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Abstract

Over the last few years, Masked Language
Modeling (MLM) pre-training has resulted in
remarkable advancements in many Natural Lan-
guage Understanding (NLU) tasks, which has
sparked an interest in researching alternatives
and extensions to the MLM objective. In this
paper, we tackle the absence of explicit seman-
tic grounding in MLM and propose Descrip-
tive Masked Language Modeling (DMLM), a
knowledge-enhanced reading comprehension
objective, where the model is required to pre-
dict the most likely word in a context, being
provided with the word’s definition. For in-
stance, given the sentence “I was going to
the _”, if we provided as definition “finan-
cial institution”, the model would have to pre-
dict the word “bank”; if, instead, we provided
“sandy seashore”, the model should predict
“beach”. Our evaluation highlights the effec-
tiveness of DMLM in comparison with stan-
dard MLM, showing improvements on a num-
ber of well-established NLU benchmarks, as
well as other semantics-focused tasks, e.g., Se-
mantic Role Labeling. Furthermore, we also
demonstrate how it is possible to take full ad-
vantage of DMLM to embed explicit seman-
tics in downstream tasks, explore several prop-
erties of DMLM-based contextual representa-
tions and suggest a number of future directions
to investigate.

1 Introduction

Language Modeling is at the core of transfer learn-
ing approaches that have recently revolutionized
the Natural Language Processing field. Among
these, the Masked Language Modeling (MLM) for-
mulation introduced by Devlin et al. (2019) has
been used to train Large Language Models that ob-
tained astounding performances in many Natural
Language Understanding (NLU) tasks. This proved
empirically that training a model to predict a word
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based on the context in which it appears (i.e., the
cloze task; Taylor, 1953) enables the emergence of
rich word representations with transferable value
(Ruder et al., 2019).

Given the importance of MLM, several improve-
ments over its standard formulation have been pro-
posed. In particular, a large body of research has
investigated alternative self-supervised objectives
to take advantage of the ever-growing availability
of raw text. For instance, Dong et al. (2019) unified
multiple language modeling objectives into a single
architecture, Joshi et al. (2020) masked entire spans
instead of single tokens, and Clark et al. (2020) ex-
ploited the entire input instead of only optimizing
on the masked words. At the same time, another
research direction has explored utilizing, along-
side MLM, the wealth of information contained
in structured Knowledge Bases (KBs) to enhance
models’ representations. For example, Peters et al.
(2019) and Liu et al. (2020b) tried leveraging KB
entities in order to provide additional input con-
text, while Levine et al. (2020) and Yamada et al.
(2020) tasked the models with explicitly predicting
KB-grounded embeddings of concepts and named
entities in place of words, as an integration to the
MLM framework.

Our work stands in the middle of the aforemen-
tioned directions. Indeed, we have designed a
semantic-enhanced objective that is able to semanti-
cally ground word representations and provide com-
plementary information to the cloze task without
ever leaving the MLM framework. Specifically, we
put forward Descriptive Masked Language Model-
ing (DMLM), a pre-training objective that requires
the model to perform reading comprehension over
textual definitions: given an input sentence, the
model is tasked with predicting a masked word in
context while being provided with a natural lan-
guage definition, drawn from a predefined sense
inventory, that describes its meaning.

At the same time, given that this auxiliary task
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I went [MASK] the [DEF]. Sandy [MASK]

beachto seashore

I went [MASK] the [DEF]. Financial [MASK]

bankto institution

Figure 1: Two examples of DMLM, where a model has
to predict a described masked word while simultane-
ously performing standard MLM.

is orthogonal to MLM, in that it uses descriptions,
rather than the surrounding context, to help models
guess the correct word, and in order to improve
optimization efficiency and contextualization ca-
pabilities, we utilize the standard MLM objective
over the entire input sequence, definition included
(Figure 1).

While our primary focus is to overcome the ab-
sence of explicit semantic grounding in MLM, thus
producing semantically rich representations that
can later be used in downstream applications, we
show that, as a by-product of our objective, DMLM-
trained models can, i) leverage DMLM’s objective
in downstream tasks, and, ii) exhibit grounding
towards the sense inventories involved in the pre-
training. Furthermore, we demonstrate that Word
Sense Disambiguation systems (Bevilacqua et al.,
2021; Navigli, 2009) can be employed effectively
to produce large-scale sense-tagged corpora, drop-
ping the need for manually disambiguating millions
of words in order to train DMLM systems.

To summarize, our contributions are manifold:

• We introduce Descriptive Masked Language
Modeling (DMLM), a novel knowledge-
enhanced reading comprehension objective;

• We extensively evaluate architectures trained
with DMLM over GLUE, i.e., a set of NLU
tasks, as well as on a semantics-focused down-
stream task, i.e., Semantic Role Labeling,
showing that DMLM-trained models consis-
tently outperform their MLM counterparts;

• We show that DMLM-trained models can take
advantage of word definitions in downstream
tasks, even if these latter were not seen during
pre-training, opening several possibilities for
semantically enriching contexts;

• Through a spatial analysis, we show that the
word representations produced by a DMLM-

trained encoder partially exhibit grounding
towards the KBs employed during training.

We release code as well as all sense-tagged cor-
pora used for training at https://github.com/
SapienzaNLP/dmlm.

2 Related Work

Since the advent of BERT (Devlin et al., 2019),
Masked Language Modeling (MLM) has been
used widely to pre-train language models in a self-
supervised fashion. As opposed to standard Lan-
guage Modeling, which requires predicting the next
word in a sequence given the preceding words,
MLM consists in predicting masked words given
the remaining context.

MLM Revisions & Extensions Over the past
few years, several extensions to MLM have been
proposed (Qiu et al., 2020). To name a few, Dong
et al. (2019, UniLM) introduced an ensemble of
pre-training objectives to unify masked, causal and
sequence-to-sequence language modeling. Joshi
et al. (2020, SpanBERT) proposed an extension
that masked and predicted entire spans, forcing the
model to predict them solely based on the context,
which is arguably harder than predicting single
masked words. More recently, Clark et al. (2020,
ELECTRA) improved MLM’s efficiency by opti-
mizing over all the tokens of the sequence, using
a generator to perturb the input sentence and a dis-
criminator that needs to discern between original
and modified tokens. Finally, several works have
cast MLM to the sequence-to-sequence setting, ap-
plying different masking techniques to both the
input and the output sequences (Song et al., 2019;
Lewis et al., 2020; Raffel et al., 2020).

