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Abstract

We demonstrate that coreference resolution in
procedural texts is significantly improved when
performing transformation-based entity link-
ing prior to coreference relation identification.
When events in the text introduce changes to
the state of participating entities, it is often im-
possible to accurately link entities in anaphoric
and coreference relations without an under-
standing of the transformations those entities
undergo. We show how adding event semantics
helps to better model entity coreference. We ar-
gue that all transformation predicates, not just
creation verbs, introduce a new entity into the
discourse, as a kind of generalized Result Role,
which is typically not textually mentioned. This
allows us to model procedural texts as process
graphs and to compute the coreference type for
any two entities in the recipe. We present our
annotation methodology and the corpus gener-
ated as well as describe experiments on coref-
erence resolution of entity mentions under a
process-oriented model of events.

1 Introduction

Entity coreference resolution is a critical compo-
nent for understanding most natural language text
(Poesio et al., 2023; Sukthanker et al., 2020). How-
ever, when events in the text introduce changes to
the state of participating entities, it is often impos-
sible to accurately link entities in anaphoric and
coreference relations without an understanding of
the transformations those entities undergo. For ex-
ample, events can bring about changes in entities
that are not reflected in actual text mentions:

(1) a. Chop the garlic [WHOLE];
b. Put it [CHOPPED] in the pan.

That is, while it is anaphorically bound to the gar-
lic, it is not strictly coreferential, as the garlic has
undergone a transformation (Mitkov et al., 2000).

*These authors contributed equally to this work.

Events can also introduce new entities into the
discourse or narrative, through the use of creation
predicates (Asher, 1993; Badia and Saurí, 2000).
This is pervasive in procedural text, where the goal
is to describe a sequence of transformations to ap-
ply to multiple objects to build up a goal object.
This can be seen, for example, in (2a), where the
entities are transformed into a hidden result argu-
ment, which then licenses the definite NP the mix-
ture in (2b). In addition, procedural text witnesses
both argument drop, as in (2d), where the direct
object is elided, as well as metonymies, where a
container refers to its content, as with bowl in (2d).

(2) a. Mix flour and water in a bowl.
b. Set the mixture [FLOUR + WATER] aside.
c. Beat the eggs.
d. Add ∅ [BEATEN EGGS] to the bowl.

In this paper, we demonstrate how a process-
oriented event model (POEM), based on Dy-
namic Event Structure proposed in Pustejovsky and
Moszkowicz 2011; Pustejovsky 2013, motivated
by and generalized from GL-VerbNet (Brown et al.,
2022), can significantly help classify entity corefer-
ence in procedural texts. We argue that all transfor-
mation predicates, not just creation verbs, output a
new entity into the discourse, as a kind of Gener-
alized Result Role, which is typically not textually
mentioned (Jezek and Melloni, 2011). This allows
us to model procedural texts as input/output (I/O)
process graph structures, as shown in fig. 1.

Each edge in the graph represents POEM, an
event reduced to an I/O process. The “output”
nodes of events are generalization of the result role
from the VerbNet frames, as well as placeholders of
syntactic drops and shadow arguments. The POEM
graph, thus, is one way to serialize the abstraction
of complex semantics including event-argument
structures, subevent structures, temporal ordering
and coreference chains, which we can unfold to
re-construct other semantic structures.
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For example, from the graph, one can compute
the type of (conventional) coreference or what we
call a “coreference under transformation” relation
for any two entities in the recipe.

To this end, we present CUTL 1, a novel annota-
tion methodology and dataset that integrates both
the tracking of entity transformations and coref-
erence chains of entities into a single framework.
Our pilot annotation contains 100 double-annotated
cooking recipes, showing high agreement on rela-
tion F1 scores. Based on our process-oriented se-
mantic model of events, we introduce a distinction
between two relations: (i) Coreference under Iden-
tity (CuI), where two entities have identical state
information; and (ii) Coreference under Transfor-
mation (CuT), where some change has occurred
distinguishing two entities.

