bias (e.g., negative
tokens such as ‘not’ are associated with the refutes
label) that performs above the ‘majority’ baseline
(Schuster et al., 2019). All claim-evidence pairs in
these datasets are created manually, and shortcut
features are distributed across labels.

Quora Question Pairs We chosen Quora Ques-
tion Pairs (QQP) as the third dataset. It is a
dataset for paraphrase identification task predict-
ing whether pairs of questions are semantically
duplicate or non-duplicate. We used a QQP subset
PAWS (Paraphrase Adversaries from Word Scram-
bling) that consists of question pairs that have lexi-
cal overlap biases (Zhang et al., 2019) to evaluate
the OOD performance of models. Most samples
in this dataset are labeled as non-duplicate. Since
neural models usually heavily rely on lexical over-
lap features, their performance on this dataset is
worse than the random baseline (Zhang et al., 2019).
We evaluated the performance of LLM-based task-
specific models on the duplicate and non-duplicate
samples separately, following Utama et al. (2020b).

4.2 Large Language Models

We conducted experiments on two LLMs to exam-
ine the effectiveness of HuaSLIM: BERT-base (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),

both of which are from Hugging Face Transform-
ers.1 We followed the standard setting of sentence
pair classification tasks, in which two sentences
are connected into one input by ‘[SEP]’ token. As
mentioned in Section 3.4, we stacked an additional
attention layer over the top layer of the two LLMs.
We hence utilized the output of added attention
layer for prediction, instead of using the hidden
state of special token ‘[CLS]’.

4.3 Baselines
Sample Re-weighting Its main idea is assign-
ing higher weights to hard samples, making LLM-
based task-specific model pay more attention to
difficult features, so as to improve the robustness
of the model (Schuster et al., 2019; Utama et al.,
2020b). In the first step, a bias-only model that
trained by the hand-crafted features that based on
the task-specific knowledge is trained to measure
how well the sample prediction given only the bi-
ased features. In the second step, probability pb
obtained by bias-only model is used to indicate the
shortcut degree of the sample. Then, adjusting the
loss function with the shortcut degree to reduce
the contribution of shortcut sample to LLM-based
task-specific model:

L = −(1− pb)y · logpd (10)

where pd is the prediction probability of LLM-
based task-specific model.

Product of Experts The purpose of product of
experts is to integrate the bias-only model to train
a debiased model (He et al., 2019; Clark et al.,
2019a). First, a bias-only model is trained to cap-
ture biases in the training data. We then optimize
the loss of this method, which is the combination
of losses of both the debiased and bias-only model.
The ensemble loss of product of experts as follows:

L = −pd · logsoftmax(logpb + logpd) (11)

Product of experts prevent LLM-based task-
specific model from learning shortcut features
by reducing the gradient of shortcut samples in
the training data, while it also compromises the
model’s ability to learn from these samples.

Confidence Regularization This method encour-
ages LLM-based task-specific model to give lower
confidence for shortcut samples by regularizing the

1https://huggingface.co/transformers/pretrained_models.html
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Methods MNLI FEVER QQP

dev-m♦ dev-mm♦ HANS dev♦ Sym1 Sym2 dev♦dup dev♦¬dup PAWSdup PAWS¬dup

BERT-base 84.2 83.4 61.5 85.2 55.3 63.1 88.3 91.5 85.2 23.2
with Sample Re-weighting 83.5† 81.3 69.2† 84.3‡ 56.4‡ 64.9‡ 85.5 91.9 89.2 50.6
with Product of Experts 82.9† 81.0 67.9† 82.4‡ 58.1‡ 64.3‡ 80.8∗ 93.5∗ 71.0∗ 49.9∗

with Confidence Regularization 84.5† 82.7 69.1† 85.5‡ 57.9‡ 65.0‡ 85.5∗ 91.5∗ 91.0∗ 19.8∗

with HuaSLIM (ours) 84.7 84.2 70.1 85.6 61.7 66.4 89.1 91.3 91.0 52.7
RoBerta 87.6 87.1 68.3 86.1 57.4 63.8 92.2 92.9 87.1 30.5
with Sample Re-weighting 85.7 84.8 73.1 83.5 59.2 66.1 87.6 88.2 90.7 47.5
with Product of Experts 84.2 83.2 71.3 85.0 61.7 65.3 85.5 91.6 90.2 40.3
with Confidence Regularization 87.1 86.6 74.4 85.8 61.9 66.5 91.4 93.1 92.2 36.7
with HuaSLIM (ours) 87.9 88.1 75.5 87.1 63.7 66.9 92.6 93.3 91.5 56.1

Table 1: Results of our proposed method vs. baseline methods on the datasets of MNLI, FEVER, QQP, and their
corresponding adversarial datasets. ‘♢’ denotes the original development sets of each dataset. ‘†’, ‘‡’, ‘*’ denote
that the results are directly taken from Utama et al. (2020b), Du et al. (2021), Utama et al. (2020a), respectively.

