
Findings of the Association for Computational Linguistics: ACL 2023, pages 12556–12571
July 9-14, 2023 ©2023 Association for Computational Linguistics

Language Modeling with Latent Situations

Belinda Z. Li Maxwell Nye∗ Jacob Andreas
Massachusetts Institute of Technology

{bzl,mnye,jda}@mit.edu

Abstract

Language models (LMs) often generate inco-
herent outputs: they refer to events and entity
states that are incompatible with the state of the
world described in inputs. We introduce SITU-
ATIONSUPERVISION, a family of approaches
for improving coherence in LMs by training
them to construct and condition on explicit rep-
resentations of entities and their states. SITU-
ATIONSUPERVISION has two components: an
auxiliary situation modeling task that trains
models to predict entity state representations in
context, and a latent state inference procedure
that imputes these states from partially anno-
tated training data. SITUATIONSUPERVISION
can be applied via fine-tuning (by supervising
LMs to encode state variables in their hidden
representations) and prompting (by inducing
LMs to interleave textual descriptions of entity
states with output text). In both cases, it re-
quires only a small number of state annotations
to produce substantial coherence improvements
(up to an 16% reduction in errors), showing
that standard LMs can be efficiently adapted
to explicitly model language and aspects of its
meaning.1

1 Introduction

Recent years have seen dramatic improvements in
the quality of text generated by neural language
models (LMs; Brown et al., 2020; Raffel et al.,
2020). Nevertheless, even the best LMs still suffer
from failures of semantic coherence. Samples
from LMs refer to entities that have not yet been
mentioned, assert contradictory facts, or describe
impossible sequences of events (Marcus and Davis,
2020). This paper introduces SITUATIONSUPERVI-
SION, a family of methods for efficiently mitigat-
ing incoherent language generation. SITUATION-
SUPERVISION adapts pre-trained LMs to explicitly

∗Work complete while MN was at MIT.
1Code is available at https://github.com/belindal/

sitsup.

Sam unzipped
the suitcase.

Sam put his
clothes inside.

The suitcase
is open.

Ann spilled
coffee on her
keyboard.

She threw it
away.

Context T Situation S Text T′

The
keyboard
is broken.

Context
Situation

Text
enc

dec

dec

Ctx1 Txt1 Ctx2 Txt2LM

(a) Auxiliary situation modeling tasks

state prediction loss

state prediction prompt

Sit1 Sit2

(b) Latent state
 inference

Figure 1: Language modeling with SITUATIONSUPER-
VISION, which comprises two components: (a) An aux-
iliary situation modeling task: given contexts annotated
with explicit textual representations of the situations
they describe, we use them to adapt LMs through ei-
ther an auxiliary fine-tuning loss or a scratchpad-style
prompt. (b) A latent state inference procedure, whereby
missing situation annotations are semi-supervisedly in-
ferred, enabling auxiliary situation modeling starting
from a small number of seed situation annotations.

model the situations they describe by tracking the
properties and relations of entities in generated text.
The core of this approach is an auxiliary situation
modeling task that trains LMs to predict textual
representations of entity state jointly with target
text. Unlike prior work in state tracking focused
predominantly on reasoning (where the end task
is to answer questions about the state, or to solve
math or coding problems), we focus on using state
tracking to improve language generation.

For most generation tasks, state information is
not readily available: it must be manually annotated

12556

https://github.com/belindal/sitsup
https://github.com/belindal/sitsup

and is costly to collect. Thus, to make auxiliary
situation modeling for generation practical, we ad-
ditionally introduce a semi-supervised procedure
for inferring entity states in unannotated text, mak-
ing it possible to apply SITUATIONSUPERVISION

very small number of initial annotations.

Modern LMs can be specialized to new tasks in a
variety of ways, including fine-tuning their parame-
ters and modifying their prompts. We develop ver-
sions of SITUATIONSUPERVISION suitable for both
adaptation methods. For fine-tuned models, we
introduce an auxiliary state prediction loss that en-
courages models’ hidden representations to encode
state variables. For prompted models, we introduce
a scratchpad approach that instructs models to gen-
erate explicit textual descriptions of world states
prior to generating output text. Both approaches
ultimately yield ordinary LMs, compatible with
standard pre-training and decoding procedures.

We evaluate SITUATIONSUPERVISION on two
challenging text generation tasks: the TextWorld
(TW) task of generating acceptable next actions
in a text-adventure game (Côté et al., 2018), and
the TRIP task of evaluating commonsense physi-
cal plausibility of short (5-sentence) stories (Storks
et al., 2021). In experiments on fine-tuned BART
LMs (Lewis et al., 2020), applying SITUATION-
SUPERVISION with 500 seed annotations reduces
coherence errors by 5% on TW and 15% on TRIP.
In experiments on prompted GPT-3 models (Brown
et al., 2020), 12 seed annotations reduce coher-
ence errors by 9% on TW and 20 seed annota-
tions reduce errors by 16% on TRIP. In both cases,
it is far more sample-efficient to annotate entity
states in existing training samples than to augment
training data with additional text-only samples: in
fine-tuned models, SITUATIONSUPERVISION with
500 state annotations performs comparably to train-
ing on 9000 more text-only sentences, while in
prompted models, devoting a fixed token budget to
state annotations rather than additional text samples
yields a coherence improvement of up to 10%.

Additional experiments characterize the ingre-
dients of a good situation representation, showing
that training LMs to predict causally relevant state
variables is essential for good performance. Be-
cause the latent state inference objective favors
representations that improve LM predictions, SIT-
UATIONSUPERVISION discovers these variables
automatically, sometimes improving on human-
designed state representations. In summary:

1. We show that training LMs to build explicit
representations of entity state (via auxiliary
losses or scratchpad-based prompting) im-
proves coherence in text generation tasks.

2. We describe new algorithms for semi-
supervised learning of state representations,
enabling auxiliary supervision and scratchpad
techniques to be applied with extremely small
numbers of annotations.

Our results show that, even when LMs struggle to
generate coherent continuations of input text, only
a small amount of supervision is needed to train
them to explicitly represent the situations that their
inputs describe. Once predicted, these represen-
tations in turn confer large improvements in LM
coherence itself.