Knowledge-Enhanced Pre-training Although
the self-supervised MLM objective has proven to
model both syntactic and semantic information
(Rogers et al., 2020), its formulation provides no
explicit ties to the real world (Peters et al., 2019;
Zhang et al., 2019), a limitation that several works
have tried to overcome through the injection of in-
formation coming from Knowledge Bases (KBs).
Some works proposed to extend the output vocabu-
lary of MLM with either entities in Wikipedia (Ya-
mada et al., 2020, LUKE) or supersenses found in
WordNet (Levine et al., 2020, SenseBERT), while
Peters et al. (2019, KnowBERT) leveraged entity
embeddings computed from either Wikipedia or
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WordNet (Miller et al., 1990) to re-contextualize
the output representations of the underlying model.

Another research direction focused on enhanc-
ing the input sequence provided to the underlying
model. For instance, Liu et al. (2020b, K-BERT)
added a KB module to retrieve relevant entities and
relations, injecting them into the sentence, while
Wang et al. (2021, KEPLER) used an encoder
model to jointly learn entity embeddings through
their corresponding descriptions and perform the
standard MLM objective.

Finally, and much closer to our work, Chen et al.
(2022, DictBERT) used entries of the Cambridge
dictionary (words and their definitions) to produce
latent vectors that enhanced models’ hidden rep-
resentations, while Yu et al. (2022, Dict-BERT)
helped models better contextualize rare words by
appending their definitions (taken from Wiktionary)
to the input sequence, though they prevented any
other word in the input from taking advantage of
the definitions provided.

In stark contrast to previous efforts, we put for-
ward a novel auxiliary task to MLM, where the
model is required to predict a masked word1 based
on both the context it appears in and, most im-
portantly, its definition, which we extract from
dictionary-like KBs; at the same time, the model is
also trained to perform MLM over the entire input
sequence, including the definition. Our method
has two inherent advantages: first, that it is not
restrained by a fixed vocabulary, and, second, that
it supports semantic enrichment via the injection
of definitions, including those not seen during pre-
training, in downstream tasks. Moreover, as an
additional benefit of leveraging DMLM alongside
MLM, we show that DMLM embeds properties
related to the Knowledge Bases employed during
training.

3 Descriptive MLM

As a first step, let us formally define the task of
Masked Language Modeling (MLM): given a se-
quence of n words w1, . . . , wn, we randomly re-
place a certain percentage of the words by means of
a special, uninformative, [MASK] token, and ask the
model to predict the corresponding masked words.
For example, given the sentence “I went to the
beach.”, if we picked the word beach randomly,
the model would see “I went to the [MASK] .” as

1Words, or multi-words, with open-class Part-of-Speech
tags, i.e., nouns, verbs, adverbs, and adjectives.

input, and would be asked to predict beach from its
corresponding [MASK] token.

DMLM builds on top of MLM in that, before
applying MLM, i) it randomly selects a content
word wi from the input sentence, for which we
know its textual definition dwi , ii) it replaces wi

with another special token, i.e., [DEF], and, iii)
it appends dwi to our input sequence after a spe-
cial [DEFINE] token. Going back to our example,
we would obtain “I went to the [DEF]. [DEFINE]
Sandy seashore”. After this initial step, we apply
the standard MLM perturbation avoiding replacing
either of the two special tokens that we added, but
leaving dwi as a possible target for perturbation,
e.g., “I went [MASK] the [DEF]. [DEFINE] Sandy
[MASK]” (see Figure 1). Following this procedure,
depending on which tokens are masked, the model
has to leverage, potentially simultaneously, both
the input sequence and the content word’s defini-
tion in order to restore the masked words. Thus,
utilizing DMLM implies that:

• Every word in the input sequence is used to
contextualize both the [MASK] words and the
special [DEF] word;

• The model, especially in ambiguous con-
texts, must exploit the definition to predict
the [DEF] token;

• The definition is perturbed as well, so that
it not only contributes to the prediction of
the masked content word, but also requires
the model to use all unmasked tokens, even
those in the input sequence, to reconstruct that
definition.

DMLM can be used to pre-train both encoder-
only and encoder-decoder architectures. For
encoder-only architectures, when a content word2

is split into subwords, we replicate the [DEF] token
for each subword so that the model is able to recon-
struct the full word at prediction time. For encoder-
decoder architectures, DMLM’s formulation can
easily be applied with very small adjustments. Due
to space and computational constraints, we discuss
these adjustments in more detail in Appendix A.

4 DMLM Pre-training

4.1 Sense-tagged Dataset
Training a system using the DMLM objective re-
quires a large corpus whose content words are

2We also support multi-word expressions.

12772



Inventory Tokens Instances Token Vocab. Definitions

WordNet 98 M 44 M 224 K 89 K
ODE 98 M 72 M 84 K 79 K
Wiktionary 98 M 69 M 183 K 91 K

Table 1: Statistics about the produced sense-tagged
corpora. Tokens: total number of tokens in the cor-
pus; it is the same underlying corpus for all inventories
(WikiText-103). Instances: number of content words
that have an associated sense and, therefore, definition.
Token Vocab.: number of distinct lemmas that have an
associated definition. Definitions: number of distinct
definitions associated with the instances.

paired with suitable definitions. To create such
a corpus, we leveraged Word Sense Disambigua-
tion (WSD), i.e., the task of identifying the most
appropriate meaning of a word in a given con-
text from a predefined sense inventory (Bevilacqua
et al., 2021). Specifically, we employed ESCHER
(Barba et al., 2021), a high-performance WSD sys-
tem, and disambiguated the whole WikiText-103
corpus (Merity et al., 2017). In this work, we used
the following inventories which, by design, come
with a definition for each of their senses:

• WordNet (Miller et al., 1990), the most com-
monly used English sense inventory for WSD.
Following the literature, we use WordNet 3.0;

• ODE, the Oxford Dictionary of English inven-
tory as provided by Chang et al. (2018);

• Wiktionary,3 a sense inventory containing
senses from the English Wiktionary project.
We used a polished dump from November
2021 using the same preprocessing pipeline
as in Bevilacqua et al. (2020).

Following the reference paper, we trained ES-
CHER jointly on all three inventories, obtaining
results that were comparable to the original model.4

Using the resulting model, we tagged the entire
WikiText-103 corpus, at sentence level, three times,
once for each inventory, which we posit acts as a
regularization factor for the DMLM objective. In-
deed, the model might encounter the same content
word in the exact same sentence but with different

3https://en.wiktionary.org/
4A more complete description of the sense inventories, the

corpora used for training, evaluating and testing the WSD
system, as well as a breakdown of its performances, can be
found in Appendix B.

definitions representing the same meaning,5 thus
reducing overfitting on the definitions themselves.

In the end, the disambiguated corpus contained
around 3.8M sentences with a total of approxi-
mately 381K unique definitions coming from the
three different inventories. Table 1 provides a per-
inventory breakdown of the tagged corpus.

4.2 Model Architectures
As our underlying model, we followed the BERT ar-
chitecture (Devlin et al., 2019), with the exception
of the number of layers and attention heads, which
we restricted to 6 and 8, respectively; furthermore,
we experimented with three different hidden sizes,
i.e., 256, 512 and 768, resulting in three models
with around 20M, 43M and 66M parameters.

