
Findings of the Association for Computational Linguistics: ACL 2023, pages 12994–13002
July 9-14, 2023 ©2023 Association for Computational Linguistics

Better Language Models of Code through Self-Improvement

Hung Quoc To♣∗, Nghi D. Q. Bui♦∗, Jin Guo♠, Tien N. Nguyen♢

♣ FPT Software AI Center, ♦Department of Computer Science, Fulbright University, Viet Nam
♠School of Computer Science, McGill University, Canada

♢School of Engineering and Computer Science , The University of Texas at Dallas, USA
hungtq29@fsoft.com.vn, dqnbui.2016@smu.edu.sg,

jguo@cs.mcgill.ca, tien.n.nguyen@utdallas.edu

Abstract

Pre-trained language models for code (PLMCs)
have gained attention in recent research. These
models are pre-trained on large-scale datasets
using multi-modal objectives. However, fine-
tuning them requires extensive supervision and
is limited by the size of the dataset provided.
We aim to improve this issue by proposing a
data augmentation framework using knowledge
distillation. Our framework utilizes knowl-
edge gained during the pre-training and fine-
tuning stage to augment training data, which
is then used for the next step. We incorpo-
rate this framework into the state-of-the-art lan-
guage models, such as CodeT5, CodeBERT,
and UnixCoder. The results show that our
framework significantly improves PLMCs’ per-
formance in sequence-generation tasks, such as
code summarization and code generation in the
CodeXGLUE benchmark.

1 Introduction

Pre-trained models for code (PLMCs), such as
CodeBERT (Feng et al., 2020), PLBART (Ahmad
et al., 2021), CodeT5 (Wang et al., 2021), UniX-
Coder (Guo et al., 2022), and DISCO (Ding et al.,
2022), have become the foundation to solve many
practical software engineering tasks such as code
summarization, code translation, program repair.
Those PLMCs, like large language models (LLMs),
are typically first pretrained on very large-scale
datasets with a variety of multi-modal objectives
under a self-supervised training style. They can
then be fine-tuned using task-specific datasets in a
supervised training style.

We hypothesise that, while fine-tuned models
may not achieve peak performance, PLMCs can
produce reasonable outputs that can be regarded
as high quality data because they have been pre-
trained on large scale datasets, and that such data

∗Equal contribution. Listing order is based on the alpha-
betical ordering of author surnames.

can be leveraged as additional high-quality training
data. Our framework utilizes the self-improvement
capability of PLMCs through an simple data aug-
mentation step. This approach is particularly useful
for tasks involving code-related sequence genera-
tion, such as code summarization and code genera-
tion. Our method involves fine-tuning a PLMC on
a downstream dataset, allowing the model to gain
knowledge about the task. The model then gener-
ates an augmented version of the original training
data, which are used to further fine-tuning. Our
framework is similar to sequence-level knowledge
distillation (Kim and Rush, 2016), but our approach
focuses on improving model performance without
compressing the model by utilizing the same tech-
nique.

Our empirical evaluation results show that our
framework significantly improves the state-of-the-
arts PLMCs, including CodeBERT, CodeT5, UniX-
Coder with significant margins. In short, we sum-
marize our contributions as follows.

• We present a simple self-improvement frame-
work and show how it can be easily adapted to
PLMCs for the task of code-related sequence
generation.

• We conduct extensive evaluation on two tasks:
code summarization and code generation, and
compare it with the well-known, state-of-the-art
PLMCs. The results show that our framework
consistently improvesover all PLMCs by a sig-
nificant margin in those tasks.

• We provide analysis and explanations on how uti-
lizing a simple framework consistently improves
the performance of PLMCs.

Our work is publicly available. 1

1
https://github.com/Fsoft-AIC/

Code-LM-Self-Improvement

12994

https://github.com/Fsoft-AIC/Code-LM-Self-Improvement
https://github.com/Fsoft-AIC/Code-LM-Self-Improvement


... ...

Original
train dataset

Augmented dataset
Data augmentation

- Figure (2)

Fine-tuning Self-improving
...

Figure 1: Overall training pipeline.

Original
train dataset

Augmented dataset

...

beam search

Adding to

Figure 2: Demonstrating the data augmentation process
in our work.

2 Related Work

Exposure bias and hallucination in Sequence
Generation Tasks The exposure bias problem
is regarded as the difference between the training
and inference phases for auto-regressive sequence
generation models. Previous work has attempted
to reduce exposure bias in training phase (Bengio
et al., 2015; Ranzato et al., 2015; Wiseman and
Rush, 2016; Wang and Sennrich, 2020). In the
sense that our self-improvement step involves train-
ing model on its own prediction, the exposure bias
is close to our approach.