2 Background and Preliminaries

A language model (LM) encodes a distribution
p(T ′ | T) over texts T ′ given contexts T (Fig. 1).
Today, most LMs are implemented as deep neural
networks trained on massive text corpora (Brown
et al., 2020). Sampling from them produces natu-
ralistic text that often resembles human-generated
language. However, LM generation is prone to sev-
eral failure modes, including generation of text that
is incoherent, untruthful, or unreliable (Zhou et al.,
2021; Maynez et al., 2020; Martindale et al., 2019).
Past work has shown that some of these behaviors
stem from models’ failure to build good represen-
tations, both of entities’ default properties (Onoe
et al., 2021) and state changes in context (Zellers
et al., 2021). Humans’ ability to avoid these fail-
ure modes, and to generate truthful and coherent
text, is generally understood to rest upon explicit
mental representations of the situations that lan-
guage communicates. The nature and structure of
these representations remains an ongoing topic of
research in linguistics and cognitive science, but
existing theories broadly agree that language users
maintain explicit beliefs about the properties of and
relations among entities mentioned in a discourse,
updating these beliefs in response to new observa-
tions or new information conveyed in language (e.g.
Kratzer, 2007; Zwaan and Pecher, 2012).

These representational theories suggest that lan-
guage models p(T ′ | T) may also benefit from
explicit modeling of situation state. Given an input
text T , we wish to first represent the situation S
described by T before predicting a next sentence.

12557

Inspired by models of situation semantics in the
linguistics literature (Barwise and Perry, 1981, in-
ter alia) we propose to model situations as sets of
propositions si that are known or inferable about
entities in a discourse.2 Examples, with proposi-
tions expressed as sentences in natural language,
are shown in Fig. 1(b) and Fig. 2.

Having inferred S from T , we may then con-
dition on it when sampling T ′ from p(T ′ | S, T).
Past work has proposed a number of language gen-
eration models that explicitly model the state of the
world, primarily by developing specialized predic-
tion architectures that maintain internal state repre-
sentations (Henaff et al., 2016; Gupta and Durrett,
2019) or interact with outside simulation engines
(Liu et al., 2022). While effective, these approaches
come at a cost—requiring complex training data
(Mishra et al., 2018), limiting models to narrow,
pre-defined domains, and generally precluding the
large-scale (text-only) pretraining responsible for
many of the greatest successes of current LMs.
The main question this paper seeks to answer is
whether the benefits of explicit world modeling
may be obtained entirely within the language mod-
eling paradigm itself, without specialized model
architectures or large amounts of specialized super-
vision.

We do so by adapting pre-trained LMs to bet-
ter represent situations S. There are two standard
frameworks for LM adaptation. In smaller mod-
els, which are generally adapted by fine-tuning
of model parameters, we develop auxiliary loss
functions that encourage models’ hidden states to
contain the information required to generate tex-
tual descriptions of state.3 In larger models, which
can also be prompted by prepending a task de-
scription or set of examples to the input context,
we develop prompts that induce models to gen-
erate textual state descriptions in LM output it-
self. Our research builds on a large body of work
that uses auxiliary prediction tasks to shape model
representations, notably work using “scaffold” de-
coders to shape model representations of syntax
(Swayamdipta et al., 2018; Wilcox et al., 2019), and
and “scratchpad” or “chain-of-thought” approaches
to perform intermediate computations in models’

2This approach to modeling contrasts with approaches that
implicitly or explicitly represent the complete set of possible
worlds consistent with a text.

3Concurrent work by Richardson et al. (2022) also intro-
duces a fine-tuning objective aimed at improving state rep-
resentations, but focuses on state-tracking tasks rather than
generation, and only examines a fully supervised setting.

output spaces (Camburu et al., 2018; Nye et al.,
2021; Wei et al., 2022). In §3, we show how to
adapt both techniques for a new class of text gener-
ation problems.

Adapting LMs with auxiliary prediction tasks
requires a source of data for auxiliary supervision.
This kind of supervision is uniquely difficult to
obtain for generation tasks. But the probabilistic
framing described above makes it natural to for-
mulate language modeling with explicit situations
as a latent variable problem. At training time, we
may use context T and targets T ′ to guide infer-
ence of the unknown S from which T ′ was pre-
dicted. Once inferred, these states supervise the
representation-building model that predicts S from
T alone. As above, a great deal of past work has
focused on treating string-valued prompts or plans
as latent variables (Sharma et al., 2021; Zelikman
et al., 2022; Sun et al., 2022). In §4, we generalize
these methods to support multi-step text genera-
tion, and show that inferred states can be used to
supervise small models as well as prompt large
ones.

3 Auxiliary Situation Modeling

We begin by assuming access to a pre-trained LM
and two sources of supervision: a dataset XU of
text examples of the form (T, T ′), and a smaller
dataset XA of examples (T, S, T ′) annotated with
textual situation descriptions S. Our full training
data X is thus XU ∪ XA. As depicted in Fig. 2, we
take these situation descriptions to consist of declar-
ative sentences about the properties and relations
of entities that are relevant to the text being gen-
erated. In this section, we describe two auxiliary
prediction schemes that use these annotations to
improve the LM’s ability to model the conditional
text distribution p(T ′ | T).

3.1 Situation Modeling for Fine-tuning
Our first approach uses a auxiliary decoding loss
that encourages context representations to directly
encode entity state information. We focus on
encoder–decoder models consisting of an encoder
E and a decoder D, with D(E(T)) producing as out-
put a probability distribution over next sentences
T ′. In standard training, parameters of E and D are
chosen to maximize:

L(T ′|T) = log p(T ′|T) = logD(T ′ | E(T)) (1)

To improve state representations, we add an aux-
iliary loss. This takes the form of an auxiliary

12558

T T′

p(T′ ∣ T)
enc dec

Fine-tuning

T T′

p(T′ ∣ T)
enc dec

S

T′

p(T′ ∣ S)enc/dec

T enc dec

de
c

p(T′ ∣ T)

p(S ∣ T)

Text-Only Loss Auxiliary Loss Latent State Inference

Prompting

Text-Only Prompt

T1 T′

p(T′ ∣ T)
LMT′ 1 T⋯D

Scratchpad Prompt Latent State Inference

T1 T′

p(S ∣ T)

T′ 1 T⋯S1 SLM

p(T′ ∣ S, T)

p(S1 ∣ T1) p(T′ 1 ∣ S1, T1)

D

Prediction

Context: You see a locked door
and a chest. The chest holds a key. |
> take key | You take the key. |

Text: > open
door

Situation: The door is
locked. The chest is
empty. You hold the key.

