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Abstract

Multimodal Sentiment Analysis (MSA) has
made great progress that benefits from extraor-
dinary fusion scheme. However, there is a
lack of labeled data, resulting in severe over-
fitting and poor generalization for supervised
models applied in this field. In this paper, we
propose Sentiment Knowledge Enhanced Self-
supervised Learning (SKESL) to capture com-
mon sentimental patterns in unlabeled videos,
which facilitates further learning on limited
labeled data. Specifically, with the help of
sentiment knowledge and non-verbal behavior,
SKESL conducts sentiment word masking and
predicts fine-grained word sentiment intensity,
so as to embed sentiment information at the
word level into pre-trained multimodal repre-
sentation. In addition, a non-verbal injection
method is also proposed to integrate non-verbal
information into the word semantics. Exper-
iments on two standard benchmarks of MSA
clearly show that SKESL significantly outper-
forms the baseline, and achieves new State-Of-
The-Art (SOTA) results.

1 Introduction

Multimodal Sentiment Analysis (MSA) is a rapidly
developing research field, which extends conven-
tional text sentiment analysis to a multimodal setup
where three modalities are present: text, audio and
visual (Morency et al., 2011). With the abundance
of user-generated opinion videos, MSA has a wide
range of applications in e-commerce, intelligent
customer service, human-computer interaction, etc.

In MSA, the construction of the training dataset
relies on artificial perceptual evaluation for the sen-
timent of opinion videos, which is a very time-
consuming and labor-intensive task, that is why
video data with sentimental annotation is insuffi-
cient. As a result, supervised models applied in
this field suffer from severe overfitting and poor
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Figure 1: The pipeline of SKESL. The purple dashed
box denotes an opinion video which includes text,

visual and audio modalities. Visual and audio
modalities with shaded boxes indicate not being used.
The red circle represents the searched sentiment word.

generalization (Dai et al., 2021). Although previ-
ous studies have used several methods to alleviate
the overfitting, most of them are based on general
approaches such as multi-task learning (Dai et al.,
2021; Akhtar et al., 2019; Chauhan et al., 2020; Yu
et al., 2020), parameter regularization (Liang et al.,
2019; Mai et al., 2020) and data augmentation (Liu
et al., 2022), which neglect to consider the large
number of unlabeled opinion videos that naturally
exist on the Internet.

These opinion videos contain common sentimen-
tal patterns or compositional sentiment semantics
about how the three modalities in the video are
fused to express the overall sentiment, which can
be leveraged to learn better sentiment representa-
tions. Inspired by recent knowledge-enhanced pre-
training models on text sentiment analysis (Tian
et al., 2020; Yin et al., 2020; Ke et al., 2020; Zhao
et al., 2022), we argue that pre-training models en-
riched with the sentiment knowledge of words and
non-verbal behavior will facilitate the characteriza-
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tion of the sentimental patterns in videos, thereby
resulting in better performance on multimodal sen-
timent analysis.

In this paper, we propose a Sentiment Knowl-
edge Enhanced Self-supervised Learning (SKESL)
method, which uses contextual and non-verbal in-
formation to predict the fine-grained sentiment in-
tensity of a word to learn the common sentimen-
tal patterns in opinion videos, as shown in Fig-
ure 1. Specifically, given a speaker video without
sentiment annotation, we first use the Automatic
Speech Recognition (ASR) technology to obtain
the transcribed text and then mask the most senti-
mentally salient words in the text according to the
pre-specified sentiment lexicon. A pre-trained lan-
guage representation model is utilized to acquire
the sequence representation of the processed text.
To integrate non-verbal information into the text
representations, we further propose a non-verbal
information aggregation method based on the cross-
modal attention mechanism to derive non-verbal
information-enhanced text representations. Finally,
the masked word representations are exploited to
predict the sentiment intensity itself.

After the SKESL is completed, we transfer
the pre-trained model to the task of multimodal
sentiment analysis, and adopt a small amount of
sentiment-annotated data to fine-tune the model.
To evaluate the effectiveness of SKESL, we test
on two benchmark datasets: CMU-MOSI (Zadeh
et al., 2016) and CMU-MOSEI (Zadeh and Pu,
2018). Experimental results demonstrate that our
model outperforms both the baseline and the cur-
rent State-of-the-Art (SOTA) approach.