We, then, use various methods from Tu et al.
2023 to paraphrase transformed entities (gener-
alized result role) that do not appear as textual
mentions, while being aware of transformations
entities have undergone. We use the annotated
data to train models to predict various coreference
relations between entities and show the value of
transformation-aware entity representation in devel-
oping a coreference resolution system that works
with entities in procedural text. Our experiment
also shows an interaction between our semantic
model and LLMs to generate reliable and natural
paraphrases.

The contributions outlined in this paper include:
(1) studying the anaphoric and coreference behav-
ior inherent in procedural texts, focusing on cook-
ing recipes; (2) operationalization of the POEM,
where steps in a procedure are annotated with ex-
plicit I/O entity nodes, regardless of whether they
are mentioned in the text; (3) creation of an annota-
tion guideline and GUI environment based on the
event model, identifying events and their semantic
class, all ingredient entities, and set of coreference
relations between entities, typed according to the
kind of transformation; and (4) the creation of a
dataset, CUTL, containing these entity coreference
links and the events involved.

2 Related Work

Understanding procedural narratives involves many
core competencies in language comprehension
(Fang et al., 2022). Not only is it crucial to per-

1annotation data, scheme, tool and experiment code is
available at https://github.com/brandeis-llc/dp-cutl

Figure 1: A full recipe text and its Coreference under
Transformation Labeling (CUTL) annotation in graph
form. Nodes in the graph represent ingredients and their
referring expressions. Events (gray boxes in the text)
are reduced to simple I/O processes and are represented
as edges in the graph.

form anaphora resolution (Poesio et al., 2016), but
equally important is to perform state tracking on the
entities as they undergo transformations described
in the text (Bosselut et al., 2017).

The task of anaphora resolution covers a range
of coreference relations (Poesio et al., 2023), as
well as non-identity anaphoric relations, known as
bridging phenomena (Clark, 1977; Asher and Las-
carides, 1998). Most work on anaphora resolution
has focused on declarative narratives or dialogue
datasets (Pradhan et al., 2012a; Poesio et al., 2023).

Interestingly, while there are several datasets of
procedural texts that have been annotated and stud-
ied, these have been mostly in the context of entity
state tracking and QA tasks (Mishra et al., 2018;
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Yamakata et al., 2020; Tu et al., 2022a), rather than
coreference resolution; two notable exceptions in-
clude (Mysore et al., 2019) and (Fang et al., 2022).

Examples of how entity state tracking datasets
contribute to reasoning and inferencing tasks can
be seen with (Bosselut et al., 2017), who presents
the Neural Process Networks to model the state
changes in procedural texts. The actions and enti-
ties are both predefined sets. They use soft attention
to select actions and entities from the predefined
sets to generate a state embedding for each entity
at every step in the recipe. (Dalvi et al., 2019) is an
example of how entity state tracking datasets con-
tribute to reasoning and inferencing tasks. The pa-
per extends the ProPara dataset (Mishra et al., 2018;
Tandon et al., 2018) which contains texts describ-
ing processes. Workers were given a prompt (e.g.,
“What happens during photosynthesis?”) and then
asked to author a series of sentences describing the
sequence of events in the procedure. The goal is
to predict the state (location, created, destroyed)
change of all the participants. Also working with
ProPara, (Kazeminejad et al., 2021) approach the
task of tracking state change by first parsing every
sentence in ProPara with the VerbNet Parser (Gung
and Palmer, 2021), and then leveraging the lexical
information from VerbNet and PropBank to predict
the state change.

The interaction of anaphora resolution with state
tracking makes it challenging to classify the rela-
tionships that result between entities mentioned in
the text, in order to judge whether they are corefer-
ential or somehow related, but not the same. To this
end, the above distinction between coreference and
bridging (non-identity anaphora) becomes relevant
(Hou et al., 2018). This is how Fang et al. 2022
approach the problem of NP reference in procedu-
ral text. They first adopt the distinction made in
Rösiger et al. 2018 between two types of bridging
(referential, where the NP requires an antecedent to
be fully understood; and lexical, which may involve
any number of lexical semantic relations between
two NPs. Their dataset (RecipeRef) of coreference
relations includes both coreference and bridging re-
lations. For the latter, they distinguish three types,
depending on the state of the entities being associ-
ated: (a) no change; (b) physical change; and (c)
chemical change.