T T′

p(T′ ∣ T)
enc dec

S

p(S ∣ T) de
c

Mark a sentence "Not OK" if it contradicts the prior context. Mark it "OK" otherwise.
Sam unzipped the suitcase. | OK. | Known facts: The suitcase is open. | He put some clothes in it. | OK.
Ann broke her keyboard. |

T1 T′

p(S ∣ T)

T′ 1 T⋯S1 SLM

p(T′ ∣ S, T)

D

Known facts: The keyboard is broken. |
She typed her paper with the keyboard. |
Not OK.

Figure 2: Fine-tuning (top) and prompting (bottom) with SITUATIONSUPERVISION. For each, we show: (Left)
Text-only supervision, in which the LM is trained/prompted with text only samples and expected to produce next
sentences T ′ from contexts T . (Middle) Auxiliary situation modeling, in which the LM is given state descriptions
S during training or in the prompt and expected to learn to encode it in its parameters or infer it in-context.
(Right) Latent state inference, in which the LM must infer missing state descriptions in the training data or prompt
demonstrations. Finally, in fine-tuning, we discard the auxiliary decoder during inference, use the shared encoder
and text-only decoder to infer the next sentence from the context.

decoder DS|T (distinct from the original decoder
D) which is trained to predict state representations
S from the encoded context E(T). We define:

L(S|T) = log p(S|T) = logDS|T (S|E(T)) (2)

and train parameters of the encoder (θE) and both
decoders (θD, θDT,S

) to maximize:

argmax
θE ,θD,θDT,S

∑

T,T ′∈X
L(T ′|T)

+
∑

T,S∈XA

L(S|T) (3)

Intuitively, to minimize this objective, the output of
E(T) must encode information about the latent sit-
uation S. Once encoded, this information is acces-
sible to the original LM text decoder D. Eq. (3) is a
straightforward application of standard multi-task
training approaches for deep networks; however,
to the best of our knowledge it has not previously
been used for state prediction tasks or shown to
improve LMs’ factual coherence.

3.2 Situation Prediction for Prompting
The approach described above is general. But in
LMs with very large numbers of parameters, it

might be costly to apply (or we may risk over-fitting
if the fine-tuning dataset is too small). Thus, the
second approach we describe is based on prompt-
ing models to construct better state representations.
We build on the observation in recent work that
prompts can induce models to build better task
representations by writing these representations to
output: generating, then conditioning on, textual
encodings of useful intermediate variables.

To induce language models to output textual situ-
ation descriptions, we construct prompts with three
components: a task description D, a set of task
demonstrations (“training set”) X , and an input
context Tpred. The training set can include both
unannotated and annotated examples: unannotated
examples are sequences Ti, T

′
i , while annotated

examples are sequences Ti, Si, T
′
i . Formally, we

construct a prompt string:

P = [D · PA · PU · Tpred] , where:

PA = [T ′
0 · S1 · T ′

1 · · ·Sn · T ′
n]x ∀x ∈ XA

PU = [T ′
0 · T ′

1 · · ·T ′
n]x ∀x ∈ X (4)

with · denoting string concatenation. To enable
the model to predict annotations and text directly,
each S is prefixed with an appropriate control token

12559

that informs the model that a situation description
string will come next. When predicting (or scor-
ing) a sentence T ′

pred in context, we first prompt the
model to generate a situation representation Spred,
then score T ′

pred conditional on Tpred, Spred, and the
entire preceding context. The bottom portion of
Fig. 2 shows a concrete example from the TRIP
domain. As above, this approach to prompting is
closely related to existing “scratchpad” and “chain-
of-thought” methods used for question answering
and formal reasoning tasks; our auxiliary situation
modeling approach applies this form of structured
prompting to multi-sentence, open-ended text gen-
eration problems.

4 Latent State Inference

The methods described in §3 applied SITUA-
TIONSUPERVISION only to examples for which
a ground-truth state annotation was provided. For
these methods to be effective, enough state annota-
tions must be available to provide a useful training
signal in the auxiliary loss or to specify the auxil-
iary prediction task for the prompted model. But
such state annotations are in general both hard to
collect and hard to design.

In this section we describe how to obtain them
automatically, without the need for large amounts
of annotation. Below, we re-formulate the two
approaches in §3 as latent variable models that
can infer and condition on state representations
even for unannotated training documents. Intu-
itively, this inference problem is easier at training
time than prediction time: knowing what text fol-
lowed a context constrains the possible situations
the context could describe. Most work on semi-
supervised inference of auxiliary prediction targets
has focused on automatic optimization of prompts
and reasoning chains (Zelikman et al., 2022; Sun
et al., 2022). To the best of our knowledge, in-
ferred latent variables have not been used to train
auxiliary decoders or to design intermediate state
representation for multi-step text generation. The
techniques described below are quite general, and
might be productively employed beyond the gener-
ation applications we describe here.

4.1 Latent State Inference for Fine-Tuning

Intuitively, a good situation representation is one
that is both predictable from context, and useful
for predicting subsequent text. To guide inference
of entity states for auxiliary prediction, we intro-

duce another encoder-decoder into the model of
§3.1: one which attempts to predict T ′ from S.
This model now has two pathways for predicting
T ′: one that uses encoder representations to predict
it directly from T , and another which generates
textual situation descriptions S from decoder repre-
sentations, then uses these to predict T ′. We train
this model’s parameters and infer situation descrip-
tion that maximize probability of next sentences
under both pathways, using information from both
T and T ′ to infer situations S, then using these to
supervise the encoder.