Code understanding and generation Code
learning problems have recently emerged as one
of the primary tasks for assessing the capability
of language models. Most recent code models are
pretrained on multi-modal objectives before being
fine-tuned on specific downstream tasks (Feng
et al., 2020; Ahmad et al., 2021; Wang et al., 2021;
Guo et al., 2022; Ding et al., 2022).

Knowledge Distillation Knowledge distillation
is the process of transferring knowledge from a
large unwieldy model or set of models to a single
smaller model that can be practically deployed un-
der real-world constraints, and such smaller model
can usually keep the same performance or even
better than the original model (Hinton et al., 2015;

Kim and Rush, 2016; Wang et al., 2020; Chen et al.,
2020; Mukherjee et al., 2021). We perform an ad-
ditional self-improvement step to improve the orig-
inal model without using external resources, our
work is relevant to knowledge distillation.

3 Method

Algorithm 1 Data Augmentation Process

Input:
• θfine−tuned, the fine-tuned model checkpoint
on a specific task T ∈ {code summarization,
code generation, etc. }.
• D = {(xi, yi) ∣ i = 1, n}, the train dataset
on which the θfine−tuned is fine-tuned.
• Bk denotes the beamsearch algorithm with
beam size of k. It returns a list of k best se-
quences as prediction.

Output:
• Augmented dataset D̃

1: procedure DATAAUGMENTATIONPROCESS

2: D̃ ← ∅
3: for each datapoint (xi, yi) ∈ D do:
4: LK ← Bk(Pθfine−tuned

(y ∣ xi))
5: In other words, LK =[ŷi1, ŷi2, ..., ŷik]
6: ỹi ← argmax

ŷij∈LK

(sim(ŷij , yi))
7: Adding (xi, ỹi) → D̃
8: end for
9: return D̃

10: end procedure

Our method utilizes three distinct sets of model pa-
rameters: θpre−trained, θfine−tuned, and θimproved.
Each corresponds to the stage of the model parame-
ters after pre-trained, fine-tuned, and self-improved,
respectively. The model generates tokens in auto-
regressive manner, progressing token-by-token.

Typically, models are pretrained on large
scale corpora, resulting in a pre-trained check-
point θpre−trained. These pre-trained models
are subsequently fine-tuned on a targeted down-
stream dataset D using a supervised learning ap-
proach, yielding in a set of fine-tuned parameters
θfine−tuned. Our investigation has revealed that
model’s performance can be further enhanced if
we continue to fine-tuned these parameters on an
augmented version of D. Figure 1 portrays our
proposed self-improvement step within the broader
training framework. This step encompasses a data

12995



Models Beam sizes Methods Ruby JavaScript Go Python Java PHP Overall

RoBERTa 10 (Liu et al., 2019) 11.17 11.90 17.72 18.14 16.47 24.02 16.57
PLBART 10 (Ahmad et al., 2021) 14.11 15.56 18.91 19.30 18.45 23.58 18.32
PolyglotCodeBERT 10 (Ahmed and Devanbu, 2021) 14.75 15.80 18.77 18.71 20.11 26.23 19.06

CodeBERT 1 Baseline 12.04 14.73 17.58 18.47 17.62 23.44 17.31
Self-Improved 12.40 15.44 18.52 19.09 18.31 24.46 18.04

5 Baseline 12.31 15.76 18.12 19.09 18.37 24.85 18.08
Self-Improved 12.55 16.41 18.69 19.50 18.88 25.21 18.54

10 Baseline 12.22 15.78 18.01 19.09 18.42 25.06 18.10
Self-Improved 12.52 16.39 18.66 19.50 18.92 25.28 18.54

CodeT5 (base) 1 Baseline 14.80 15.57 19.57 19.86 19.87 25.33 19.17
Self-Improved 15.46 16.22 20.12 20.36 20.25 26.25 19.78

5 Baseline 15.23 16.18 19.95 20.42 20.26 26.11 19.69
Self-Improved 15.60 16.51 20.26 20.59 20.44 26.46 19.97

10 Baseline 15.29 16.18 19.95 20.42 20.26 26.10 19.70
Self-Improved 15.70 16.47 20.28 20.58 20.45 26.58 20.00

UniXCoder (base) 1 Baseline 14.83 15.39 18.95 18.66 19.37 24.99 18.70
Self-Improved 15.36 15.83 19.42 19.13 20.04 26.05 19.31

5 Baseline 15.17 15.93 19.52 19.25 20.18 26.45 19.42
Self-Improved 15.37 15.95 19.73 19.55 20.45 26.69 19.62

10 Baseline 14.74 15.84 19.31 19.12 20.11 26.75 19.31
Self-Improved 15.37 15.96 19.73 19.56 20.44 26.79 19.64

Table 1: Results on code summarization evaluated with smoothed BLUE-4. The “Overall” column presents average
scores over six programming languages. The bolded numbers represent the best scores (higher is better) when
comparing between Baseline and Self-Improved for each model and each value of beam size.

augmentation technique and an additional round
of fine-tuning, in addition to the pre-traingn and
fine-tuning paradigm.