Another work focusing on anaphora in recipes is
Jiang et al. 2020, which introduces RISeC, a dataset
for extracting structural information and resolving

zero anaphora from unstructured recipes. Our work
is in the same spirit, as they utilize a general lexical
resource, PropBank, rather than a limited inventory
of pre-defined predicates as in Tasse and Smith
2008 . The corpus provides semantic graph an-
notations of (i) recipe-related entities, (ii) generic
verb relations (from PropBank) connecting these
entities, (iii) zero anaphora verbs having implicit
arguments, and (iv) textual descriptions of those
implicit arguments. The corpus however, does not
contain state changes between entities.

Yamakata et al. 2020 introduce a corpus of an-
notated English recipes. The annotation is a flow
graph (i.e., DAG with a single root) including enti-
ties and relationships between these entities. The
direction of edges also indicates dependencies be-
tween actions. The label of edges explicitly specify
the state change of entities. While their graph rep-
resentation is similar to ours in many respects, they
do not encode coreference or bridging relations.

There are newly emerging datasets focusing on
both anaphora and bridging, many of them released
as part of the most recent shared task on anaphora
and bridging relation detection (Yu et al., 2022).
Unfortunately, procedural datasets were not in-
cluded in this task.

3 CUTL Dataset and Annotation Scheme

Procedural texts, such as recipes, are interesting to
CL researchers for several reasons. One of those is
that they are step-driven narratives requiring min-
imal temporal ordering recognition. As a result,
semantic interpretation can focus on the changes
that are taking place in the course of a sequence
of events in the narrative, while assuming that the
events are temporally ordered in a narrative pro-
gression. The goal of our CUTL annotation is to
create a dataset of cooking recipe texts annotated
with the following information:

• Events, typed with their semantic subclass;
• Referring expressions of event arguments;
• I/O relations between an event and its argu-

ments (Jezek and Pustejovsky, 2019);
• Coreference relations between named enti-

ties in the recipe, when they exist.

The relations we adopt reflect the view laid out
in Recasens et al. 2011, which distinguishes near-
identity from (true) identity when drawing corefer-
ence relations between referring expressions. Thus
we identify those relations derived from I/O as near-
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identities and other non-I/O coreference relations
as true identities.

3.1 Data Source and Mention Annotation

We reviewed publicly available recipe annotation
datasets and decided to build our dataset on top
of the existing R2VQ corpus (Tu et al., 2022a)
from SemEval 2022, as it already contains event-
structural semantic annotation layers.2 Specifi-
cally, R2VQ has an SRL layer (SRL columns)
that includes verb sense disambiguation, predicate-
argument structure, and argument role labels. Ad-
ditionally, it provides domain-specific “cooking
entity” labeling (cooking action events, ingredi-
ents, tools, habitats) for event and entity spans
(ENTITY columns). For this work, our main fo-
cus is on cooking actions, food ingredients, and
their referring expressions. Thus, to generate lists
of ingredients (and referring expression) mentions
for the CUTL annotation, we used the union of
Patient and Theme arguments from the SRL layer
and INGREDIENT and HABITAT labels from the ENTITY

column in R2VQ. For event mentions, we used
the union of predicate spans from SRL and EVENT

from ENTITY. To distinguish simple change of lo-
cations from entity state changes (transformations,
see §3.2), we hand-labeled the change-of-location
verb subclass in order to use it for relation label-
ing, partly adopting event subclass categories from
(Im and Pustejovsky, 2010). Even though the base
dataset has argument structures already annotated,
because the semantics of the POEM is not directly
mappable to semantics “role” names, we only took
advantage of argument span annotation. The base
dataset also has coreference chain annotation, but
it is not compatible to this work because it did
not consider near-identity. Thus we discarded the
COREF column as well.