The main contributions can be summarized as
follows:

• To the best of our knowledge, this paper is
the first self-supervised learning method for
multimodal sentiment analysis that leverages
sentiment knowledge from large-scale unla-
beled videos to facilitate improved sentiment
representation learning.

• This paper proposes a novel non-verbal infor-
mation aggregation method for obtaining text
sequence representations enhanced by audio
and visual information.

• The proposed SKESL method not only sur-
passes the baseline in experimental perfor-
mance, but also achieves SOTA in the field
of multimodal sentiment analysis.

2 Related Work

Pre-training Language Models In NLP, it has
become a paradigm to pre-train language mod-
els on the large scale unlabeled data in an auto-
encoding (Devlin et al., 2019) or auto-regressive
manner (Radford et al., 2018, 2019), and fine-tune
the pre-trained models on the downstream tasks
using task-specific labeled data.

Recently, more pre-trained language models
have been proposed, which can be roughly divided
into four categories (Ke et al., 2020): 1) Knowledge
enhancement: Introducing domain-specific knowl-
edge in the process of pre-training language repre-
sentation models has been shown to be effective. A
representative model is ERNIE (Zhang et al., 2019),
which explicitly introduces knowledge graph to pre-
trained language models. 2) Transferability: On the
basis of the general pre-training language model,
further post-training is performed on more specific
auxiliary tasks (Li et al., 2021). 3) Model compres-
sion: The compressed pre-trained language model
can be widely applied in resource-constrained de-
vices and tasks requiring real-time capability. The
commonly used model compression methods in-
clude knowledge distillation (Sanh et al., 2019;
Jiao et al., 2020), quantization (Shen et al., 2020)
and pruning (Gordon et al., 2020). 4) Pre-training
objectives: Aiming at rich and variable text ex-
pressions, many studies have further improved the
text feature on basis of general Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP) objective (Devlin et al., 2019). For instance,
SpanBERT (Joshi et al., 2020) masks consecutive
spans randomly instead of individual tokens, while
BERT-WWM (Cui et al., 2021) utilizes the Whole
Word Mask (WWM) strategy to impose the model
to learn complete semantics.

Knowledge Enhanced Pre-training Language
Models Incorporating external knowledge into pre-
training language models has become prevalent
and has been shown to be significant. Such exter-
nal knowledge includes commonsense knowledge
for tasks such as entity typing and relation classifi-
cation (Zhang et al., 2019; Peters et al., 2019; Liu
et al., 2020; Xiong et al., 2020), sentiment knowl-
edge for sentiment analysis (Tian et al., 2020; Yin
et al., 2020; Ke et al., 2020), word sense knowl-
edge for word sense disambiguation (Levine et al.,
2020), commonsense knowledge for commonsense
reasoning and sarcasm generation (Klein and Nabi,
2020; Chakrabarty et al., 2020), legal knowledge
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for legal element extraction (Zhong et al., 2020),
and biomedical knowledge for health question an-
swering and medical inference (He et al., 2020).

Knowledge Enhanced Pre-training Models
for Text Sentiment Analysis Some research (Tian
et al., 2020; Yin et al., 2020; Ke et al., 2020; Zhao
et al., 2022) integrates the sentiment knowledge
into the pre-training process which includes sen-
timent words, word polarity and aspect-sentiment
pairs. The learned representation would be more
sentiment-specific and appropriate for text senti-
ment analysis.

Knowledge Enhanced Models for Multimodal
Sentiment Analysis In MSA, some works consider
sentiment knowledge with explicit supervision. For
example, SWAFN (Chen and Li, 2020) designs a
sentimental words prediction objective as an auxil-
iary task to incorporate sentimental words knowl-
edge. MAGCN (Xiao et al., 2022) also incorporates
sentiment knowledge into inter-modality learning.

3 Methodology

In this section, we describe our proposed Senti-
ment Knowledge Enhanced Self-supervised Learn-
ing (SKESL) framework for multimodal sentiment
analysis, as shown in Figure 2. The framework
contains Sentiment Word Masking (SWM), text
representation learning, non-verbal information in-
jection (a.k.a., multimodal fusion), and Sentiment
Intensity Prediction (SIP) modules. In the subse-
quent subsections, we will detail the four modules.