The process of augmenting the dataset is illus-
trated in Figure 2. We provide a detailed algorithm
for this procedure in Algorithm 1. For each train-
ing pair of sequences (xi, yi) in the train dataset D,
we employ beam search to generate a list of K-best
predictions LK . This list comprises k predictions,
where k represents the beam size. Subsequently,
we evaluate the similarity between each prediction
ŷij and its corresponding ground truth sequence yi
using a similarity function sim based on BLEU
score. The prediction with highest similarity is
then selected ỹi = argmaxŷij∈LK

(sim(ŷij , yi)).
Finally, we add the sequence pair (xi, ỹi) to a new
empty dataset D̃, which we refer as the augmented
dataset. Essentially, the augmented dataset con-
tains an equal number of datapoints as the original
training dataset due to an one-by-one mapping dur-
ing augmetation. Moreover, the augnmentation
process occurs offline, with each newly augmented
datapoint being saved to storage before being used
for training in the self-improving phase.

The subsequent step involves fine-tuning
θfine−tuned on D̃ until convergence. This results in
a new set of model parameters denoted as θimproved.
It is important to note that the index j in ŷij de-
notes the jth prediction in the beam, rather than the
j
th token of the predicted sequence. Additionally,

only the training dataset D is augmented, while the
validation and test dataset remain unchanged for
evaluation purpose.

4 Experimental Setup

Our goal is to show that for any of the fine-tuned
model for a sequence generation task (F-PLMC),
after applying our self-improvement method (S-
PLMC), the result improves.

Dataset and Downstream Tasks To achieve our
goal of enhancing the code-related sequence gener-
ation task, we selected code summarization and
code generation as our experimental areas. To
evaluate these tasks, we utilized the CodeXGLUE
benchmark (Lu et al., 2021), which comprises var-
ious datasets for various code understanding and
code generation tasks. Specifically, we utilized the
code summarization and code generation datasets
from CodeXGLUE and disregarded the other ones.
The statistics for each dataset is reported in Ap-
pendix.

Baseline Models We chose CodeBERT (Feng
et al., 2020), CodeT5 (Wang et al., 2021), and
UniXCoder (Guo et al., 2022) as baseline models.
Each model represents a distinct neural architec-
ture style. CodeBERT abides to the Bidirectional
Transformer architecture, which is a well-known
PLMCs, despite the fact that it may not produce the
best results for the tasks in CodeXGLUE. CodeT5

12996



Models Beam sizes Methods EM BLEU CodeBLEU

CodeGPT 10 (Lu et al., 2021) 20.10 32.79 35.98
PLBART 10 (Ahmad et al., 2021) 18.75 36.69 38.52

CodeT5 (base) 1 Baseline 21.75 39.00 41.64
Self-Improved 22.40 39.75 42.14

5 Baseline 21.10 40.67 43.59
Self-Improved 22.40 41.61 44.06

10 Baseline 22.10 39.59 43.78
Self-Improved 22.35 41.85 44.49

UniXCoder (base) 1 Baseline 21.50 38.28 40.85
Self-Improved 22.10 38.56 40.96

3 Baseline 22.05 37.53 40.11
Self-Improved 22.30 37.88 40.42

5 Baseline 22.00 37.18 39.78
Self-Improved 22.30 37.49 40.05

Table 2: Results on code generation evaluated with EM,
BLEU, and CodeBLEU. The bolded numbers represent
the best scores (higher is better for all metrics) when
comparing between Baseline and Self-Improved for
each model and each value of beam size.

and UniXCoder are the two PLMCs that achieve
state-of-the-arts performance on the CodeXGLUE
benchmark. CodeT5 is an encoder-decoder archi-
tecture that follows the Seq2Seq learning style by
following T5. UniXCoder, on the other hand, is
a unified language model. It can behave as an
encoder-only, decoder-only, or encoder-decoder
model by modifying the masked attention matri-
ces inside each transformer layer. Note that while
CodeT5 and UniXCoder are proposed to address
both code summarization and code generation,
CodeBERT only considers the first problem in there
paper. So we only consider CodeBERT for code
summarization in our work.