To model events as simple I/O transformation
processes, our annotation scheme is pivoted on two
critical assumptions: (1) textual ordering of events
in a recipe reflects the temporal order of cooking
actions; and (2) every event predicate has a result,
regardless of whether it is mentioned in the text.

Based on the first assumption and considering
document length and event number distribution, we
sampled 100 recipes from the R2VQ dataset to an-
notate. This subset does not include any recipe that
violates the temporal ordering assumption. Table

2R2VQ data and its specification was obtained from the
shared task’s website.

1 shows the statistics of the ingredient entities in
the CUTL annotation. Compared to the original
R2VQ, CUTL contains much richer hidden entity
annotation from the I/O relations. Table 2 shows
different types of mentions we used in the CUTL
annotation.

Avg. # of entities per recipe Explicit Hidden
EVENT 10.6 N/A
INGREDIENT (input) 12.0 9.4
INGREDIENT (output) 1.0 10.4
R2VQ
INGREDIENT (participant) 11.5 5.7
INGREDIENT (result) 1.1 2.5

Table 1: Statistics of cooking entity from the CUTL an-
notation of 100 recipes. R2VQ annotates two relations
(participant-of and result-of ) between the entity and
the event. It can be roughly mapped to the I/O relations.
However, the I/O relations has a broader coverage of the
hidden entities.

Mention Examples
Event cut, slice, bake, peel, ...
C.Loc event throw, put, pour, ...
Location pot, skillet, oven, board, ...
Ingredient beef, onion, salt, water, ...
Result states soup, dough, pizza, mixture, ...
Pronouns it, them, half, ...
Property Roll dough into [balls]
(shape, size, ...) Cut into [2-inch pieces]

Table 2: Types of mentions of interest in the CUTL
annotation.

3.2 Coreference Relation Annotation

One of the key goals of the annotation task is to
identify three types of event-structural informa-
tion in the text that, together form the fundamental
building blocks of the POEM : (1) EVENT PREDI-
CATES, (2) INPUT ENTITIES, (3) RESULT/OUTPUT

ENTITIES. For cooking events “input”s are nat-
urally understandable as the ingredients used for
an action. Syntactically, we treat all the objects
of an event predicate as its inputs (although, often
they are hidden from the surface form as we saw
in examples in the section 1. Thus, in a sense, an
input and the output of an event are coreferential,
only considering the transformation that the input
underwent during the event. We call this relation
Coreference under Transformation (CuT).

The innovative aspect to our model being as-
sumed here is that every event must have one or
more result entities, whether they are explicitly
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mentioned in the text or not. Compare the recipe
steps in example (3) below.

(3) a. [Formevt] the mixture into [pattiesres].
b. [Mixevt] flour and water [∅res].
c. [Removeevt] [skinres1] and [bonesres2]
from the halibut. [∅res3].

In (3a), we get a physically re-shaped meat
mixture as the result of the action, and [the mix-
tureent] and [pattiesent] are coreferential under
the [formevt] transformation. In (3b), we have two
inputs and an aggregated object as the result. Be-
cause the result is hidden, there is no token we can
directly anchor the mixture to, which we deal with
by re-using the event predicate span as the anchor
for the result, creating a phantom entity (indicated
by RES. prefix below) referring to the output of the
transformation. The same applies to the separation
process in (3c), which is different from the others
in that it results in multiple outputs. Example (3′)
shows CuT relations from 3.