Formally, we optimize the complete likelihood:

argmax
Θ,Ŝ

∑

T,T ′
∈X

L(T ′|T)

+
∑

T,T ′,S
∈XA

(
L(S|T) + L(T ′|S, T)

)

+
∑

T,T ′,Ŝ
∈XU

(
L(Ŝ|T) + L(T ′|Ŝ, T)

)
. (5)

Eq. (5) extends auxiliary fine-tuning by concur-
rently training an encoder-decoder MT ′|S,T to
model p(T ′ | S, T). We initialize θE , θD, θDS|T us-
ing Eq. (3), and θT ′|S by fine-tuning to convergence
on XA. We then perform coordinate ascent (“hard
EM”) by alternating between:

1. E-step: Set Ŝ ≈ argmaxS p(S | T)p(T ′ | S)
for XU by sampling from p(S | T), then
reranking according to p(S | T)p(T ′ | S).

2. M-step: Using the new Ŝ, train Θ to maximize
Eq. (5). Rather than training to convergence,
we perform SGD on Eq. (5) for five epochs.

As in auxiliary fine-tuning, E is shared the
p(T ′ | T) and p(S | T). Information about inferred
descriptions shapes text generation via the auxiliary
decoding objective.

4.2 Latent State Inference for Prompting

Work on few-shot prompting consistently finds
benefits from adding extra examples to prompts
(Brown et al., 2020). As in §4.1, we produce extra
examples for a seed prompt by finding situation
descriptions S that are predictable from T and im-
prove prediction of T ′ on unannotated examples.
We may do so using a very similar procedure to
the one in §4.1: now we choose prompts (but not

12560

model parameters) to maximize:

argmax
Ŝ

∑

T,T ′∈XU

p(Ŝ | T) p(T ′ | T, S) (6)

then add these newly annotated examples to the
prompt (which we may do during both training and
evaluation). Algorithmically, we iterate incremen-
tally over unannotated examples XA:

1. E-step: set Ŝ ≈ argmaxS p(S | T) p(T ′ | S)
for each context-sentence pair (T, T ′) in XU

by prompting the LM with [D · PA · T], then
reranking the candidate states according to

p(S | [D · PA · T]) p(T ′ | [D · PA · T · S]) . (7)

2. M-step: add [T · Ŝ · T ′] to PA in Eq. (4).

Once all examples in XU have been annotated and
added to PA, we prompt with auxiliary supervision
for each context in the evaluation set using P =
[D · PA · Tpred].

5 Experimental Setup

Datasets We evaluate SITUATIONSUPERVISION

on English language modeling datasets. TW is
a set of 1368 transcripts (992 train / 376 evalua-
tion) derived from TextWorld (Côté et al., 2018)
We generate a set of textual game transcripts where
players navigate through a house, unlocking doors
and containers to hunt for a target object. The
LM is trained on these transcripts to generate next
actions. As state supervision, we use the set of
state variables (given as entity-centric facts) that
are known and relevant in the current context (see
§7.1 for more details). TRIP (Storks et al., 2021)
is a set of 1643 plausible and implausible five-
sentence stories (1169 train / 474 evaluation) which
require physical commonsense reasoning to disam-
biguate. Models are trained to generate judgments
of whether or not a given sentence is acceptable in a
context. The state is given by a set of attributes for
each entity, which is updated after each sentence.4

Each passage x ∈ X comprises a sequence of
chunks T ′

0, T
′
1, · · · , T ′

n. In TW, each chunk con-
sists of a textual action description followed by a
game response. In TRIP, each chunk is a single
sentence from the story followed by a plausibility
judgment. We test coherence of generating each T ′

from its context T . For the annotated passages in
4See Appendix A for state representation details.

XA, each context Ti is annotated with correspond-
ing state information Si. Thus, passages in XU can
be broken down into (T, T ′) pairs, while passages
in XA can be broken down into (T, S, T ′) triples.

Models For fine-tuning experiments, we use
BART-base (Lewis et al., 2020) as the language
model and fine-tune it using the AdamW opti-
mizer with learning rate 1e-5, stopping once val-
idation accuracy has stopped improving for 10
epochs. For prompting experiments, we use the
GPT3 da-vinci-002 model (Brown et al., 2020).5

Metrics To evaluate models on TW, we sample
next actions from the LM and compute the fraction
of these that are semantically coherent using the
TW simulator.67 For TRIP, we evaluate every story
pair by training models to predict the string OK or
Not OK after each sentence depending on whether
it is semantically acceptable within a given context.
The TRIP dataset contains human semantic accept-
ability judgments for each sentence of each stories;
we evaluate the accuracy with which models pre-
dict these acceptability judgments (labeling a story
as unacceptable if any sentence is predicted to be
unacceptable).

For TW, we report sentence-wise metrics: we
measure the fraction of next sentences which are
generated to be coherent within the context. In
TRIP, we report passage-wise metrics: we mea-
sure the percent of complete passages for which
every sentence of the passage is labelled accurately.

As baselines in each domain, we compare to
ordinary fine-tuning and prompting. As far as we
are aware, no prior work in these domains focus on
evaluating generation coherence or accuracy.8

5Further details can be found in Appendix C.
6The simulator also returns game responses after each

action (e.g. You entered the kitchen in response to > go
west). Game response coherence results can be found in Ap-
pendix B.1. Because coherence evaluation is less well-defined
for game responses, we do not report results in the main paper.

7In Appendix B.2, we also evaluate generation diversity
amongst these actions using recall against the full set of
ground-truth possible next actions.

8For TRIP, most prior work uses the evaluation procedure
from Storks et al. (2021), which are focused not on evaluating
acceptabilities of incrementally-generated stories, but instead
on post-hoc commonsense reasoning. For TW, prior work
uses a much richer supervisory signal (environment reward) to
select optimal actions towards a goal, rather than modeling the
full set of plausible next actions (Ammanabrolu et al., 2021).