Evaluation Metric We follow CodeXGLUE
benchmark in employing evaluation metrics for
each task. Smoothed BLEU-4 (Lin and Och, 2004)
is used as the evaluation metric for code summa-
rization. For code generation, smoothed BLEU-4,
CodeBLEU (Ren et al., 2020), and exact match
(EM) are employed. We aim to improve all of these
metrics after apply our self-improvement method
into the PLMCs.

Implementation We carefully selected the
checkpoints for CodeBERT 2, CodeT5 3, and UniX-
Coder 4 based on the corresponding tasks. It is
important to note that not all of these methods have
released fine-tuned checkpoints. CodeT5 stands
out as the only model to have released checkpoints
for code summarization and code generation tasks.
Conversely, CodeBERT and UniXCoder only offer

2
https://github.com/microsoft/CodeBERT/tree/

master/CodeBERT
3
https://github.com/salesforce/CodeT5

4
https://github.com/microsoft/CodeBERT/tree/

master/UniXcoder

training scripts. When checkpoints were not avail-
able, we employed the provided training scripts to
fine-tune the pretrained models until we obtained
results comparable to those reported in the original
research. Additionally, CodeT5 and UniXCoder
may have different checkpoint options with vary-
ing model sizes, such as small, base, and large.
We selected the base version for both CodeT5 and
UniXCoder. The same validation set is employed
self-improving as in fine-tuning. The best check-
point is selected according to BLEU score evalu-
ated on this set among the training epochs.

5 Evaluation Results

The results of our code summarization task are
presented in Table 1. The "Beam sizes" column
indicates the beam size used in the beam search
algorithm, while the "Methods" column indicates
whether or not our self-improved algorithm was
utilized. We also included other models as refer-
ences to compare the relative improvement of our
model. On average, we observed an average of 0.76
BLUE score increase in performance across all lan-
guages. This improvement was consistent across
various beam sizes (1, 5, 10), which confirms the
effectiveness of our self-improved approach across
a wide range of PLMCs. When comparing our
model to other strong baselines, we found that our
method improved the performance of CodeBERT
for JavaScript from 15.78 to 16.39, surpassing the
performance of PolyglotCodeBERT (15.80). This
highlights the benefit of our self-improved method
in improving weak models. The results of our code
generation study are presented in Table 2, the per-
formance increase by 0.81 BLUE scores on average.
When using EM and CodeBLEU, the improvement
also increases consistently.

While conducting our experiments, it is impor-
tant to note that we did not selectively choose the
most favorable random seed to optimize the per-
formance of each entry. Instead, we utilized the
default seed provided in each model repository to
ensure fairness and consistency. Our code summa-
rization experiments encompassed six different pro-
gramming languages, and both code summarization
and generation experiments were evaluated using
three distinct beam sizes. In total, we conducted 60
runs to gather comprehensive results. The numbers
reported consistently demonstrate the improvement
achieved in each individual run, thereby affirming
the robustness of the proposed method.

12997

https://github.com/microsoft/CodeBERT/tree/master/CodeBERT
https://github.com/microsoft/CodeBERT/tree/master/CodeBERT
https://github.com/salesforce/CodeT5
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder


0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
r1: gap in performance across beam sizes (unit: BLEU)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
r 2

: g
ai

n 
in

 p
er

fo
rm

an
ce

 (u
ni

t: 
B

LE
U

)

y=0.362*x+0.414
language
ruby
javascript
go
python
java
php
model
UniXCoder
CodeBERT
CodeT5

Figure 3: Scatter plot visualizing performance gap (in
BLEU score) infered by different beam sizes (i.e 10 and
1) of θfine−tuned vs. performance gained (in BLEU
score) by θimproved infered with beam size of 1

6 Ablation Study

Improvement Study In this section, we examine
the factors that influence the improvement achieved
by θimproved as compared to θfine−tuned through
code summarization. We define r1 as the differ-
ence in performance measured by BLEU between
inferencing with a beam size of 10 and inferencing
with a beam size of 1. Additionally, we define r2 as
the improvement in BLEU when inferencing with
the same beam size of 1 between θfine−tuned and
θimproved. By evaluating these values across a vari-
ety of beam sizes and programming languages in
the code summarization dataset, we are able to visu-
alize the results in Figure 3. Additionally, we have
calculated the Pearson Correlation score, which
is 0.77, indicating a strong correlation between r1
and r2. Our analysis demonstrates that a larger r1
is correlated with a better r2, suggesting that our
method is more likely to yield better overall perfor-
mance when r1 is large. We believe this insight is
a crucial finding as it provides a simple indicator
of the model’s fully trained capability.