(3′) a. [mixtureent]
form−−−−−−−−−→

TRANSFORMATION
[pattiesent]

b. [flourent]
mix−−−−−−−→

AGGREGATION
[RES.mixent]

[waterent]
mix−−−−−−−→

AGGREGATION
[RES.mixent]

c. [halibutent]
remove−−−−−−→

SEPARATION
[skinent]

[halibutent]
remove−−−−−−→

SEPARATION
[bonesent]

[halibutent]
remove−−−−−−→

SEPARATION
[RES3.removeent]

The advantage of using these phantom spans is
twofold; (i) we can directly draw a relation between
the input and the output or between a new name and
a non-mention output (when redescription (Badia
and Saurí, 2000) happens in the text); and (ii) when
a following event takes a result of the current event
as an input, we can pass the newly created phantom
node. Example (2′) is the set of coreferences from
example (2), showing how phantom spans are used.

(2′) a. [flourent]
mix−−−−−−−→

AGGREGATION
[RES.mixent]

[waterent]
mix−−−−−−−→

AGGREGATION
[RES.mixent]

b. [RES.mixent] ==
REDESCRIPTION

[mixtureent]

[mixtureent]
set
==

CHANGE-OF-LOCATION
[RES.setent]

c. [the eggsent]
beat−−−−−−−−−→

TRANSFORMATION
[RES.beatent]

d. [RES.beatent]
add−−−−−−−→

AGGREGATION
[RES.addent]

[RES.setent]
add−−−−−−−→

AGGREGATION
[RES.addent]

Fang et al. 2022 attempt to work around these is-
sues by treating CuTs as bridging relations to an in-
put entity, but only when the output is “redescribed”

as a text mention. We believe we should avoid
using the term “bridging” too liberally for these
cases. Furthermore, when the redescription occurs
less frequently (only after several transformations),
it will identify long-distance bridging relations that
require cognitive jumps in the annotators’ mind,
which is not necessarily recorded in the annotation
data.

We distinguish the CuT relation from Coref-
erence under Identity (CuI), which is the more
conventional definition of coreference, and some
of bridging relations such as part-whole relation.
In addition to one-to-one IDENTITY relations in-
cluding anaphoric pronouns, we also annotated lo-
cational METONYMY and MERONYMIC relations
as subtypes of CuI. As discussed earlier, annotators
are presented with automatically generated phan-
tom result entities for every event predicate. So the
redescription operation is identified as a CuI link
in the annotation environment. One note to make
here is that when an event predicate falls under
the CHANGE-OF-LOCATION semantic subclass (Tu
et al., 2022b) and the I/O annotation is single-in
and single-out, we call this relation between the
input and the output as a CuI even though the rela-
tion is mediated by an event, as the only difference
the event made is the location of the entity, thus not
transformation.

In summary, we used the following typology of
coreferences to link two entities. Some are direct
links between two entities while the others are me-
diated by events under the transformation.
COREFERENCE UNDER IDENTITY

1. Identity: strict coreference of two entities.
2. Meronymy: relation between two entities

when one end is referring to an inseparate
part of the other.

3. Metonymy: links between an ingredient entity
and a location entity when the location entity
is used as a container for the food. 3

4. Change of location: single-in, single-out un-
der CHANGE-OF-LOCATION transformation.3

COREFERENCE UNDER TRANSFORMATION

3These sub-categories of relations are not annotated by
the annotator, but automatically inferred from the structural
information or pre-compile R2VQ annotation. Annotators
still need to draw a link between two entities, but, for exam-
ple, when one end is from HABITAT annotation, the relation
label is automatically switched to metonym. Or when an an-
notator draws a link between a single input entity and an
event, transformation label is used. However, if the event
predicate is pre-annotated as a CHANGE-OF-LOCATION event
subclass, the label will be identity instead.
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1. Transformation: a one-to-one link between
the input node and the output node of a trans-
formation event.3

2. Aggregation: a many-to-one link from input
nodes to an output node.3

3. Separation: a one-to-many link from an input
node to output nodes

Annotations are encoded as a directed acyclic
graph where (1) leaves are primitives (base in-
gredients), (2) the root is the title of the recipe,
corresponding to the final state in the graph, (3)
edges represent coreference relations and (4) in-
ternal nodes correspond to inputs and outputs of
events – these are phantom entities, some of which
are linked to redescription nominals via CuI anno-
tation.