While, due to computational constraints, we had
to train relatively small architectures compared to
current trends in NLP, we performed a small-scale
study of the impact of network size to give a rough
idea of how DMLM could fare on larger architec-
tures. We hope that the encouraging results we
report in this work will foster research in this direc-
tion, especially in investigating the effectiveness of
DMLM on larger networks.

4.2.1 Experiment runtimes
Pre-training our architectures, with the setup de-
scribed in Section 4.3, required around 5 days for
the two 43M models, 2.5 days for the 20M model
and 8.5 days for the 66M model.

As for the downstream tasks, we used a NVIDIA
RTX 3090 for fine-tuning. On GLUE and WiC, our
architectures required around 6h per model, 9h for
DistilBERT, 12h for BERTbase and around 24h for
BERTlarge. For SRL, at training time, our models
each took around 1h40m without and 2h15m with
definitions appended, while larger models took up
to 3h30m without and 4h30m with definitions. As
far as the inference speed of DMLM models for
SRL was concerned, when appending predicate def-
initions to improve the model accuracy (Figure 2b),
evaluating over the entire CoNLL-2009 test set in-
stances took 1m37s, around 36% slower than when
not using the definitions (1m11s).

4.3 Pre-training procedure
We trained our networks with an overall batch size
of 256 sentences on 4 NVIDIA 40GB A100 GPUs
in BFLOAT16 (Dean et al., 2012) half-precision

5Factoring in that different sense inventories might exhibit
different sense granularities.
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format. We used Rectified Adam (Liu et al., 2020a)
as optimizer with a learning rate of 10−5. We
limited the number of maximum training steps to
1,000,000 and evaluated overall performance on
a held-out validation dataset every 30,000 steps,
which we also used for model selection.

During training, while all sentences were subject
to MLM, DMLM was only applied with probabil-
ity 0.5, so as to increase the model’s robustness to
the absence of definitions, which is the most com-
mon setting in fine-tuning scenarios. Finally, when
applying random masking in both objectives, we
followed Devlin et al. (2019) and masked 15% of
the subwords in input, replacing them 80% of the
time with the [MASK] token, 10% of the time with
a random word and 10% of the time keeping the
unmodified original subword.

5 Experimental Evaluation

In order to assess the quality of the trained mod-
els, we evaluated them on a number of different,
both semantic and non-semantic, downstream tasks.
Each of the following subsections, aside from Sec-
tion 5.1 which describes the comparison systems,
contains the setup and results for each experiment
we performed.

5.1 Comparison Systems

To assess the improvements brought by DMLM, we
trained our encoder both with and without our aux-
iliary objective. We used a 43M parameter model
to compare MLM and DMLM directly, while we
also trained two additional 20M and 66M param-
eter models to assess the impact of architecture
scaling on DMLM (see Section 4.2). While we
used the WikiText-103 corpus for both objectives,
the DMLM models had access to the definitions
of the disambiguated words, thus increasing the
total number of tokens processed at training time.
To account for this, when training such models,
we removed as many sentences as needed to reach
the same number of tokens the MLM model was
trained on, while we maintained the same mean
and variance for the input sequences length.6

Furthermore, since we were not able to train two
additional 20M and 66M MLM-only models for
comparison, we took both DistilBERT (Sanh et al.,
2019) and TinyBERT (Jiao et al., 2020) as direct
competitors of our 66M model, as they have the

6For our sense-tagged WikiText-103 corpus, we remove
around 17.3% of all sentences.

same number of parameters, while we compared
BERTsmall (Bhargava et al., 2021, 29M parameters)
against DMLM20M. It is important to note that, de-
spite having similar parameter counts, these models
are a product of distillation, which leverages the
training of a much larger model and generally pro-
duces models that perform better than ones trained
from scratch (Turc et al., 2019). Nevertheless, we
will show that our models still outperform them in
almost any tested setting.

Finally, as additional reference baselines, we
computed and report here results achieved by both
BERTbase and BERTlarge (Devlin et al., 2019, 110M
and 335M parameters respectively). We do not
include the knowledge-enhanced models described
in Section 2, since some of them start from a pre-
trained model, and some are not comparable in
size. Nevertheless, we report their performances
on the GLUE benchmark, where available, in the
Appendix (Table 6).

5.2 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a collec-
tion of diverse Natural Language Understanding
tasks, and the de facto standard for the evaluation
of pre-trained language models. A detailed break-
down of the tasks is reported in Appendix D.

Setup We perform our experiments using jiant
(Phang et al., 2020), the official GLUE toolkit,
training with the default hyperparameters. For each
task, we fine-tune a copy of the model; moreover,
since we are using the GLUE validation dataset to
compare different systems, we do not perform any
ensembling or parameter tuning, as is commonly
done for GLUE submissions (Clark et al., 2020).
Following the literature, we do not report results
on WNLI as it is difficult to beat even the majority
classifier using a standard fine-tuning-as-classifier
approach (Devlin et al., 2019; Clark et al., 2020).
For SST-2, QQP, MNLI and QNLI we train for 3
epochs and report the results on a single seed. For
CoLA, RTE, MRPC and STS-B, which are quite a
lot smaller in size, we train for 5 epochs, perform
5 repeated runs with different seeds and report the
median value of each task-specific metric.

Results There are a number of considerations to
be drawn from the results in Table 2, when compar-
ing DMLM against MLM, and when assessing the
impact of network scaling.
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#Params CoLA SST-2 MRPC STS-B QQP MNLIM MNLIMM QNLI RTE
B

as
el

in
es

BERTbase 110M 58.57 92.43 88.89 / 84.31 88.91 / 88.70 87.29 / 90.57 83.42 84.08 90.92 67.15
BERTlarge 335M 62.58 93.46 90.36 / 86.03 90.40 / 90.33 87.96 / 91.04 85.80 85.84 92.28 71.48

BERTsmall 29M 30.78 87.39 85.03 / 76.96 86.33 / 86.32 84.27 / 87.85 76.69 36.76 86.49 62.45
DistilBERT 66M 47.45 90.48 87.32 / 82.35 84.54 / 84.39 85.40 / 89.14 80.47 81.66 87.24 57.76
TinyBERT 66M 44.28 91.51 90.39 / 86.76 89.30 / 89.18 86.55 / 89.94 83.78 70.97 90.39 61.01

O
ur

w
or

k MLM43M 43M 27.02 89.22 79.53 / 70.10 41.27 / 38.40 79.40 / 84.33 72.56 74.08 76.61 54.87
DMLM43M 43M 26.51 89.57 86.35 / 82.31 86.15 / 86.12 85.26 / 88.13 80.29 79.51 85.16 62.31

DMLM20M 20M 27.07 87.54 83.61 / 74.43 85.38 / 85.41 83.94 / 87.14 78.12 75.12 83.37 59.54
DMLM66M 66M 53.13 91.92 90.51 / 86.89 89.73 / 89.64 87.72 / 90.85 84.65 83.92 89.48 65.69

Table 2: Results on GLUE. Per-task metrics are reported in Appendix D: MRPC and QQP both display F1 / accuracy,
while STS-B shows Pearson / Spearman Rank. Underlined task names represent those with repeated runs. Numbers
between 0 and 1 are multiplied by 100 to ease readability.