12561

|X | |XA| Method

Coherence

TW

1k 0 Fine-tuning 79.4%±2.4%

1k 500 SITSUP 80.5%±1.8%

1k 500 SITSUP + Latent 83.4%±1.4%

1k 1k SITSUP 81.5%±1.5%

10k 0 Fine-tuning 83.6%±2.5%

Accuracy

1k 0 Fine-tuning 36.5%±3.5%

TRIP
1k 500 SITSUP 43.6%±1.0%

1k 500 SITSUP + Latent 43.6%±1.0%*
1k 1k SITSUP 43.0%±1.7%

Table 1: BART fine-tuning results on TW and TRIP,
where |X | is the number of training examples, and |XA|
is the total amount of state supervision. We report re-
sults for standard LM training, SITUATIONSUPERVI-
SION with only auxiliary situation modeling, and SITU-
ATIONSUPERVISION with both auxiliary modeling and
the latent state inference. The table shows and standard
errors over 8 random seeds. Training with any state
supervision helps over training with no state supervi-
sion. With a comparable amount of state supervision,
latent inference sometimes gives further improvements.
*Latent inference unable to improve beyond base auxiliary
situation modeling checkpoint

6 Experiments

6.1 Fine-Tuning

Our experiments use 1000 training examples, vary-
ing the fraction of these examples for which we
provide state annotations (|XA| = {0, 500, 1000
}). For each choice of |XA|, we repeat experiments
across 8 random seeds, training on a different set
of 1000 examples for each seed. We compare mod-
els trained using ordinary language modeling tech-
niques, Eq. (3), and Eq. (5). We evaluate using
metrics described in §5.

Results Evaluation results are shown in Table 1.
In TW, using auxiliary supervision and latent
state inference, SITUATIONSUPERVISION with 500
state annotations improves generation coherence by
∼ 4% over a text-only baseline, giving comparable
improvements to training on 9,000 more text-only
examples. Results in Appendix B.2 show that these
improvements come at no cost to generation diver-
sity. In fact, the latent procedure with 500 seed
states is able to outperform full auxiliary supervi-
sion — possibly because latent state inference is
able automatically discover usable state represen-
tations, which are more useful for prediction than
human-authored ones. In TRIP, SITUATIONSUPER-

|X | |XA| Method

Coherence

25 0 Text prompting 67.4%

TW 25 12 SITSUP 68.5%
25 12 SITSUP + Latent 75.6%
25 25 SITSUP 73.9%

Accuracy

80 0 Text prompting 59.5%

TRIP 80 20 SITSUP 58.2%
80 20 SITSUP + Latent 67.1%
80 80 SITSUP 70.7%

Table 2: GPT3 prompting results on TW and TRIP, us-
ing text-only querying, SITUATIONSUPERVISION with
only the auxiliary situation modeling component, and
SITUATIONSUPERVISION with both the auxiliary situa-
tion modeling and the latent situation prediction compo-
nents. Prompting with any state supervision helps over
prompting with no state supervision. With a comparable
amount of ground-truth state supervision, latent infer-
ence significantly improves over only auxiliary situation
modeling.

VISION with 500 seed states improves accuracy by
∼ 7% over a text-only baseline. Note in this case
that the latent inference procedure was unable to
improve beyond auxiliary training. However, even
adding in the remaining 500 ground-truth state an-
notations does not improve the LM, indicating that
perhaps the 500 seed states were sufficient for the
LM to learn everything it can from state supervi-
sion.

6.2 Prompting
In TW, we used 25 sentences (3 stories) in P .
In TRIP, we used 80 sentences (16 stories) in P .
When evaluating latent supervision, we held out
state annotations on 13 sentences (2 stories) in TW,
and 60 sentences (12 stories) in TRIP. We run each
prompting experiment once.

Results Results are reported in Table 2. Us-
ing SITUATIONSUPERVISION with auxiliary sit-
uation modeling where all passages are fully an-
notated with state (rows 4,8) dramatically im-
proves performance compared to a text-only base-
line (rows 1,5) in both domains. In TW, we see
a ∼ 6.5% improvement in generation coherence,9

while in TRIP, we see a ∼ 11% improvement in
accuracy of coherence judgments.

Next, we examine the setting where certain state
annotations are missing from the prompt, compar-

9Results in Appendix B.2 shows that SITUATIONSUPER-
VISION also improves generation diversity.

12562

The chest is open.
The chest is empty.
The chest is in the attic.
You have the old key.
You are in the kitchen.
The kitchen is east of the attic.
The red door is locked.
The old key matches the red door.
The living room is south of the kitchen.
The sofa is in the living room.

Latent state S

> unlock the red door with the
old key

Context T Next sent. T’

-= Attic =-
You see an open chest.
The only thing in the chest is an old key.
There is an open green door leading east.

> pick up key
You pick up the key.

> go east
-= Kitchen =-
You enter the kitchen.
There is a locked red door leading south.

> go west

> drop the old key

Known
state

Causally
relevant state

Figure 3: Different choices of situation representation. We find that ideal representations consist of the intersection
between known state and causally relevant state (highlighted in gray). The known state consists of all facts deducible
from the prior context T (e.g. in TW, only facts about rooms or objects that the player has seen). The causally
relevant state consists of all facts causally relevant to any plausible next sentence T ′ (e.g. in TW, only facts about
the currently accessible items, here the old key but not the chest).

ing SITUATIONSUPERVISION with latent situation
prediction (rows 3, 7) against SITUATIONSUPERVI-
SION with only auxiliary situation modeling (rows
2, 6). We find that incorporating generated latent
states into the prompt helps performance on both
TW and TRIP, by 7.1% and 8.9% respectively.

7 Analysis

7.1 Choice of state is important
In this section, we explore the consequences of in-
cluding/excluding various components of the state.

TW We begin by conducting experiments in TW.
Because it is procedurally generated, the TW en-
vironment is able to provide detailed ground-truth
state annotations for every entity that might be men-
tioned in text. All experiments described in §6 use
situation representations that include only a subset
of entities and properties: namely (1) only those
that are already known (i.e. those have been as-
serted in the context), and (2) only those that are
causally relevant (i.e. those that, if changed, would
induce a different distribution over next sentences).
See Fig. 3 for examples.

We train with auxiliary supervision using the
three different choices of state: the full state, the
known state (facts that satisfy condition (1)), and
the relevant known state (facts that satisfy both
conditions (1) and (2)). Results are shown in Ta-
ble 3. We find that the training with the full state is
not significantly better than simply training on text
only, and perhaps slightly worse. Training on the
subset of known facts outperforms training with the
full state, and training on the intersection of known
state and causally relevant state is even better.

State Type Coherence

None 79.4%±2.4%

Full state 78.0%±1.7%

Full Known state 79.7%±1.5%

Relevant Known state 81.5%±1.5%

Table 3: Using different subsets of the state as auxiliary
supervision for TW fine-tuning yields varying amounts
of coherence improvements. We report averages and
standard errors over 4 random seeds. Design of situ-
ation representations is consequential: using only the
known and causally relevant portions of the state (rele-
vant known state) substantially outperforms using the
full state.