3.3 The CUTLER Annotation Environment

We developed a GUI annotation environment, CUT-
LER. It uses a simple table-based click-only work-
flow to quickly mark inputs and outputs of an event,
types of the event, and coreference groups among
entities. Figure 2 shows a screenshot of the CUT-
LER interface with a quick description of the an-
notation workflow. We believe the conceptually
simple and streamlined interface of the CUTLER
annotation environment significantly reduced an-
notator cognitive load, resulting in improved an-
notation speed and high inter-annotator agreement.
The full guidelines for the CUTL annotation and
the CUTLER software are available under open-
source licenses in the data and code repository of
the work.

3.4 Inter-Annotator Agreement and Gold
Standard Dataset

Annotation of the 100 recipes was done in 4 rounds
by 7 researchers and graduate students from the
linguistics and computer science departments of a
US-based university. Each document was dually
annotated and Inter-Annotator Agreement (IAA)
was computed at the end of each round. Pairs of
annotators then met to adjudicate disagreements
and create a finalized gold standard annotation. We
used pairwise F1 as our primary IAA metric, which
was uniformly high across labels, rounds, and an-
notator pairs with a mean F1 = 86.9. Metonymy
and meronymy relations constituted the labels with
the highest disagreement. This is partially due to
having the fewest instances in the dataset, as well
as the inherent ambiguity in each of these labels;
during adjudication it was often found that both an-

notations were semantically valid. Encouragingly,
CuT-related labels – the primary focus of this work
– had consistently high agreement (F1 > 90.0 in
the majority of documents).

4 Coreference resolution with CuT

We implemented a coreference resolution system
using CUTL dataset. This section will describe the
system design and the performance of the system.

Experiment Setup Under the POEM and CuT
relations, coreference “chains” now can include
phantom entity mentions (with RES. prefix). These
phantom mentions serve two purposes; 1) make
all event outputs explicit, 2) fill syntactic drop ar-
guments in the following event. However, these
mentions textually do not exist in the text, thus
cannot be easily modelled by any language model-
based system, that are based on vector embedding
of the surface text. To address this problem, we
adopted Dense Paraphrasing (DP), a text enrich-
ment technique (Tu et al., 2023) to first recover all
drop argument (as empty slots) and “paraphrase”
drop argument nodes and RES. nodes, to create
natural language representation of the CUTL an-
notated data. Concretely, we apply both PREFIXP
and SUBGRAPH-GPT methods from Tu et al. 2023
to all the drop and phantom entities from the recipe
to generate paraphrases. PREFIXP is a heuristic
method that paraphrase the entities by prepend-
ing the prefixes to reflect changes due to actions.
SUBGRAPH-GPT use the GPT-3 model (Brown
et al., 2020) to paraphrase the linearized subgraph
that is rooted from the drop argument node or the
RES. node. Figure 3 shows an example from the
different paraphrasing methods.

Once the text is replaced with paraphrase with
recovery of of drop arguments and insertion of
generalized result nodes, we can use the new text
in a coreference resolution task.4 For the coref-
erence resolution task, we adopt the neural coref-
erence model and the configuration from (Fang
et al., 2021) and formulate the problem into a joint
training of an antecedent assignment model (Lee
et al., 2017) and a classification model. The system
first detects all possible mentions of coreference.
Then, for CuI resolution, the coreference resolution
model would learn to assign a set of antecedents to
each mention. And for CuT resolution, the bridg-

4We format the task input sentences with additional para-
phrases based on simple heuristics: [To get Z], do X, [Y].
Brackets represent the text that is inserted.
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Figure 2: CUTLER in action. By providing step-by-step annotation tables and real-time graph generation, annotators
can focus on local changes while keeping track of entity states and global changes by looking at the graph (green
box). Available entities are presented as blue spans (left) with radio options to specify their relation (right).
Annotators draw relations between all available entities and the current event (pink span in the left, pink oval in the
rendered graph). When multiple entities are linked as the same relation (by putting on the same ‘column’ in the
radio option table), a CuI label is inferred between them based on the entity types, the event type, and current I/O
structure.