3.1 Formulation

Our task is defined as follows: given a set of three
modalitiesM={T (Text),A(Audio),V (Visual)},
an opinion video, i.e., multimodal sequence, can
be represented as Xm = {xm

1 ,xm
2 , ...,xm

Tm
} ∈

RTm∗dm where m ∈ M−{T}, xm
i ∈ Rdm denotes

the extracted sentiment feature corresponding to
modality m, dm is the dimension of the feature,
and Tm is the length of sequence of modality m.
Our goal is to predict the sentiment intensity y ∈ R
or polarity y ∈ {positive, neutral, negative} of
the whole video.

3.2 Sentiment Word Masking

Sentiment Word Masking (SWM) aims to construct
a corrupted version for each input sequence where
sentiment information is masked. For a speaker
video without sentiment annotation, a good ASR
technique is first exploited to transcribe the speech

to text S = {w1, w2, ..., wN}. As sentiment words
in the text, especially those with the most salient
sentiment, are the most essential clues in the tex-
tual modality for detecting sentiment, we employ
a sentiment lexicon to search and then mask them,
i.e., use special tokens in their place. The senti-
ment lexicon (Hutto and Gilbert, 2014) consists of
explicit sentiment intensity scores for each senti-
ment word, thus we can easily find the sentiment
words with the highest sentiment intensity. Mean-
while, the score yMASK of the highest sentiment
intensity is chosen to act as a label for guiding
SKESL. The corrupted sentence is represented as
S′ = {w1, w2, ..., wMASK, ..., wN} where wMASK

denotes the masked word.
It is worth noting that a sentence with senti-

ment tendencies does not necessarily have senti-
ment words. To cope with this situation, we adopt
a random masking strategy and assign a label with
the sentiment intensity “0.0” to the masked word.
The motivation is that the pre-training model is in-
duced to distinguish whether the masked position
holds a word without any sentiment based on con-
textual and non-verbal information. In this way,
the model has a stronger sentimental semantic cog-
nition of the words in the sentence and can learn
better sentimental multimodal representations.

3.3 Text representation learning
After getting the corrupted sentence S′, we need
to encode it into a sequence of word representa-
tions for subsequent processing. Given the out-
standing language representation capabilities and
widespread use of BERT, we opted to utilize it as
the text encoder and input the corrupted sentence
S′ to it,

XT := {xT
1 ,x

T
2 , ...,x

T
N} = fθLM

(
S′
)

(1)

where θLM represents the parameters of BERT,
xT
i ∈ RdT denotes the encoded word representa-

tion, and dT is the dimension of the representation.

3.4 Non-verbal information injection
Unlike knowledge enhanced pre-training models
towards text sentiment analysis, we emphasize that
our SKESL deals with opinion videos that contain
multiple modalities rather than just text. For the
same word, there exists different sentiment with
different non-verbal accompaniments. Therefore,
the exact sentiment semantics of a word is deter-
mined by the word itself and the accompanied non-
verbal behavior (Wang et al., 2019). Without the
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Figure 2: The model framework of Sentiment Knowledge Enhanced Self-supervised Learning (SKESL). SKESL
contains two parts: (1) Sentiment Word Masking searches for the most sentimentally salient word of an input
sentence based on the sentiment lexicon, and generates a corrupted version by replacing it with a special token

[MASK]. (2) Sentiment Intensity Prediction requires the model to infer exact sentiment intensity according to
contextual and non-verbal information.

help of non-verbal information, it is difficult for
the pre-trained language model to determine the
masked word and infer the sentiment intensity of
the word. Therefore, to integrate the non-verbal
information into word representations, inspired by
Multimodal Transformer (MulT) (Tsai et al., 2019)
which provides a latent cross-modal adaptation that
fuses multimodal information by directly attending
to low-level features in other modalities, we pro-
pose a new non-verbal information injection (a.k.a.,
multimodal fusion) method as shown in Figure 3.

The method repeatedly reinforces the text rep-
resentations with the low-level features from au-
dio and visual modalities by learning the attention
across the features of two modalities. The low-level
features benefit the model to preserve the original
sentiment semantics for non-verbal behavior and
learn the text-centric multimodal representations.
Formally, we first define XT

0 = XT , XV
0 = XV

and XA
0 = XA to represent the text, visual and

audio feature sequences before multimodal fusion,
respectively. The Queries, Keys and Values se-
quences for Cross-Modal Attention (CMA) is com-
puted by linear transformation as follows,

QmT = LN
(
XT

l−1

)
·Wm

Q (2)

Km = LN(Xm
0 ) ·Wm

K (3)

Vm = LN(Xm
0 ) ·Wm

V (4)

where m ∈ M − {T}, LN(·) denotes the Layer
Normalization, θCMA = {Wm

Q ∈ RdT×dT ,Wm
K ∈

Rdm×dT ,Wm
V ∈ Rdm×dT } are weights.