MLM43M vs DMLM43M Starting from the
Natural Language Inference (NLI) tasks, we can
see an increase of up to 7.7, 5.4 and 8.5 in F1
score for MNLIM, MNLIMM and QNLI, respec-
tively, confirming the robustness of the represen-
tations produced with our objective, even on tasks
that are not focused primarily on semantics. As
expected, DMLM also consistently outperforms
MLM in more semantically-focused tasks. Indeed,
on MRPC, STS-B and QQP, all tasks where mod-
els are required to measure the semantic equiva-
lence between two sentences, the performance gap
remains considerably large, with an increase of
up to 5.8 and 16.8 F1 points on QQP and MRPC,
respectively; most notably, on STS-B we report
an improvement of around 45 F1 points, doubling
the score of MLM43M, and also surpassing Distil-
BERT, despite the difference in size. Finally, on
RTE, where models have to predict if a premise
entails the corresponding hypothesis, DMLM43M
outperforms both MLM43M and DistilBERT.

These results suggest that, when trained in com-
parable settings and at least for the model size we
consider, including the DMLM objective in the pre-
training results in representations that outperform
MLM-only pre-training in many downstream tasks,
especially semantics-focused ones.

DMLM scaling On the one hand, despite
the difference in size, we observe similar perfor-
mances between our 20M model and BERTsmall
(50% larger). Interestingly, the only task where our
model strongly outperforms BERTsmall is MNLIMM,
with a 40 points difference, which seems to be
related to a lack of generalization in MNLI by
BERTsmall.

On the other hand, when comparing our 66M
model against its competitors, we observe that
DMLM66M consistently outperforms both Distil-

BERT and TinyBERT on every task except QNLI,
with the largest gaps in RTE (8 and 4 points) and
CoLA (6 and 9 points), where DMLM66M appears
to be large enough for the model to form meaning-
ful grammatical latent structures. Furthermore, we
observe that TinyBERT exhibits a behavior similar
to BERTsmall in MNLI, with the MNLIMM lagging
behind MNLIM by 13 points. Moreover, we point
out that the performance improvement between the
43M and 66M models is, on average, bigger than
the improvement between the 20M and the 43M
models, with the largest difference in MNLIMM

(75.1220M → 79.5143M → 83.9266M), justifying
future research efforts in scaling up network sizes.

5.3 Semantic Role Labeling

Semantic Role Labeling (SRL) – the task of un-
derstanding “who did what to whom, where, when
and how?” – is regarded as an inherently seman-
tic task requiring comprehension of the input sen-
tence (Gildea and Jurafsky, 2000). SRL is usually
split into four sub-tasks: i) Predicate Identification,
where the model sees the input sentence and has to
identify the main predicates; ii) Predicate Disam-
biguation, where the model has to choose the cor-
rect meaning for each of the identified predicates
among its possible senses; iii) Argument Identifica-
tion, where the model has to identify which words
represent the arguments of the given predicate;
iv) Argument Classification, where the model has
to classify the identified arguments for the given
predicate.

Setup Following Conia and Navigli (2020),
Blloshmi et al. (2021) and Shi and Lin (2019), we
feed our model with the identified predicate, hence
skipping the first step of the SRL pipeline, and per-
form the remaining three steps simultaneously as
in a standard token classification setting.
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sell.03

sold [/PR] to JohnMary [PR] her book

Transfomer

span-based

dependency-based

NULLNULL NULL

ARG0

ARG0 NULL NULLARG2

sell.03NULL NULL ARG2 ARG2 ARG2 ARG2

(a) Without definitions

sell.03

[DEF] [/PR] to JohnMary [PR] [DEFINE] Exchange forher book

Transfomer

span-based

dependency-based

NULLNULL NULL NULL NULLNULL

ARG0

money

ARG0 NULL NULL NULLARG2

sell.03NULL NULL ARG2 ARG2 ARG2 ARG2 NULL NULL NULL NULL

(b) With definitions

Figure 2: SRL transformer input with and without definitions included.

Specifically, the model receives in input the sen-
tence with two special tokens delimiting the pred-
icate, i.e., [PR] and [/PR] (Figure 2a). Then, for
predicate disambiguation, we pass the vector repre-
sentation corresponding to the first subword of the
predicate through a classification layer. Similarly,
for argument classification, we pass the remaining
vectors through another classification layer, which
outputs a distribution over all possible arguments,
including the NULL one, and take the arguments tied
to the predicted predicate with the highest proba-
bility.

We fine-tune models using RAdam (Liu et al.,
2020a) with a learning rate of 5 ∗ 10−5 and a batch
size of 16. We use the datasets provided in CoNLL-
2009 (Hajič et al., 2009) and CoNLL-2012 (Prad-
han et al., 2012) for training and evaluation. For
CoNLL-2009, we use the official scorer7 released
alongside the dataset, while for CoNLL-2012 we
use the scorer that was released for the span-based
SRL Shared Task of CoNLL-2005.8

Results In Table 3 we report the results obtained
on the three test sets. First, we observe that our
baselines are quite effective, as their scores are in
the same ballpark as state-of-the-art systems using
the same underlying transformer, i.e., BERTlarge
for Conia and Navigli (2020); Shi and Lin (2019).

Regarding our models, DMLM43M consistently
outperforms MLM43M by a large margin: this dif-
ference stays between 1.2 and 1.9 F1 points, show-
ing that our pre-training objective helps modeling
the semantic content of the input sentence. More-
over, DMLM66M comfortably beats both Distil-
BERT and TinyBERT, and almost achieves scores
around BERTbase, despite being around half its size.