Figure 3: Paraphrase of the the RES. node RES.SIMMER

from the PREFIXP and SUBGRAPH-GPT methods.
SUBGRAPH-GPT first extracts the linearized graph
rooted from RES.SIMMER, and then generate the final
paraphrase with GPT-3.

ing model will do a multi-class classification on
each pair of mentions detected.

Given the hierarchical nature of our CUTL types,
we design the coreference resolution in two fash-
ions: (i) Coarse: we only consider if there is trans-
formation due to event, so there will only be CuI
and CuT, and we treat all sub-relations under CuI
as coreference. (ii) Fine-grained: we consider each
relation type as an individual class and only treat
Identity as coreference.

Machine learning model details We train a neu-
ral coreference resolution model with a configura-
tion similar to (Fang et al., 2022; Lee et al., 2018).
Specifically, we use 300-dimensional GloVe em-
beddings (Pennington et al., 2014) with window

size=2 for head word embeddings. And we train
ELMo embeddings (Peters et al., 2018) on both
CUTL and RecipeRef corpora. We also trained a
CNN model with windows of 3, 4, and 5 to learn
the character embeddings, and concatenate all three
embeddings as the token representation. For each
experiment, we do a 5-fold cross validation and
train the model for 20 epochs on 4 NVIDIA Titan
Xp GPUs.

Results Since our data contains one-to-many
coreferential relation (SEPARATION) and many-to-
one relation (AGGREGATION), the traditional coref-
erence resolution metrics (Pradhan et al., 2012b)
are not suitable for our task, and we evaluate our
experiments using F1. Table 3 shows the results of
our experiments on 5-fold cross validation in both
coarse and fine-grained ways. It is not surprising
to see that it is more difficult to do coreference res-
olution with a more complex set of relation types,
given the results of the coarse setting on both inputs
are higher than the fine-grained. It also shows that
the results from GPT-base paraphrases as inputs
are higher than the inputs using DENSE paraphras-
ing on both overall and most of the fine-grained
relations. Table 4 breaks down the results into the
fine-grained coreferential relations. On each rela-
tion type, we evaluate using MUC, BCUBED and
CEAF F1 from (Pradhan et al., 2012b) and their
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COREFERENCE CUT
Setting Input Avg.P Avg.R Avg.F1 Avg.P Avg.R Avg.F1

Coarse PREFIXP 82.46 (±5.31) 9.31 (±6.81) 16.73 (±6.09) 86.05 (±1.92) 46.41 (±5.06) 60.29 (±4.01)
SUBGRAPH-GPT 85.68 (±9.81) 11.02 (±3.50) 19.07 (±5.67) 88.12 (±3.18) 47.25 (±2.84) 61.09 (±2.88)

Fine PREFIXP 87.28 (±6.36) 11.60 (±0.83) 20.02 (±1.38) 85.19 (±1.10) 41.15 (±1.59) 54.89 (±1.30)
SUBGRAPH-GPT 89.57 (±4.37) 11.67 (±1.86) 20.11 (±2.92) 82.99 (±2.10) 44.50 (±2.72) 57.33 (±1.95)

Table 3: Coreference resolution results on 5-fold cross validation.