After obtaining Queries, Keys and Values se-
quences, we utilize the CMA to inject audio and
visual information into text representations,

Ym
l = CMA

(
QmT ,Km,Vm

)

= softmax

(
QmT ·Km

√
dT

)
·Vm

(5)

where m ∈ M − {T}, Ym
l ∈ RN×dT denotes the

text sequence enhanced by modality m. In this
way, each word receives information from all the
elements across audio and visual feature sequences.
Then, the enhanced text representations Ym

l along
with the previous text representation XT

l−1 are ag-
gregated together,

Yl = YA
l + LN

(
XT

l−1

)
+YV

l (6)

Similar to the structure of vanilla Transformer
(Vaswani et al., 2017), Yl ∈ RN×dT then goes
through layer normalization, FeedForward Neural
Network (FFNN) and residual connection,

XT
l = fθFF

(LN (Yl)) +Yl (7)

where θFF represents the parameters of FFNN,
XT

l ∈ RN×dT is the output of block l.

3.5 Sentiment Intensity Prediction
After L blocks, the refined text representations are
XT

L ∈ RN×dT , in which xT
MASK,L is the refined

representation of masked word. We simply use a
2-layer fully connected network with non-linear ac-
tivation function to predict the sentiment intensity
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Figure 3: The framework of multimodal fusion. The
superscripts {T,A, V } denote text, audio and visual

modalities, respectively.

of masked words.

ypred = fθFC

(
xT

MASK,L

)
(8)

where θFC represents the parameters of the fully
connected network, ypred is the predicted sentiment
intensity. We define θ = {θLM, θCMA, θFF, θFC},
therefore the objective of the model is as follows,

θ∗ = argmin
θ

L(ypred, yMASK) (9)

where L is chosen as Mean Absolute Error (MAE)
loss function. The model is pre-trained in an end-
to-end way.

3.6 Fine-tuning
We verify the effectiveness of SKESL on mul-
timodal sentiment analysis task. On top of the
pre-trained language model and multimodal fusion
module, an output layer is added to perform task-
specific prediction. The neural network is then
fine-tuned on labeled multimodal data.

4 Experiments

4.1 Datasets
We pre-train our models on two speaker video
datasets: VoxCeleb1 (Nagrani et al., 2017) and

VoxCeleb2 (Chung et al., 2018) due to rich senti-
mental information within two datasets (Albanie
et al., 2018). VoxCeleb1 and VoxCeleb2 contain
over 100,000 video clips for 1,200+ speakers and
over 1 million video clips for 6,000+ speakers col-
lected from open-source media, respectively. Both
datasets are approximately gender balanced, with
speakers spanning a wide range of different ethnic-
ities, accents, professions and ages. After a rough
screening, we removed video clips that were not in
English, and selected 132,708 video clips for 1,105
speakers from VoxCeleb1 and 947,726 video clips
for 5,256 speakers from VoxCeleb2.

In addition, two multimodal sentiment datasets
are used for fine-tuning and testing: CMU-MOSI
(Zadeh et al., 2016), and CMU-MOSEI (Zadeh
and Pu, 2018). The CMU-MOSI and CMU-
MOSEI datasets consist of 2,199 and 22,846 opin-
ion video clips from YouTube movie reviews, re-
spectively. Each video clip has been scored be-
tween −3 (strong negative) and +3 (strong posi-
tive). Following previous works (Tsai et al., 2019;
Rahman et al., 2020; Qian et al., 2022), for CMU-
MOSI dataset, we utilize 1,284 segments for train-
ing, 229 segments for validation, and 686 segments
for testing. For CMU-MOSEI dataset, we use
16,326 segments for training, 1,861 segments for
validation, and 4,659 segments for testing. Table 1
and 2 show the statistics of all datasets.

4.2 Sentiment Features

We extract sentiment-related features for non-
verbal modalities.

Audio: The library librosa (McFee et al., 2015)
is used to extract frame-level acoustic features
which include 1-dimensional logarithmic funda-
mental frequency (log F0), 20-dimensional Mel-
Frequency Cepstral Coefficients (MFCCs) and
12-dimensional Constant-Q chromatogram (CQT).
These features are related to emotions and tone of
speech according to (Yu et al., 2020).