TRIP Using the principles deduced from the pre-
vious experiments in TW (the optimal state should
be both known from prior context and causally rel-
evant to the next sentence), we optimize the design
of TRIP state annotations.10 We used these state
annotations for all experiments described above.
In this section, we demonstrate that this outper-
forms using the original annotations provided in
the dataset. Specifically, we sample 12 training
examples to include in the prompt,11 and compare
text-only prompting against SITUATIONSUPERVI-
SION with the original states (Orig) and SITUA-
TIONSUPERVISION with handcrafted states (Ours).
Results are reported in Table 4. By using our hand-
crafted states, we were able to achieve a much
higher accuracy than using the original states.

10See Appendix A for details.
11In previous sections we used 16 samples. However, be-

cause the original states were much longer than our states, we
were only able to fit 12 candidates in context using the original
state annotations.

12563

|X | |XA| State Type Accuracy

12 0 - 59.3%
TRIP 12 12 Orig 62.8%

12 12 Ours 68.1%

Table 4: Using different types of state annotations for
TRIP when prompting GPT3 yields various amounts of
performance improvements. We compare SITUATION-
SUPERVISION using TRIP’s original state annotations
(Orig) against SITUATIONSUPERVISION using our own
handcrafted state annotations (Ours). Note that using
the original state annotation is only able to improve
3.6% over a text-only baseline, while using our state
annotations improves 8.8%.

TW TRIP

SITUATIONSUPERVISION 75.6% 67.1%
without state reranking 72.4% 65.8%

Table 5: Ablating state reranking with p(T ′ | S) when
inferring the optimal latent state for prompting. In both
TW and TRIP, SITUATIONSUPERVISION works better
when we sample multiple states from p(S | T) and
rerank according to p(T ′ | S), than when we simply
take the greedy optimal state from p(S | T).

7.2 Explicit state inference outperforms
greedy next state prediction

A simplification of our latent state inference proce-
dure for prompting simply asks GPT3 to greedily
generate the most likely state according to prior
context (i.e., argmaxS p(S | T)), without consid-
ering p(T ′ | S) (as in chain-of-thought approaches;
Wei et al., 2022). We compare our currently latent
state procedure against this greedy state generation
baseline in Table 5. We find that it indeed helps to
consider p(T ′ | S) when generating states, improv-
ing next sentence coherence by 3.2% in TW and
next sentence accuracy by 1.3% in TRIP.

7.3 For a fixed context window budget,
including more state annotations
outperforms including more text samples

Because the limiting factor in many current few-
shot prompting methods is context window size
rather than annotation effort, we study whether it is
more token-efficient to include additional state an-
notations or additional text examples in the prompt.
We compute the number of tokens in prompts an-
notated with state (PA), then formulate a text-only
prompt (PT) by stripping the state annotations from
PA, then appending randomly-selected text-only
samples from the remaining training data until the

toks |X | |XA| Metric

Coherence
TW 3199 54 0 56.7%*
TW 3199 25 25 65.0%*

Accuracy
TRIP 3053 229 0 60.5%
TRIP 3054 80 80 70.7%

Table 6: When prompting with limited context-window
size, supplementing existing prompt demonstrations
with states is more token-efficient than providing more
text-only training examples.
*Coherences of greedy next generations are reported in this
experiment for TW.

number of tokens in the new prompt is equal (or
nearly equal) to the number of tokens in PA.

We prompt the LM using either text-only prompt-
ing conditioned on PT , or auxiliary prompting
conditioned on PA. The results are shown in Ta-
ble 6. (Due to limitations in annotation budget, for
TW in this experiment, we report coherence of the
greedily-generated next actions rather than sam-
pling 5 actions.) We see that under a fixed context
token budget, in both domains, it is more helpful
to supplement existing examples with their state
annotations rather than insert additional text-only
examples into the context window.

8 Conclusion

Effective generation of coherent text requires rea-
soning about the world that text describes. In this
work, we use entity states as auxiliary supervision
to improve LMs ability to perform this reasoning
under both fine-tuning and prompting. We find that
when either annotation budget (for fine-tuning) or
context window size (for prompting) are limited, it
is more sample- and token-efficient to increase the
amount of state supervision rather than text-only
supervision. However, since state annotations are
harder to collect, we introduce latent supervision al-
gorithms for sample-efficiently improving LM gen-
eration coherence, and demonstrate improvements
in two domains. Our results point to a potentially
broad role for semantic supervision in LM train-
ing and prompting—even small amounts can yield
large coherence improvements. This work more
generally suggests that semantic state reasoning is
still challenging for even modern large language
models, and but can be improved without funda-
mental changes to the architecture of existing LMs.

12564

9 Limitations

The main limitation of SITUATIONSUPERVISION

is that situation annotations can often be expensive
to curate and difficult to design (though we outline
some general principles for their design in §7). Fur-
thermore, we conducted experiments on only two
datasets in this paper. Future work could explore
a wider genre of texts, more domains, and more
languages.

10 Impact Statement

This work introduces ways of using state super-
vision for improving the coherence of language
model generations. This can be used to reduce
the incidence of false or misleading generations
from language models. Furthermore, we found that
we can bootstrap starting from small amounts of
seed state supervision to achieve large coherence
gains, meaning the method can be used with rela-
tive ease without the need for extensive annotation.
However, the methods described in this paper can
also be used maliciously to improve the coherence
of automatically-generated misinformation, hate
speech, or other harmful content.

References
Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li,

Arthur Szlam, Tim Rocktäschel, and Jason Weston.
2021. How to motivate your dragon: Teaching goal-
driven agents to speak and act in fantasy worlds. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 807–833, Online. Association for Computa-
tional Linguistics.

Jon Barwise and John Perry. 1981. Situations and atti-
tudes. The Journal of Philosophy, 78(11):668–691.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-

ral language inference with natural language expla-
nations. Advances in Neural Information Processing
Systems, 31.

Marc-Alexandre Côté, Ákos Kádár, Xingdi (Eric) Yuan,
Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mah-
moud Adada, Wendy Tay, and Adam Trischler.
2018. Textworld: A learning environment for text-
based games. In Computer Games Workshop at
ICML/IJCAI 2018, pages 1–29.