Leveraging the DMLM objective While
these results are interesting in their own right, the

7https://ufal.mff.cuni.cz/conll2009-st/scorer.html
8https://www.cs.upc.edu/~srlconll/soft.html

Models C09 C09OOD C12

B
as

el
in

es

BERTsmall 89.4 80.8 81.4
TinyBERT 90.8 82.3 84.1
DistilBERT 91.1 82.8 84.9
BERTbase 91.7 84.0 85.2
BERTlarge 92.4 85.6 86.6

DistilBERTDEF 91.2 82.8 84.9
BERTDEF

base 91.8 84.3 85.4
BERTDEF

large 92.4 85.5 86.6

So
TA

Shi and Lin (2019) 92.4 — 86.5
Conia and Navigli (2020) 92.6 85.9 87.3
Blloshmi et al. (2021) 92.4 85.2 87.3

B
as

e

MLM43M 89.1 79.3 82.1
MLMDEF

43M 89.3 79.2 82.3
DMLM43M 90.4 81.2 83.3
DMLMDEF

43M 91.6 83.5 84.9

Sc
al

in
g

DMLM20M 88.9 79.7 82.0
DMLMDEF

20M 90.0 81.2 82.5
DMLM66M 91.7 83.6 85.1
DMLMDEF

66M 92.2 84.8 85.9

Table 3: Results on Semantic Role Labeling. Numbers
represent F1 scores as computed by the official eval-
uation scripts for both years. C09 and C12 stand for
CoNLL-2009 and CoNLL-2012 respectively; C09OOD
represents the Out-Of-Domain portion of the CoNLL-
2009 test set.

main reason we include SRL in our evaluation
is that we can take advantage of DMLM’s pre-
training objective. Specifically, since each pred-
icate sense has a corresponding definition in Prop-
Bank (Palmer et al., 2005), we investigate how per-
formances change when, mimicking DMLM, we
replace the target predicate with the [DEF] token
and inject the definition associated with the pred-
icate as disambiguated by the model.9 As shown

9The prediction in this setting has two phases: first, the
model disambiguates the target predicate, then we inject the
definition associated with the disambiguated predicate to the
input sentence, replace the target predicate with [DEF] and
perform argument identification and classification.
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in Figure 2b, given the sentence “Mary sold her
book to John”, the model would see as input “Mary
[PR] [DEF] [/PR] her book to John [DEFINE] Ex-
change for money” (this formulation applies to sys-
tems with the DEF superscript in Table 3).

With this setup, we observe overall improve-
ments, in comparison to MLM, between 2.5 and
4.2 F1 points; further, our 43M model outper-
forms DistilBERT, reaching scores comparable to
BERTbase, which has almost three times the num-
ber of parameters. Moreover, to ensure that the
performance improvements are not solely due to
the additional context provided by the definitions,
we append them to MLM-only models (without
replacing the target predicate): as a result, we
find no meaningful differences, confirming that the
DMLM objective gives models the ability to lever-
age the definition effectively. Additionally, our
66M model manages to compete against state-of-
the-art models, despite the wide gap in size (66M
vs 330M+), proving the effectiveness of our de-
scriptive pre-training and its potential when dealing
with semantic tasks. Furthermore, once again, we
observe how increasing the model size results in
general improvements, with the largest gaps occur-
ring between the 43M model and the 66M model.
To summarize, we find that:

1. DMLM fares better than MLM with
semantically-enriched text, and that

2. DMLM-trained models can scale to unseen
definitions, as we demonstrated here with
PropBank, attesting to the generalization ca-
pability of DMLM.

5.4 Word Sense Disambiguation

Since its introduction, BERT’s contextualized rep-
resentations have been studied thoroughly to assess
whether they are semantically coherent with dis-
crete senses coming from external sense invento-
ries, e.g., WordNet (Wiedemann et al., 2019; Scar-
lini et al., 2020a,b; Loureiro et al., 2021). Indeed,
following these works, we perform a very similar
analysis of our encoder-only architecture, tackling
WSD via 1-NN search: assuming that contextual-
ized representations of a word in a sentence should
represent their meaning, we compare the contextual
representation of the word we are trying to disam-
biguate against all the contextual representations
of words for which we know the sense, returning
the sense associated with the closest one.

Setup We use SemCor (Miller et al., 1993), the
standard manually-annotated WSD training corpus
with senses coming from WordNet, to generate
the reference encodings for words in context and
their associated senses (by taking the last hidden
state produced by each model), and use the ALL
test set introduced by Raganato et al. (2017) for
evaluation.10

Results Table 4 reports the results of this analy-
sis. First, regarding the baselines, we observe that
the F1 scores correlate with the number of parame-
ters, showing an absolute difference of 2 F1 points
between DistilBERT and BERTlarge, and a similar
trend with our 20M, 43M and 66M models.

Moving over to our architectures, we find that,
even though DMLM does not force the spatial
distribution of contextualized words to follow the
sense distribution explicitly, this happens to some
extent. Indeed, DMLM43M surpasses MLM43M by
3.6 F1 points; interestingly, we perform in the same
ballpark as BERTlarge both with DMLM43M and
DMLM20M, despite the latter being 1

16 th in size;
we posit that the injection of definitions, which the
model has always seen during training bound to
specific words in one of their meanings, has helped
to build representations that more closely relate to
WordNet’s senses.

Finally, following the experiment we performed
in SRL (Section 5.3), we also create the reference
encodings by feeding the model with the [DEF] to-
ken in place of the target word, appending the defi-
nition associated with the sense as found in SemCor.
We report the best results across the board, with
DMLMDEF

66M achieving, in this setting, 5.4 F1 points
more than BERTlarge and a 2.6 F1 improvement
over plain DMLM (Table 4), backing our claim
that the definitions disambiguate words in context.
In general, regardless of model size, including the
definitions results in performance enhancements
ranging from 1.6 to 4.2 F1 points.

5.5 Exploring the Spatial Distribution

As a final experiment, we study how close the con-
textualized representations of words are in compar-
ison to the sense they take upon. To do this, we
compute the cosine similarities between different
groups of words in the SemCor dataset: i) between
words sharing the same sense, to get a grasp of how
close sense representations are, ii) between words

10We report a detailed explanation of the Word Sense Dis-
ambiguation experimental setting in Section C.
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WSD Cosine Similarities

ALL↑ Sense Lemma-PoS (∆) Random
B

as
el

in
es

BERTsmall 59.3 82.9 82.8 (+0.1) 60.6
TinyBERT 58.7 82.2 83.1 (-0.9) 61.6
DistilBERT 60.9 85.0 85.4 (-0.4) 62.9
BERTbase 61.8 76.3 76.5 (-0.2) 48.6
BERTlarge 62.9 60.9 59.9 (+1.0) 18.0

B
as

e MLM43M 59.6 56.1 58.4 (-2.3) 28.0
DMLM43M 63.2 63.1 61.6 (+1.5) 19.1
DMLMDEF

43M 65.7 83.9 65.9 (+18.0) 31.9

Sc
al

in
g DMLM20M 62.5 67.3 66.4 (+0.9) 22.3

DMLM66M 64.1 65.4 60.4 (+5.0) 15.7
DMLMDEF

20M 64.1 75.8 68.9 (+6.9) 43.2
DMLMDEF

66M 68.3 82.4 60.2 (+22.2) 34.3

Table 4: Left: results on 1-NN WSD, numbers are F1
scores. Right: average similarities (multiplied by 100)
computed on different groups of contextualized words.

that share the same lemma and Part-of-Speech tag,
regardless of their meaning, and iii) a random set of
50,000 pairs of contextualized words as reference.