Visual: The MultiComp OpenFace2.0 toolkit
(Baltrusaitis et al., 2018) is used to extract a
set of visual features including 340-dimensional
facial landmarks, 35-dimensional facial action
units, 6-dimensional head pose and orientation, 40-
dimensional rigid and non-rigid shape parameters,
and 288-dimensional eye gaze 1.

1For more details, you can see https://github.
com/TadasBaltrusaitis/OpenFace/wiki/
Output-Format
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Dataset # Video clips # Speakers
VoxCeleb1 132,708 1,105
VoxCeleb2 947,726 5,256

Table 1: Datasets statistics for pre-training

Dataset # Train # Validation # Test
CMU-MOSI 1,284 229 686

CMU-MOSEI 16,326 1,861 4,659

Table 2: Datasets statistics for fine-tuning and testing

4.3 Experimental Design

Sentiment Lexicon We use the VADER 2 senti-
ment lexicon (Hutto and Gilbert, 2014) to search
and mask sentiment words. The VADER sentiment
lexicon is sensitive to both the polarity and the in-
tensity of sentiments expressed in social media con-
texts. It contains rich sentiment words with explicit
sentiment scores from −4 to +4. In order to be
consistent with the CMU-MOSI and CMU-MOSEI
datasets, we linearly scale the score to [−3,+3].

ASR We utilize the widely recognized Google
Cloud Speech API 3 to acquire transcripts for the
pretraining datasets. Considering that we do not
have access to the actual transcripts, it is not pos-
sible to calculate the precise ASR word error rate.
However, we can confidently state that improved
ASR performance would result in better outcomes.
This is because a low-performing ASR system may
inaccurately identify sentiment words, potentially
leading to flawed results.

Training Details All models are built on the
Pytorch (Paszke et al., 2019) toolbox with the
NVIDIA RTX 3090 GPUs. The Adam (Kingma
and Ba, 2014) optimizer is adopted for both pre-
training and fine-tuning. The initial learning rate is
set to 5e - 6 for BERT and 1e - 4 for other parame-
ters. The batch size is 32. The number of epoch is
200. All our experiments were done with the exact
same random seed. The models use the designated
validation set of CMU-MOSI and CMU-MOSEI
for finding best hyper-parameters 4. You can refer
to Appendices A for more details.

2You can find it at https://github.com/
cjhutto/vaderSentiment

3https://cloud.google.com/
speech-to-text

4Our codes are publicly available at https://github.
com/qianfan1996/SKESL.git

4.4 Evaluation Metrics

Following previous works (Tsai et al., 2019; Yu
et al., 2021), we record our experimental results in
two forms: classification and regression. For classi-
fication, we report the weighted F1 score and binary
accuracy. For regression, we report Mean Abso-
lute Error (MAE) and Pearson correlation (Corr).
Except for MAE, higher values denote better per-
formance for all metrics.

4.5 Baseline Models

Our model does not require manual alignment of
language words with visual and audio, since the
unlabeled video data has no explicit word times-
tamps. We perform a comprehensive comparative
study against SKESL by considering various base-
lines and state-of-the-art models in either aligned
or unaligned settings as detailed below.

4.5.1 Aligned Setting
MARN (Zadeh et al., 2018b) models intra-modal
and cross-modal interactions by designing the
Long-short Time Hybrid Memory and Multi-
attention Block. MFN (Zadeh et al., 2018a) fo-
cuses on continuously modeling the view-specific
and cross-view interactions, and aggregating them
through time with a Multi-view Gated Memory.
RMFN (Liang et al., 2018) decomposes the mod-
eling process into multi-stage fusion, with each
stage specifically targeting a subset of multimodal
signals. RAVEN (Wang et al., 2019) considers
the fine-grained structure of non-verbal subword
sequences, and dynamically adjusts the word repre-
sentations based on these non-verbal cues. MCTN
(Pham et al., 2019) learns joint representations by
cyclically translating from source to target modali-
ties while ensures robustness even in the presence
of noisy or missing target modalities. MISA (Haz-
arika et al., 2020) incorporates a combination of
losses including distributional similarity, orthog-
onal loss, reconstruction loss and task prediction
loss to learn both modality-invariant and modality-
specific representations. MAG-BERT (Rahman
et al., 2020) is an improvement over RAVEN on
aligned data with applying multimodal adaptation
gate at different layers of the BERT backbone.