PREFIXP SUBGRAPH-GPT
Relation F1 MUC-F1 BCUBED-F1 CEAF-F1 AVG.F1 F1 MUC-F1 BCUBED-F1 CEAF-F1 AVG.F1
IDENTITY 56.80 58.22 11.91 11.88 27.34 58.01 78.84 19.14 18.62 38.87
METONYM N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
MERONYM 25.00 16.57 3.45 12.40 10.80 16.00 3.88 0.16 3.25 2.43
TRANS. 64.92 74.71 22.78 38.80 45.43 65.52 87.02 25.67 28.52 47.07
AGG. 74.39 83.91 22.31 31.97 46.06 76.72 89.41 25.59 33.25 49.42
SEP. N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 4: Coreference resolution results of fine-grained relations on the hold out test set.

average values. We also include the F1 scores. The
observed outcomes align with the overall perfor-
mance presented in table 3. It is noteworthy that,
with the exception of the Meronym relation, utiliz-
ing the GPT-base paragraphs as input yields higher
F1 scores compared to the DENSE paragraphs. This
finding further supports the notion that the GPT-
base paragraphs exhibit improved performance in
coreference resolution.

5 Discussion and future work

5.1 Measuring agreement of CUTL

To compute IAA of the CUTL annotation (§3.4),
we tried different metrics including naïve Kappa
score and CoNLL coreference score, but decided
to go with only F1. We view our research prob-
lem differently from traditional coreference tasks
in two ways: (1) We have multiple coreferential
types. This results in one entity being in more than
one coreferential chain. (2) In “separation” rela-
tion, an arbitrary number of new hidden arguments
can be added which means the set of entities is not
fixed. Traditional metrics like Kappa or CoNLL
can only measure one aspect of randomness of our
data, while F1 can show the agreement in a more
all-around fashion. The same logic applies to re-
porting of our experiment. But it would be an inter-
esting topic to develop new metrics or re-formulate
our linking task into a labeling task compatible
with Kappa-family metrics.

5.2 Data selection and limitations

The annotation scheme proposed in this work is de-
signed to focus on non-identidy coreference, CuT,
and is not able to handle some complex linguistics
phenomena. That includes (not limited to) com-

plex temporal ordering, VP or NP ellipsis under
conjunction and/or disjunction, event negation. As
a result, during data selection process, we had to
look for those linguistic features and excluded doc-
uments with them from the data set.

Specifically, to limit the scope of the research,
we intentionally limited our analysis to data that:

• Is temporally linear

• Has a single terminal state

• Has a high density of object transformations
referred to explicitly throughout the text

We chose to work within the cooking recipe domain
because it easily satisfies criteria. However, proce-
dural text in general satisfies these three conditions,
and our current model is therefore compatible with
a broader range of domains than strictly recipes.
In future work, we intend to broaden the scope to
include more varied domains, such as news data
and narratives.

During the manual curation of 100-document
subset, we did not encounter any annotation of nom-
inal events, and therefore this work ipso facto in-
volves only events extracted from verbs. Although
event recognition is not the primary research focus
of this work, being able to additionally identify dif-
ferent types of lexical trigger of events is indeed
important when considering broader domains. We
plan to integrate our framework with other lexical
resources in the future, and event recognition will
receive more focus.

5.3 Event semantics
For this study, we directly adopted (Tu et al.,
2022b) and used simple three-way subclass cat-
egorization for event semantics. In the future, we
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will make a finer event type categorization utilizing
existing large lexical resources such as GL-VerbNet
(Brown et al., 2022). We hypothesize that utilizing
finer and semantically loaded event subclasses will
help empirical investigations of nominal redescrip-
tions as well as improve automatic paragraph gen-
eration.

6 Conclusion

In this paper, we presented a new dataset, CUTL,
annotated using a novel integration of integrating
event semantics and coreference linking annota-
tion. We applied a process-oriented event model
and argument structure as coreference relations be-
tween event input(s) and output(s). We showed that
using CUTL is a very efficient way of analyzing
and annotating entity transformation and corefer-
ence chains in procedural text, by conducting pilot
annotations on cooking recipe text. The CUTL
dataset and annotation material are available under
open-source licenses. Additionally, we conducted
multi-stage experiments to build the baselines for
coreference identifier and classifier that focus on
utilizing our human annotations. The results from
the coreference resolution systems show that the
subgraph representation of our annotation is a good
resource for LLMs such as GPT-3 to generate re-
liable paraphrases in natural language, which can
further improve the multi-class coreference resolu-
tion task.
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