Results We report the results of this analysis in
Table 4 (Cosine Similarities). Starting with the
baselines, we observe that the average cosine simi-
larity between random words decreases as the num-
ber of parameters increases, with DistilBERT ex-
hibiting the highest similarity at around 63. Fur-
thermore, the only MLM-trained model where the
average similarity of same-sense words is higher
than same-lemma and PoS words is BERTlarge.

Regarding DMLM-trained models, on the other
hand, we observe two interesting properties: first,
the cosine similarity between words sharing the
same WordNet sense is higher than that of words
that only share the same lemma and POS, a prop-
erty that we found only in both BERT variants. This
supports the hypothesis that DMLM introduces a
shift towards the inventories’ senses used during
training, even if the DMLM objective does not ex-
plicitly favor it. Second, the output space shows
around the same clustering behavior as BERTlarge,
despite the huge gap in pre-training compute and
model size; in contrast, distilled models display
similar spatial distributions, regardless of their size.

Finally, when replacing the target word with the
[DEF] token and including the definition in the
input, the model is fully taking advantage of the
definition and conveying its meaning in the [DEF]
token, as the sense to lemma-PoS difference is the
highest among all others by a large margin, while
we attribute the higher random similarity to the fact
that the underlying token is always [DEF].

6 Conclusions

In this work, we presented an extension of MLM
called Descriptive Masked Language Modeling
(DMLM), which embeds semantic information via
natural language descriptions in the pre-training
phase of language models.

We found that, under the tested settings, DMLM
consistently outperforms MLM on multiple bench-
marks. On the GLUE Benchmark, a set of Natural
Language Understanding tasks, we observed im-
provements on both semantic and non-semantic
tasks. Furthermore, using SRL as a proxy, we also
demonstrated two important properties of models
trained with DMLM: first, that it is possible to
leverage DMLM’s pre-training objective to consis-
tently improve performances in downstream tasks
and, second, that the model can generalize to defi-
nitions that were not seen during pre-training. Fi-
nally, we discovered that, even without any explicit
signal towards spatial alignment, the output space
of a DMLM-trained encoder tends to relate to the
Knowledge Bases used to retrieve the definitions.
We posit that this might be a very desirable prop-
erty for better handling ambiguity, e.g., in Machine
Translation, where recent works have shed some
light on the issue of semantic biases (Campolungo
et al., 2022). Additionally, in principle, we could
make DMLM-trained systems more suitable for
domain-specific tasks. For example, in the medi-
cal domain, we could impose precise meanings for
word senses based on a healthcare-specific knowl-
edge base and thus reduce the conflation of senses’
representation in the same space. Second, being
able to drive spatial representations of words during
the training and select a reference knowledge base
as a guide might be the very reason why DMLM-
trained systems outperform, at least in our experi-
mental setting, MLM-trained systems.

Given the encouraging results obtained while
scaling up the network size, and to foster research
in this direction, we release our code and the sense-
tagged WikiText-103 corpus.

7 Limitations

Model sizes and comparability As we have
pointed out in the paper, due to computational and
time constraints on the hardware we had at our dis-
posal, we found it was unfeasible to train larger
architectures. Nevertheless, we believe our com-
parisons between DMLM and its direct competitor,
MLM, have been fair, as we have done our best
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to set a level playing field between the two. Thus,
while we understand that this is a significant limita-
tion in terms of comparability to larger models, we
still think the results we have obtained could pave
the way for further exploration in this direction.
Moreover, we have performed architecture scaling
experiments to show that it is important to con-
tinue research in this direction, and test DMLM’s
capabilities on larger networks, while we did not
perform a similar comparison with MLM because
several works have already explored how MLM
scales with network size (Turc et al., 2019).

Applying DMLM only half of the time Al-
though we acknowledge that our choice to apply
DMLM to only half of the sentences can be seen as
arbitrary, we argue that it is a sound choice given
the nature of our objective. Indeed, we did not want
our models to rely too much on the definitions pro-
vided, or they would have required them at infer-
ence time. Such a requirement is mostly unfeasible,
as it would demand running a WSD pipeline before
the model’s inference, and this is incompatible or
unnecessary with most downstream settings. Nev-
ertheless, we plan on training other architectures
with different frequencies, so as to better assess
how impactful this hyperparameter is.

Training corpus domain Our models are trained
on a sense-tagged version of WikiText-103, which
only contains text coming from Wikipedia, and
thus is very descriptive in style. While many other
works have based their pre-training corpora on
Wikipedia, we do recognize that this might be a
limitation, especially for downstream tasks.

Training on longer sequences In this work, we
trained language models on sentences, as opposed
to what is commonly done in the literature, i.e.,
longer sequences of text which are usually concate-
nated sentences. We see a limitation here in that,
in its current formulation, DMLM does not sup-
port training on longer sequences as we have no
way of discerning between multiple definitions ap-
pended to our input sequence. Nonetheless, while
we performed WSD at the sentence level, the cor-
pus can be brought back to full documents, which
would make sequence-level training feasible with
the available data, provided that an extension to
DMLM that supports multiple definitions is de-
signed. We leave such an extension to future work.

Scaling to multiple languages Our formulation
of Descriptive Masked Language Modeling can be
applied to, as far as we know, virtually any lan-
guage. Moreover, we argue that it might be possi-
ble, in a multilingual setting, that definitions of the
same sense could help in aligning the output repre-
sentations of the trained models for words sharing
the same sense. Nevertheless, having said this, it
is worth noting that there might be two impedi-
ments to achieving multilinguality. First, in our
work, we leveraged English Word Sense Disam-
biguation, which, despite its recent advancements,
is still far from performing the task equally well
on other, even high-resource, languages (cf. Pasini
et al. (2021)). Second, we decided to employ defini-
tions coming from sense inventories which, at least
in English, cover a wide number of senses with
meaningful descriptions, but this might not be the
case for other languages, especially low-resource
or endangered ones, with BabelNet (Navigli et al.,
2021) being the largest resource providing textual
definitions in hundreds of languages.