4.5.2 Unaligned Setting
MulT (Tsai et al., 2019) employs a cross-modal
attention mechanism that enables a latent cross-
modal adaptation, merging multimodal informa-
tion by directly attending to low-level features in
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Dataset CMU-MOSI CMU-MOSEI Setting
Metric Acc ↑ F1 ↑ MAE ↓ Corr ↑ Acc ↑ F1 ↑ MAE ↓ Corr ↑

MARN3 77.1 77.0 0.968 0.625 - - - -

Aligned

MFN3 77.4 77.3 0.965 0.632 76.0 76.0 - -
RMFN3 78.4 78.0 0.922 0.681 - - - -
RAVEN3 78.0 76.6 0.915 0.691 79.1 79.5 0.614 0.662
MCTN3 79.3 79.1 0.909 0.676 79.8 80.6 0.609 0.670
MISA3 83.4 83.6 0.783 0.761 85.5 85.3 0.555 0.756

MAG-BERT⊗ 84.30 84.30 0.731 0.789 85.23 85.08 0.539 0.753
MulT∗ 80.45 80.47 0.892 0.667 81.02 80.98 0.605 0.670

Unaligned
PMR∗ 81.33 81.30 0.875 0.669 82.12 82.07 0.614 0.675

LMR-CBT∗ 80.42 80.38 0.901 0.657 80.75 80.79 0.634 0.653
Self-MM∗ 85.21 85.18 0.773 0.774 84.07 84.12 0.556 0.750

Ours 86.77 86.82 0.720 0.826 86.25 86.25 0.532 0.804

Table 3: Results for multimodal sentiment analysis on CMU-MOSI and CMU-MOSEI datasets. NOTE: The unit of
Acc and F1 is %. ↑ means higher is better, and ↓ is the opposite. 3 means the result is from (Hazarika et al., 2020);
⊗ from (Yu et al., 2021). And ∗ denotes the reimplementation with non-verbal sentiment feature mentioned in 4.2.

Best results are highlighted in bold.

other modalities. PMR (Lv et al., 2021) introduces
a message hub to explore three-way interactions
across all involved modalities within the context
of multimodal fusion in unaligned multimodal se-
quences. LMR-CBT (Fu et al., 2021) achieves
complementary learning of different modalities by
incorporating three effective components: local
temporal learning, cross-modal feature fusion and
global self-attention representations. Self-MM (Yu
et al., 2021) designs a label generation module
to obtain independent unimodal supervisions, ef-
fectively balancing the learning progress across
different sub-tasks.

5 Results and Analysis

In this section, we make a detailed analysis and
discussion about our experimental results.

5.1 Quantitative Results
As shown in Table 3, our model achieves state-
of-the-art performance on all the metrics on both
datasets. Specifically, consistently significant im-
provement is observed compared to the previous
unaligned models. Even comparing with aligned
models, our model still achieves competitive or
better results.

To investigate the impact of the amount of the
unlabeled video data, we pre-train on VoxCeleb1
(132K) and VoxCeleb2 (947K) datasets and results
are shown as Table 4 and 5. It is evident that a
larger amount of pre-training data leads to more

Dataset CMU-MOSI
Metric Acc ↑ F1 ↑ MAE ↓ Corr ↑

VoxCeleb1 86.43 86.46 0.725 0.818
VoxCeleb2 86.77 86.82 0.720 0.826

Table 4: Results on CMU-MOSI dataset with different
amounts of pre-training data.

Dataset CMU-MOSEI
Metric Acc ↑ F1 ↑ MAE ↓ Corr ↑

VoxCeleb1 85.34 85.31 0.550 0.778
VoxCeleb2 86.25 86.25 0.532 0.804

Table 5: Results on CMU-MOSEI dataset with
different amounts of pre-training data.

significant performance improvements. Further-
more, we find that the performance improvement
on the CMU-MOSEI dataset is larger than that on
the CMU-MOSI dataset. For example, the accu-
racy is relatively improved by 0.39% and 1.07%,
respectively. The most likely reasons are that the
CMU-MOSI dataset is too small and contains noisy
labels. Therefore, we boldly guess that it will be
difficult to improve the performance on the CMU-
MOSI dataset in the future.