Aditya Gupta and Greg Durrett. 2019. Tracking discrete
and continuous entity state for process understanding.
arXiv preprint arXiv:1904.03518.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2016. Tracking the world
state with recurrent entity networks. arXiv preprint
arXiv:1612.03969.

Angelika Kratzer. 2007. Situations in natural language
semantics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas. 2021.
Implicit representations of meaning in neural lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1813–1827, Online. Association for
Computational Linguistics.

Ruibo Liu, Jason Wei, Shixiang Shane Gu, Te-Yen Wu,
Soroush Vosoughi, Claire Cui, Denny Zhou, and An-
drew M Dai. 2022. Mind’s eye: Grounded language
model reasoning through simulation. arXiv preprint
arXiv:2210.05359.

Gary Marcus and Ernest Davis. 2020. Gpt-3, bloviator:
Openai’s language generator has no idea what it’s
talking about. [Online; posted 22-August-2020].

Marianna Martindale, Marine Carpuat, Kevin Duh, and
Paul McNamee. 2019. Identifying fluently inade-
quate output in neural and statistical machine transla-
tion. In Proceedings of Machine Translation Summit
XVII: Research Track, pages 233–243, Dublin, Ire-
land. European Association for Machine Translation.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

12565

https://doi.org/10.18653/v1/2021.naacl-main.64
https://doi.org/10.18653/v1/2021.naacl-main.64
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://www.microsoft.com/en-us/research/publication/textworld-a-learning-environment-for-text-based-games/
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.143
https://doi.org/10.18653/v1/2021.acl-long.143
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173

Bhavana Dalvi Mishra, Lifu Huang, Niket Tandon,
Wen-tau Yih, and Peter Clark. 2018. Tracking state
changes in procedural text: a challenge dataset and
models for process paragraph comprehension. arXiv
preprint arXiv:1805.06975.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Yasumasa Onoe, Michael JQ Zhang, Eunsol Choi, and
Greg Durrett. 2021. Creak: A dataset for com-
monsense reasoning over entity knowledge. arXiv
preprint arXiv:2109.01653.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. 2019. PyTorch: An Im-
perative Style, High-Performance Deep Learning Li-
brary. Curran Associates Inc., Red Hook, NY, USA.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Kyle Richardson, Ronen Tamari, Oren Sultan, Reut
Tsarfaty, Dafna Shahaf, and Ashish Sabharwal. 2022.
Breakpoint transformers for modeling and tracking
intermediate beliefs.

Pratyusha Sharma, Antonio Torralba, and Jacob An-
dreas. 2021. Skill induction and planning with latent
language. arXiv preprint arXiv:2110.01517.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: Toward
verifiable commonsense language understanding. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4902–4918, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning
for language-model-as-a-service. arXiv preprint
arXiv:2201.03514.

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A Smith.
2018. Syntactic scaffolds for semantic structures.
arXiv preprint arXiv:1808.10485.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural super-
vision improves learning of non-local grammatical
dependencies. arXiv preprint arXiv:1903.00943.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Eric Zelikman, Yuhuai Wu, and Noah D Goodman.
2022. Star: Bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465.

Rowan Zellers, Ari Holtzman, Matthew Peters, Roozbeh
Mottaghi, Aniruddha Kembhavi, Ali Farhadi, and
Yejin Choi. 2021. PIGLeT: Language grounding
through neuro-symbolic interaction in a 3D world.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2040–2050, Online. Association for Computational
Linguistics.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab,
Francisco Guzmán, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2021. Detecting hallucinated content
in conditional neural sequence generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1393–1404, Online.
Association for Computational Linguistics.

Rolf A Zwaan and Diane Pecher. 2012. Revisiting men-
tal simulation in language comprehension: Six repli-
cation attempts. PloS one, 7(12):e51382.

12566

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2211.07950
https://doi.org/10.48550/ARXIV.2211.07950
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2021.findings-emnlp.422
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.acl-long.159
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120

A Constructing the State

In each domain, the state is a collection of facts
(attributes and/or relations) about each entity. It is
updated each time there is a new action, instruc-
tion, or sentence. We convert the state to natural
language to take advantage of existing linguistic un-
derstanding in pre-trained models. Future work can
examine the effect of using non-natural-language
forms of state.

Below, we discuss the details of this conversion
from the available state annotations in each do-
mains.

TW In TW, the simulator gives us the full state,
or the full set of facts describing the state of the
world after executing each agent action. Facts are
either entity properties (e.g. locked(door)), or
relations between two entities (e.g. is-in(key,
chest)). However, since the agent has not ex-
plored the full state at the start of each game, at
each step, we compute a subset of the facts that the
agent knows about. We call this the known state.
We further restrict this subset to only facts that are
causally relevant to any possible next action that
the agent can take, such that all possible next ac-
tions can be inferred from just this set. We call this
the relevant known state.

We compute both these sets heuristically: the
known state consists of all facts about any currently
or previously accessible entities that the agent has
encountered. For the relevant known state, we dis-
card facts about previously accessible entities and
keep only facts about currently accessible entities.
Specifically, the relevant known state consists of
facts about: 1. player location, 2. all currently
accessible items (i.e. in the current room or in the
inventory), 3. which doorways are accessible from
the current room and/or which rooms neighbor the
current room.

We convert collections of facts to natural lan-
guage following the same procedure as Li et al.
(2021). Specifically, propositions p(o) are con-
verted to “the {o} is {p}”, while relations r(o1, o2)
are converted to “the {o1} is {r} {o2}”.

TRIP In TRIP, we write out seed states for 16
stories, consisting of facts known to hold true af-
ter each sentence of the story — then use GPT3
to automatically infer states for the remaining sto-
ries in the training data. We aim to construct the
state in TRIP to capture the spirit of the relevant
known state in TW (which we know from §7.1 to

be the optimal state supervision), whereby we only
include facts both known from the prior context
and potentially causally relevant to the next sen-
tence. However, though capturing known facts is
straightforward, because TRIP is a real dataset con-
sisting of open-ended text, the set of plausible next
generations is open-ended, meaning that the full set
of causally relevant known facts cannot be always
be anticipated ahead of time. Instead, we use the
ground-truth acceptable completion as a minimal
guarantee – we aim to include facts informative for
generating at least the single ground-truth next sen-
tence in the acceptable story (which isn’t always
straightforwardly derived from the known facts).
One example is as follows:

• T = Tom packed his gloves in his suitcase.
Tom checked his suitcase in at the airport.