Reproducibility We acknowledge that, even by
releasing the code and dataset on which our models
are trained, it might be hard for other interested
entities (e.g., groups, people, institutions) to repro-
duce this work, as our training runs lasted up to 8.5
days on our multi-GPU setup.
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Models C09 C09OOD C12
B

as
el

in
es

BERTsmall 89.4 80.8 81.4
TinyBERT 90.8 82.3 84.1
DistilBERT 91.1 82.8 84.9
BERTbase 91.7 84.0 85.2
BERTlarge 92.4 85.6 86.6

DistilBERTDEF 91.2 82.8 84.9
BERTDEF

base 91.8 84.3 85.4
BERTDEF

large 92.4 85.5 86.6

So
TA

Shi and Lin (2019) 92.4 — 86.5
Conia and Navigli (2020) 92.6 85.9 87.3
Blloshmi et al. (2021) 92.4 85.2 87.3

O
ur

w
or

k

MLM43M 89.1 79.3 82.1
MLMDEF

43M 89.3 79.2 82.3
DMLM43M 90.4 81.2 83.3
DMLMDEF

43M 91.6 83.5 84.9

DMLM20M 88.9 79.7 82.0
DMLMDEF

20M 90.0 81.2 82.5
DMLM66M 91.7 83.6 85.1
DMLMDEF

66M 92.2 84.8 85.9

MLMED 88.8 79.0 82.0
MLMDEF

ED 89.1 79.0 82.2
DMLMED 90.3 81.3 83.1
DMLMDEF

ED 91.5 83.5 85.0

Table 5: Results on Semantic Role Labeling. Numbers
represent F1 scores as computed by the official eval-
uation scripts for both years. C09 and C12 stand for
CoNLL-2009 and CoNLL-2012 respectively; C09OOD
represents the Out-Of-Domain portion of the CoNLL-
2009 test set. This table is identical to Table 3, with
the addition of the last four rows regarding the encoder-
decoder version of DMLM.

A DMLM in Encoder-Decoder
Architectures

DMLM’s formulation can easily be applied to
encoder-decoder architectures, with very small ad-
justments: following Lewis et al. (2020), we, i) do
not replicate [DEF] tokens in the input sequence
even when they would be split into multiple sub-
words by the underlying tokenizer, and, ii) ask the
model to generate the whole input sequence, defi-
nition included. Thus, given our running example
(Figure 1), the model would see “I went [MASK]
the [DEF]. [DEFINE] Sandy [MASK]” as input and
would be asked to predict “I went to the beach .
[DEFINE] Sandy seashore”.

Architecture We used the architecture of Lewis
et al. (2020), with the same hidden size and atten-
tion heads as our encoder-only module, but with 4

encoder layers and 2 decoder layers.11

Moreover, to make the encoder-decoder and the
encoder-only architectures as comparable as possi-
ble, and to maintain a similar size, we trained our
encoder-decoder model using the same vocabulary
and tokenizer of our encoder-only model,12 thus
totaling around 46M parameters.

Similarly to MLM43M and DMLM43M, we
trained two 46M encoder-decoder architectures
with and without DMLM, which we dubbed
DMLMED and MLMED, respectively.

Results On GLUE (Table 6), both encoder-
decoder models achieve scores that are directly
comparable to their encoder-only counterparts
(MLM43M and DMLM43M), and for which the
same conclusions can be drawn, i.e., DMLM-
enhanced models achieve far better results on se-
mantic tasks.

On SRL (Table 5), the same point stands, with
the DMLM models surpassing their MLM-only
counterparts in every benchmark, a finding consis-
tent with that of encoder-only models.

In conclusion, we have seen how DMLM can
be applied effectively to an encoder-decoder archi-
tecture as well as to an encoder-only architecture,
with consistent gains over MLM-only pre-training.

B WSD System for Corpus Tagging

In this section, we describe the experimental setup
in which we trained our Word Sense Disambigua-
tion system.

B.1 Preliminaries

In Word Sense Disambiguation (WSD), models
are required to choose, given an ambiguous word
in some context, the most appropriate meaning
the word takes on among the set of its possible
meanings. For example, in the sentence “the mouse
ate the cheese”, the word mouse is encountered in
its meaning of animal, and not in its meaning of
device.

Thus, we need a way to link words and meanings,
or concepts, such that it is possible to obtain all the
possible concepts of a given word, and to obtain
all the lexicalizations of a given concept. These
“links” are usually provided by a sense inventory

11We favor the encoder, in terms of number of layers, as we
do not deal with generative tasks.

12We used the tokenizer of the bert-base-cased model
available from the HuggingFace Transformers library (Wolf
et al., 2020).
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#Params CoLA SST-2 MRPC STS-B QQP MNLIM MNLIMM QNLI RTE
Li

te
ra

tu
re

DistilBERT (Sanh et al., 2019) 66M 51.30 91.30 87.50 86.90 88.50 82.20 — 89.20 59.90
SenseBERT† (Levine et al., 2020) 110M 54.60 92.20 89.20 / 85.20 83.50 / 82.30 70.30 / 88.80 83.60 — 90.60 67.50
Dict-BERT (Yu et al., 2022) 110M 61.68 92.65 87.21 89.68 90.81 84.34 — 91.20 72.89
BERT (from Clark et al., 2020) 335M 60.60 93.20 88.00 90.00 91.30 86.60 — 92.30 70.40
ELECTRA (Clark et al., 2020) 335M 69.10 96.90 90.80 92.60 92.40 90.90 — 95.00 88.00
SpanBERT (Joshi et al., 2020) 335M 64.30 94.80 90.90 / 87.90 89.90 / 89.10 71.90 / 89.50 88.10 87.70 94.30 79.00
DictBERT (Chen et al., 2022) 335M 68.60 97.80 93.20 92.10 90.80 91.10 — 96.80 89.40
BART (Lewis et al., 2020) 406M 62.80 96.60 90.40 91.20 92.50 89.90 90.10 94.90 87.00

B
as

el
in

es

BERTbase 110M 58.57 92.43 88.89 / 84.31 88.91 / 88.70 87.29 / 90.57 83.42 84.08 90.92 67.15
BERTlarge 335M 62.58 93.46 90.36 / 86.03 90.40 / 90.33 87.96 / 91.04 85.80 85.84 92.28 71.48

BERTsmall 29M 30.78 87.39 85.03 / 76.96 86.33 / 86.32 84.27 / 87.85 76.69 36.76 86.49 62.45
DistilBERT 66M 47.45 90.48 87.32 / 82.35 84.54 / 84.39 85.40 / 89.14 80.47 81.66 87.24 57.76
TinyBERT 66M 44.28 91.51 90.39 / 86.76 89.30 / 89.18 86.55 / 89.94 83.78 70.97 90.39 61.01

O
ur

w
or

k

MLM43M 43M 27.02 89.22 79.53 / 70.10 41.27 / 38.40 79.40 / 84.33 72.56 74.08 76.61 54.87
DMLM43M 43M 26.51 89.57 86.35 / 82.31 86.15 / 86.12 85.26 / 88.13 80.29 79.51 85.16 62.31

DMLM20M 20M 27.07 87.54 83.61 / 74.43 85.38 / 85.41 83.94 / 87.14 78.12 75.12 83.37 59.54
DMLM66M 66M 53.13 91.92 90.51 / 86.89 89.73 / 89.64 87.72 / 90.85 84.65 83.92 89.48 65.69

MLMED 46M 25.22 85.16 77.55 / 70.41 43.19 / 38.30 81.62 / 85.49 75.98 75.77 83.15 54.79
DMLMED 46M 22.22 87.73 84.26 / 76.47 81.96 / 81.59 84.23 / 88.13 76.96 78.01 83.58 58.48

Table 6: Results on GLUE and WiC. For GLUE, per-task metrics are reported in Appendix D; MRPC and QQP
both display F1 / accuracy, while STS-B shows Pearson / Spearman Rank. Underlined task names represent those
with repeated runs. † means that the results are on the GLUE test set, as the ones on the dev set were not available.