In addition, to study the effect of different sizes
of backbone language models, we use bert-base
and bert-large models with 110M parameters and
340M parameters, respectively. Results are shown
in Table 6 and 7. We observed that the perfor-
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Figure 4: Examples from the CMU-MOSI dataset. For each example, we show the Ground Truth and prediction
output of the model with and without SKESL.

Dataset CMU-MOSI
Metric Acc ↑ F1 ↑ MAE ↓ Corr ↑

bert-base 86.02 85.97 0.734 0.815
bert-large 86.77 86.82 0.720 0.826

Table 6: Results on CMU-MOSI dataset under different
pre-trained language models.

Dataset CMU-MOSEI
Metric Acc ↑ F1 ↑ MAE ↓ Corr ↑

bert-base 85.32 85.27 0.553 0.762
bert-large 86.25 86.25 0.532 0.804

Table 7: Results on CMU-MOSEI dataset under
different pre-trained language models.

mance improves as the pre-trained language model
has more parameters and stronger expressiveness.
This fits with our intuition and previous conclu-
sion (Brown et al., 2020) that scaling up language
models can greatly improve performance.

5.2 Ablation Study
To further explore the contributions of different
components, we conduct an ablation study on
CMU-MOSI dataset and the results are shown in
Table 8. Without SKESL, the model’s accuracy
and F1 score dropped by 1.40% and 1.46%, re-
spectively. This suggests that it is indeed useful to
transfer sentimental knowledge mined from unla-
beled video data to downstream prediction tasks.
Further, if the audio and visual modality is not used,
i.e., only the BERT language model is used for the
sentiment prediction task, the performance will be
further degraded. This fact aligns with the observa-
tions in prior work (Tsai et al., 2019; Rahman et al.,
2020; Qian et al., 2022) that multimodal sentiment

Dataset CMU-MOSI
Metric Acc ↑ F1 ↑ MAE ↓ Corr ↑
Ours 86.77 86.82 0.720 0.826

w/o SKESL 85.37 85.36 0.726 0.815
w/o AV 85.06 85.12 0.735 0.808

Table 8: Ablation experiments on CMU-MOSI dataset.
w/o denotes “without”. AV denotes audio & visual.

analysis is better than text-only sentiment analysis.

5.3 Case Study
To visually validate the reliability of our model, we
present some examples shown in Figure 4. The
examples are from the first three speaker videos of
the test set of the CMU-MOSI dataset. The predic-
tion results demonstrate that pre-training models
enriched with the sentiment knowledge of words
and non-verbal behavior will facilitate the char-
acterization of the sentimental patterns in videos,
thereby resulting in better performance on multi-
modal sentiment analysis.

6 Conclusion

In this paper, we highlighted the sentiment knowl-
edge enhanced self-supervised learning in MSA.
We find that mining sentimental prior information
from unlabeled video data can lead to better pre-
dictions on labeled data. The larger the amount of
unlabeled video data and the stronger the language
modeling ability, the better the performance that
can be achieved.

7 Limitations

We note that there are several limitations with such
a sentiment knowledge enhanced self-supervised
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learning approach. First, the preprocessing of mas-
sive videos is time-consuming and laborious. Sec-
ond, the pre-training of our model has relatively
large requirements on the GPU resources. Finally,
we argue that there should not be too many videos
without sentimental words, so as to avoid the model
having a large bias and not learning any sentiment
knowledge.
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A Appendices

A.1 Hyper-parameters Setting

Hyper-parameter Value
dA 33
dV 709
dT 768&1024
L 4

Dimension of fully connected layer 256
Batch size 32

Number of epoch 200
Learning rate of BERT 5e-6

Learning rate of other parameters 1e-4
Optimizer Adam

Table 9: The hyper-parameters of the model.

A.2 Model Efficiency

Computational Budget # Parameters
bert-base 4.6 GMACs 111.4 M
bert-large 13.5 GMACs 337.9 M

Table 10: The efficiency of the models.

12976



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

section 7

�7 A2. Did you discuss any potential risks of your work?
Our work does not have potential risks.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

� B1. Did you cite the creators of artifacts you used?
No response.

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
No response.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

� B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
section 4.5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendices A.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

12977

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section 4.3 and Appendices A.1

�7 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
As with the original paper for other work (e.g., MAG-BERT, MulT, Self-MM) in MSA, we do not
report error bars. All experiments were done with the exact same random seed. We report the max
after a grid search of hyperparameter using the validation sets.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
section 4.2, 4.3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

12978