Methods MNLI FEVER QQP

dev-m dev-mm HANS dev Sym1 Sym2 devdup dev¬dup PAWSdup PAWS¬dup

BERT-base 84.2 83.4 61.5 85.2 55.3 63.1 88.3 91.5 85.2 23.2
Our method 84.7 84.2 70.1 85.6 61.7 66.4 89.1 91.3 91.0 52.7
w/o Lexical bias 84.5 84.1 68.4 85.3 61.4 66.1 88.6 90.7 89.7 42.8
w/o Model bias 84.4 83.9 67.5 85.2 60.7 65.9 88.3 90.4 89.2 46.5
w/o Shortcut identification 84.2 83.7 66.3 85.4 58.8 65.2 87.6 90.2 88.5 39.7
w/o Dynamic temperature 84.6 84.0 64.2 85.8 56.8 63.8 88.9 91.3 87.5 35.0
w/o Attention layer 84.4 83.9 69.1 85.2 61.4 66.1 88.4 91.0 90.3 48.2
w/o Attention loss 84.3 83.5 68.9 85.3 61.2 66.2 87.5 91.1 90.8 46.4

Table 2: Ablation study on the three datasets with their corresponding adversarial datasets, based on BERT-base.

confidence. It is also based on the self-distillation
framework (Utama et al., 2020a; Du et al., 2021).
First, the teacher model is trained to estimate the
confidence for each training sample. The confi-
dence of output distribution is then smoothed by
soft label supervision. This method is similar to
our proposed method, but the sample shortcut de-
gree estimation and label softening methods are
different from ours.

4.4 Results

Table 1 shows the results of the three NLP tasks on
both IID and OOD samples.

IID Performance The results on the original de-
velopment set of each task show the performance
on IID samples. From these results, we observe
that: (1) The proposed HuaSLIM outperforms all
shortcut learning mitigation baselines as well as the
original LLMs in all three tasks, indicating that our
method can significantly improve the IID perfor-
mance. (2) Confidence regularization is also better
than original LLMs in some cases. For example,
on MNLI-dev, this method achieves an improve-
ment of 0.3 ACC over BERT-base, demonstrating
that the self-distillation method contributes to the
IID performance to some extent. (3) Both sample
re-weighting and product of experts methods de-
grade the performance of LLMs on IID samples in
most cases. Additionally, similar to the findings in

Utama et al. (2020a), product of experts method
has a great negative impact to IID performance,
which may be due to the fact that LLMs rarely or
do not learn information of shortcut samples dur-
ing training, resulting in a failure of fitting such
samples.

OOD Performance The results on the adversar-
ial set of each task denote the OOD performance.
Based on the OOD performance, we find that: (1)
All shortcut learning mitigation methods evaluated
in our experiments can significantly improve the
performance on OOD samples. Our HuaSLIM
achieves the state-of-the-art performance on al-
most all adversarial datasets. This suggests that our
method can effectively mitigate the shortcut learn-
ing problem and improve the robustness of LLM-
based task-specific models without sacrificing IID
performance. (2) Confidence regularization is the
second best method in most cases, and achieves the
highest accuracy in the duplicate subset of PAWS
when RoBerta is used as the LLM. The core idea
of this method is similar to HuaSLIM, which is
weakening the connection between shortcut fea-
tures and labels by adjusting the output distribution
of the teacher model, thereby encouraging LLM-
based task-specific models to pay less attention
to shortcut features. (3) BERT-base and RoBerta
show similar trends on OOD performance with all
shortcut learning mitigation methods, indicating
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Methods HANS Sym1 Sym2 PAWSdup PAWS¬dup

BERT-base 61.5 55.3 63.1 85.2 23.2
Traditional LMI 62.7 56.4 64.1 84.5 35.7
Neural attention 63.5 57.6 64.6 85.3 36.4
Neural att based LMI 64.5 57.4 65.3 85.6 37.8
Human att based LMI 64.0 56.9 64.6 85.1 37.2
Our method 65.1 58.9 67.5 86.2 40.7

Table 3: OOD performance after masking shortcut to-
kens identified by different methods, based on BERT-
base. ‘att’ denotes the ‘attention’.

that these methods are stable for different LLMs.