Inventory Instances Senses Synsets Train Synsets

WordNet 233,289 206,941 117,659 25,913
Wiktionary 66,570 752,473 677,465 60,482
ODE 785,551 94,341 79,004 78,105

Table 7: Statistic by sense inventory. Instances de-
scribes the number of annotated instances comprising
of the training, validation and test set available for each
inventory. Columns Senses and Synsets show the num-
ber of total senses and total synsets contained in each
inventory. Column Train Synsets instead, shows the
number of synsets that can be found in the training sets
of each inventory, respectively.

which, given some word (and its part-of-speech
tag), returns all its possible concepts.

An example of a commonly used sense inven-
tory is WordNet, where concepts are called synsets,
i.e., sets of synonyms representing the same mean-
ing, and where a sense represents a (word, synset)
pair, i.e., a word in one of its possible meanings.
Moreover, WordNet synsets are semantically rich
units that, aside from their possible lexicalizations,
also contain, for example, relations to other synsets,
such as hypernyms, hyponyms, meronyms, among
others; furthermore, synsets are also associated
with a natural language definition that describes
the meaning they represent.

In DMLM, since we need natural language de-
scriptions of given words in contexts, we disam-
biguate and retrieve the definition associated with
the chosen meaning.

Inventories Wn Ox Wk MFS LFS UnS

Wn† 80.7 67.9 — 93.7 55.7 76.8
Ox† 70.3 86.3 — — — —
Wn + Ox† 81.5 87.7 — 94.0 57.9 77.5
Wn + Ox + Wk 80.1 87.2 86.2 90.4 58.6 81.3

Table 8: Word Sense Disambiguation performances of
ESCHER trained on different inventories at the same
time. Inventories shows the inventories used at training
time. Columns Wn, Ox, Wk show the performances on
the test sets of WordNet, ODE and Wiktionary respec-
tively. Columns MFS, LFS, UnS show the performances
of the models on the Most Frequent Senses, Least Fre-
quent Senses and Unseen Synsets respectively. † indi-
cates that the results were taken from the original paper
or using model weights made available by the authors.

B.2 WSD Model Details & Evaluation
Table 7 reports various statistics on the sense inven-
tories, namely WordNet, Oxford and Wiktionary.
We can observe that both the amount of data avail-
able for training and the number of senses differ
greatly between each inventory.

Following Barba et al. (2021), we use as under-
lying architecture BARTlarge and train the model to
extract the correct definition among those given as
input to the model. We follow the hyperparameters
of the reference paper but train the model on all
three inventories jointly.

As we can see from Table 8, when trained on all
the inventories together, our model achieves per-
formances comparable to the original ones. While
the results on the test set suggest that including
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Wiktionary in the training deteriorates the perfor-
mances, we note that this drop is only due to the
Most Frequent Senses classification. Indeed, per-
forming the same analysis introduced in the orig-
inal paper, we tested our model on three different
partitions of the WordNet test set:

• MFS, containing all the instances in the test
set annotated with the sense that is the most
frequent for the target word in the training
set;

• LFS, containing all the instances in the test
set annotated with a sense that is not the most
frequent for the target word in the training
set, but does appear in the training set;

• Unseen Synset, containing all the instances
in the test set annotated with a synset that is
not in the training set.

Since we were classifying a big corpus with pos-
sibly many senses that were unseen or rare during
training we preferred to have a model with a clas-
sification less biased towards the most frequent
senses seen during training.

C 1-NN WSD Experiment Details

As stated in the paper, to evaluate the performances
of the systems for Word Sense Disambiguation we
followed the experimental setting of Wiedemann
et al. (2019); Loureiro et al. (2022). However, in
contrast to Wiedemann et al. (2019) and Loureiro
et al. (2022), we disregarded the MFS (Most Fre-
quent Sense) fallback policy. Specifically, this pol-
icy consists of the following procedure: at test time,
whenever a word to disambiguate is not present in
the training set (i.e., SemCor), the first sense for
that word in WordNet is predicted. In our setting,
on the other hand, words that are not present in
SemCor are automatically marked as wrong. Our
reasoning for this choice was the following: given
that our intention was to compare the output spaces
of our models, we felt it unnecessary to include
such a virtual enhancement, as it would benefit
every system in the same way.

D GLUE Details

We provide additional details about GLUE tasks
here, and dataset sizes in Table 9. Regarding met-
rics, unless specified differently, the reported score
is an accuracy value.

Dataset Train Validation Test

CoLA 8,551 1,043 1,063
SST2 67,349 872 1,821
MRPC 3,668 408 1,725
STSB 5,749 1,400 1,379
QQP 363,846 40,430 390,965
MNLIM 392,702 9,815 9,796
MNLIMM / 9,832 9,847
QNLI 104,743 5,463 5,463
RTE 2,490 277 3,000

Table 9: GLUE corpus statistics.

CoLA Corpus of Linguistic Acceptability
(Warstadt et al., 2019). The task is to determine
whether a given sentence is grammatical or not.
Results report Matthew’s Correlation (Matthews,
1975).

SST-2 Stanford Sentiment Treebank (Socher
et al., 2013). The task is to determine if the sen-
tence is positive or negative in sentiment.

MRPC Microsoft Research Paraphrase Corpus
(Dolan and Brockett, 2005). The task is to predict
whether two sentences are semantically equivalent
or not. Results report F1 / accuracy.

STS-B Semantic Textual Similarity (Cer et al.,
2017). The tasks is to predict how semantically sim-
ilar two sentences are on a scale of 1 to 5. Results
report Pearson Correlation (Pearson, 1895) and
Spearman’s Rank Correlation (Spearman, 1904).

QQP Quora Question Pairs. The task is to deter-
mine whether a pair of questions are semantically
equivalent. Results report F1 / accuracy.

MNLI Multi-genre Natural Language Inference
(Williams et al., 2018). Given a premise sentence
and a hypothesis sentence, the task is to predict
whether the premise entails the hypothesis, contra-
dicts the hypothesis, or neither.

QNLI Question Natural Language Inference;
base on SQuAD (Rajpurkar et al., 2016). The task
is to predict whether a context sentence contains
the answer to a question.

RTE Recognizing Textual Entailment (Giampic-
colo et al., 2007). Given a premise sentence and a
hypothesis sentence, the task is to predict whether
the premise entails the hypothesis or not.
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