• S = Tom’s gloves are in the suitcase.
The suitcase is checked in at the
airport. Tom does not have his
suitcase. Tom does not have his
gloves.

• T ′ = Tom boarded the plane without his
gloves.

Note that while Tom does not have his gloves
is technically inferrable from Tom’s gloves are
in the suitcase. The suitcase is checked
in at the airport, including this fact explicitly
in S reinforces the causal link between the next
sentence T ′ and S.

For the analysis in §7.1, we compare against a
stringified version of the originally-provided states.
In the original dataset, each sentence of a story is
annotated with the state changes applied to each of
the (up to 15) attributes of that entity. The state an-
notations take the form of (entity, attribute, value)
triples. Each entity attribute is associated with a
value indicating the direction of change for that
attribute. For example, (shirt, cleanliness, true →
false) indicates the shirt became dirty.

Because there are a finite set of (15) attributes
and (8) values, we enumerate rules for converting
all (attribute, value) pairs to natural language pred-
icates VP. We then convert (entity, attribute, value)
triples into “the {entity} VP”.

12567

|X | |XA| Method Coherence

1k 0 Fine-tuning 40.0%±0.7%

1k 500 SITSUP 40.0%±0.8%

1k 500 SITSUP + Latent 40.0%±0.4%

1k 1k SITSUP 42.9%±1.0%

Table 7: TW game response generation coherence. We
evaluate BART fine-tuning with and without compo-
nents of SITUATIONSUPERVISION.

B Further TW Evaluations

B.1 Game Response Coherence for BART
Fine-Tuning

The text of TW consists of alternating actions and
game responses. For example:

> open door
You open the door
> go west
-= Kitchen =-
You arrive at a kitchen. You see a counter.
On the counter is an old key. [...]

In this example, lines starting with > are actions
and all other lines are game responses.

In §6, we only evaluated coherence of generat-
ing actions in TW. Here, we evaluate coherence of
generating game responses as well. Due to quota re-
strictions, we evaluate game responses only for fine-
tuning approaches and not prompting approaches.

Table 7 reports coherence results for game re-
sponses alone, and game responses and actions
combined. Unlike the set of acceptable actions,
the TW simulator does not provide us with a set
of acceptable game responses. Instead, we can
only compare the ground-truth game response from
the simulator. This can result in over-penalization:
when pieces of the underlying state are still un-
known, the LM will be falsely penalized, despite
generating a game response coherent with the prior
context. Thus the numbers reported in Table 7 are
simply a lower bound.

B.2 Generation Diversity
To measure the diversity of LM outputs, we use
recall12 between the set of LM generations and
the full set of ground-truth valid sentences. This
latter set is provided to us by the TextWorld sim-
ulator. Note that this set is not entirely complete,
as there will be generations that are consistent with

12Because we sample at most 5 unique generations from the
LM, there is a hard ceiling on maximum achievable “recall”
in our case.

Model |X | |XA| Method Recall

BART

1k 0 Fine-tuning 11.8%±0.3%

1k 500 SITSUP 11.8%±0.3%

1k 500 SITSUP + Latent 11.9%±0.2%

1k 1k SITSUP 12.6%±0.4%

GPT3

25 0 Text prompting 33.3%
25 12 SITSUP 40.1%
25 12 SITSUP + Latent 42.1%
25 25 SITSUP 40.9%

Table 8: TW generation diversity for fine-tuning and
prompting with and without components of SITUATION-
SUPERVISION. We see that using SITUATIONSUPER-
VISION with fine-tuning does not harm the diversity of
generated samples, while using SITUATIONSUPERVI-
SION with prompting actually increases diversity.

the known facts from the prior context but con-
tradict an unknown fact, and is consequently not
accepted by the simulator. However, recall against
the simulator-provided set of valid sentences re-
mains a good heuristic for diversity.

We examine how training with SITUATION-
SUPERVISION affects generation diversity. We
use the same models and training/prompting se-
tups as in §6 and evaluate the diversity among the
generated samples. Results are shown in Table 8.
We showed in §6 that SITUATIONSUPERVISION

improves TW generation coherence in both the
fine-tuning and prompting cases. As shown in Ta-
ble 8, SITUATIONSUPERVISION does not sacri-
fices diversity to achieve those coherence gains. In
fact, prompting with SITUATIONSUPERVISION im-
proves diversity when compared against a text-only
model, and doing latent inference appears to addi-
tionally improve diversity beyond simply auxiliary
situation modeling.

C Infrastructure and Reproducibility

We ran all fine-tuning experiments on a single
32GB NVIDIA Tesla V100 GPU. We use a BART-
base model which has 6 Transformer layers each
in its encoder and decoder, and 139M total param-
eters. Training time varies depending on domain
and data size, but generally is not longer than a few
hours. As a reference point: on 1000 TW examples,
training takes ∼1 hour for text-only training, ∼1-2
hours for training with auxiliary state supervision,
and ∼1-3 hours for training with latent state super-
vision. For prompting results, we use OpenAI’s
GPT3 text-davinci-002 model. For sampling
next actions in TW, we use a generation temper-
ature of 0.7. When judging acceptability of each

12568

sentence in TRIP, we directly compare p(Not OK)
against p(OK). When sampling states for latent
state inference, to encourage diversity, we use a
generation temperature of 0.9.

We used PyTorch (Paszke et al., 2019) and Hug-
gingface Transformers (Wolf et al., 2020) for im-
plementing and training BART-base models. We
use OpenAI’s API13 for querying GPT3.

13https://beta.openai.com/

12569

https://beta.openai.com/

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 9

�3 A2. Did you discuss any potential risks of your work?
Section 10

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract, Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 5

�3 B1. Did you cite the creators of artifacts you used?
Section 5

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Could not find license

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
All data was intended for research.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
None of the data used should contain identifiable or offensive information.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 5

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 5

C �3 Did you run computational experiments?
Section 6,7

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix D

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12570

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 5, Appendix D

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 6

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix D

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12571