4.5 Ablation Study

We conducted ablation experiments on all datasets
to investigate the contribution of each key com-
ponent or strategy of our proposed method. The
ablation tests include: (1) w/o Lexical bias, which
uses token-label correlations estimated only with
neural attention; (2) w/o Model bias, which esti-
mates token-label correlations only from traditional
LMI; (3) w/o Shortcut identification, which re-
moves the step that distinguishes spurious correla-
tions from genuine correlations, and uses the cor-
relation score calculated by attention-based LMI
as token-level shortcut degree; (4) w/o Dynamic
temperature, which does not use the temperature
dynamtically adjusted according to sample shortcut
degree (i.e., using a constant T ); (5) w/o Attention
layer, which does not use the additional attention
layer; (6) w/o Attention loss, which discards the
additional loss used to fit neural attention to human
attention.

The results are shown in Table 2. We observe
that: (1) The absence of these components causes
significant performance drops on both IID and
OOD samples on all tasks. This demonstrates that
these components are beneficial to shortcut learn-
ing mitigation. (2) w/o Dynamic temperature
yields the minimal drop to IID performance and
outperforms BERT-base in almost all cases. We
conjecture that this may be due to the standard op-
eration of self-distillation framework, which trains
the student model to outperform the teacher model
(Furlanello et al., 2018). Meanwhile, the additional
attention loss further improves the IID performance
by fitting neural attention to human attention. (3)
w/o Attention loss has the greatest negative impact
on IID performance of each task, indicating that
human attention is beneficial to the training of neu-
ral attention. (4) Both w/o Lexical bias and w/o
Model bias lead to the degradation of OOD per-
formance, indicating that they are useful for identi-

Figure 2: The prediction probability distributions of dif-
ferent methods on the MNLI-m dev dataset. The X coor-
dinate denotes the range of prediction probability, e.g.,
‘0.9’ denotes the range of [0.9,1], and y-coordinate de-
notes the percentage of samples within the correspond-
ing probability range.

fying shortcut learning. In contrast, w/o Shortcut
identification has a greater negative effect on OOD
performance, suggesting that the spurious correla-
tions detected based on human attention can help
accurately estimate sample shortcut degree.

5 Analysis

5.1 Shortcut Token Analysis

To further test the validity of our proposed method
for identifying shortcut tokens, we conduct mask-
ing experiments on shortcut tokens identified by dif-
ferent methods. Intuitively, when shortcut tokens
are removed from training samples, the LLM-based
task-specific models’s performance on OOD sam-
ples will change since the LLM-based task-specific
models cannot learn shortcut features. We com-
pared the performance of the original LMI, neural
attention, neural attention based LMI, human atten-
tion based LMI and our method on the adversarial
datasets of the three NLP tasks, through masking
out shortcut tokens identified by these methods and
re-training the BERT-base. We consider a token
whose shortcut degree is in the top 5% as a shortcut
token. To avoid the influence of other components,
we only used the original LLMs in these experi-
ments. Results are listed in Table 3.

We find that masking out shortcut tokens in train-
ing data during training can improve the general-
ization of the LLM-based task-specific models to
OOD samples. In contrast, our proposed method
achieves the best results on all OOD data. This sug-
gests that our method can identify shortcut features
more accurately. The neural attention approach out-
performs the LMI approach on all data, indicating
that model behavior bias can better reflect the LLM-
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Figure 3: The visualization of attention weights in a case study. The first, second, and third row denotes the results
of BERT-base, our proposed method without attention loss and our proposed method, respectively. Darker colors
indicate higher attention weights.

based task-specific models’s reliance on shortcut
features than data bias. The performance of remov-
ing shortcut tokens obtained from human attention
based LMI is worse than that obtained from neural
attention based LMI, suggesting that shortcut to-
kens obtained from human attention are somewhat
more robust than those from neural attention. Ad-
ditionally, we show the top tokens affiliated with a
contradiction label in MNLI with neural attention
based LMI, human attention based LMI and our
proposed method, to further analyse the shortcut
tokens. Please see Appendix A.1 for details on case
analysis.

5.2 Confidence analysis

Neural models typically give overconfident pre-
dictions to easy samples that have shortcut fea-
tures, and low confidence to hard samples (Her-
mann and Lampinen, 2020). In this paper, we
dynamically adjust the temperature coefficient in
model self-distillation based on sample shortcut de-
gree to control the training difficulty of LLM-based
task-specific model on shortcut samples, thereby
encouraging the model to assign low confidence
to samples that have high shortcut degree (i.e., re-
ducing the prediction probability). To investigate
the changes in models’ confidence with shortcut
learning mitigation, we analyzed the distribution of
prediction probabilities obtained by different meth-
ods. Results on the MNLI-m dataset are illustrated
in Figure 2.

We can find that the prediction probability distri-
bution of BERT-base exhibits more sharp changes
than others, indicating that the original LLM tends
to give overconfident predictions for shortcut sam-
ples. With shortcut mitigation, the probability dis-
tribution flattens. Among all mitigation methods,
the prediction probability distribution curve of our
method is the smoothest, indicating that our method
can effectively reduce the confidence on shortcut
samples.

5.3 Interpretability analysis

We visualize the distribution of attention weights
learned by our proposed method to investigate the
reasons behind the improvement of robustness and
whether the LLM-based task-specific model fo-
cuses on more robust features. The visualization
of an example from MNLI is shown in Figure 3.
The attention weights of BERT-base are from the
‘[CLS]’ token in the last layer while the attention
weights of HuaSLIM are from the additional soft
attention layer. Although the attention weights in
visualization come from different layers, they are
all used to learn the final sentence representation
for model prediction. BERT-base only attends to
tokens in hypothesis and assigns high attention
weights to spurious features, e.g., negative word
‘can’t’. When HuaSLIM without attention loss
is applied to mitigate shortcut learning, the NLI
model pays attention to both premise and hypothe-
sis, and weakens the attention to shortcut features.
With the full version of our method, the NLI model
assigns high attention weights to important tokens.
This indicates that our method can guide the NLI
model to learn relevant features, thereby improving
the performance on both IID and OOD samples.

6 Conclusions

In this paper, we have presented a human attention
guided framework that can effectively distinguish
spurious correlations from genuine correlations,
and significantly alleviate the reliance of LLM-
based task-specific models on shortcut tokens. By
constraining neural attention with human attention,
LLM-based task-specific models are encouraged
to focus on more relevant tokens. Experimental
results on three NLP tasks demonstrate that our
method achieves remarkable improvements on the
robustness of LLM-based task-specific models on
OOD samples and preserves the IID performance.
Further analyses show that our approach is highly
interpretable and capable of paying more attention
to relevant tokens.
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Limitations

We consider only lexical bias based on the co-
occurrence between a token and a certain label
in data bias for identifying shortcut tokens, while
NLU tasks involve various types of data bias, e.g.,
overlap bias, position bias. Although our method
can mitigate LLM-based task-specific models’s re-
liance on shortcut tokens, it can only identify a
limited set of bias in the data. Therefore, in the fu-
ture we would like to incorporate more data biases
to identify shortcut tokens and discourage LLMs
from exploiting them.
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A Appendix

A.1 Case analysis
To investigate whether our method captures spu-
rious correlations, we show the top tokens affili-
ated with a contradiction label in MNLI, which
are detected via neural attention based LMI, hu-
man attention based LMI and our proposed method,
along with the normalized shortcut degree in Ta-
ble 1. The ranks of shortcut degree captured by
human attention based LMI and neural attention
based LMI are very similar, but the same token has
lower shortcut degree estimated by human atten-
tion than that by neural attention. This suggests
that features that LLMs considers important are
also important for human comprehension. With
our proposed method, we can find that the order of
shortcut tokens has changed. The tokens with less
semantic information have higher shortcut degree,
e.g., the punctuation ‘.’ is moved from the third
to the first, copula ‘is’ appears in top 8. Shortcut
tokens obtained by our method is more consistent
with spurious correlations.

Neural Attention Human Attention Our Method
no (1.00) no (0.94) "." (1.00)
not (0.83) not (0.79) no (0.82)
"." (0.71) "." (0.67) not (0.72)
"’" (0.69) "’" (0.67) never (0.61)
never (0.67) never (0.64) "’" (0.60)
any (0.52) any (0.50) any (0.49)
all (0.49) all (0.48) only (0.48)
nothing (0.42) don (0.44) is (0.42)

Table 1: Top 8 shortcut tokens in MNLI obtained by
neural attention based LMI, human attention based LMI
and our proposed method.
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