CodeBLEU as Similarity Function Our pri-
mary findings in code generation are presented
using BLEU as the similarity function. However,
for a more comprehensive assessment of the cor-
rectness of the generated code, we consider Code-
BLEU, which incorporates the specific characteris-
tics of source code. CodeBLEU, therefore, aligns
better with the objective of measuring similarity
in data augmentation compared to BLEU, which
relies on n-gram matching. This section exam-
ines the impact of using CodeBLEU as a similarity

Beam sizes sim(.) EM BLEU CodeBLEU

1 BLEU 22.10 38.56 40.96
CodeBLEU 21.45 38.67 41.35

3 BLEU 22.30 37.88 40.42
CodeBLEU 21.80 38.37 41.35

5 BLEU 22.30 37.49 40.05
CodeBLEU 21.80 38.02 40.56

Table 3: Comparing BLEU and CodeBLEU as similarity
function in Data Augmentation Process on UniXCoder.
The bolded numbers represent the best scores (higher is
better for all metrics).

function (CodeBLEU-augmentation) compared to
BLEU (BLEU-augmentation) in the context of data
augmentation for code generation.

We present the results of our UniXCoder self-
improving model with both BLEU-augmentation
and CodeBLEU-augmentation in Table 3. The re-
sults indicate that CodeBLEU-augmentation en-
hances both BLEU and CodeBLEU scores com-
pared to BLEU-augmentation. This suggests that
using CodeBLEU as a similarity function improves
the generated code at a local level, encompass-
ing aspects such as fluency, semantics, and syntax.
However, it does have a negative impact on exact
match (EM). As code problems may not have a
unique solution, when EM is used as an evaluation
metric, it should allow for a more lenient assess-
ment. Consequently, we argue that a slight decrease
in EM would have minimal impact on the actual
correctness of the generated solution. Thus, we
propose placing greater emphasis on CodeBLEU
as an evaluation metric for code generation.

7 Conclusion

We introduced a self-improvement technique as a fi-
nal fine-tuning step to enhance model performance.
Our experiments showed that this method, when
applied to popular pre-trained code models (Code-
BERT, CodeT5, and UniXCoder), significantly im-
proves performance on code summarization and
code generation tasks. We also provided insights
on when this method is most effective in improving
PLMCs. We intend to implement our technique
in larger-scale models and other tasks, and believe
it is an efficient way to optimize the capabilities
of any code language model without the need for
extensive architecture modifications or large-scale
dataset assembly. We leave all of these investiga-
tions for the future.

12998



Limitations

We discuss a few limitations of our work. One lim-
itation of Self-Improved is its complexity in usage.
The data augmentation process involves generating
predictions for the entire training dataset with a
large beam size, resulting in a time complexity of
O(nk), where n is the train dataset size and k is
the beam size. Additionally, the fine-tuning step to
derive θimproved also adds a significant amount of
computational complexity. This limitation is dis-
cussed in Section 6 to weigh the performance ben-
efits of our method against the computational sacri-
fices. Another limitation is that Self-Improved has
only been applied to encoder-decoder models in
this work. However, it is also applicable to other
types of auto-regressive models, including encoder-
only models, which are commonly used for tasks
such as code completion (Radford et al., 2019;
Lu et al., 2021; Guo et al., 2022). A few mod-
els can be named are GPT models (Radford et al.,
2019; Brown et al., 2020), CodeX (Chen et al.,
2021), CodeGen (Nijkamp et al., 2022), etc. Fur-
ther research into these applications is left for fu-
ture work.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Toufique Ahmed and Premkumar T. Devanbu. 2021.
Multilingual training for software engineering.
CoRR, abs/2112.02043.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances
in neural information processing systems, 28.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. CoRR,
abs/2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Ting Chen, Simon Kornblith, Kevin Swersky, Moham-
mad Norouzi, and Geoffrey E. Hinton. 2020. Big
self-supervised models are strong semi-supervised
learners. CoRR, abs/2006.10029.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-
dro Morari, Baishakhi Ray, and Saikat Chakraborty.
2022. Towards learning (dis)-similarity of source
code from program contrasts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6300–6312, Dublin, Ireland. Association for Compu-
tational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. CoRR, abs/1808.09588.

12999

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
http://arxiv.org/abs/2112.02043
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/2006.10029
https://doi.org/10.18653/v1/2022.acl-long.436
https://doi.org/10.18653/v1/2022.acl-long.436
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1808.09588
http://arxiv.org/abs/1808.09588


Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a
method for evaluating automatic evaluation metrics
for machine translation. In COLING 2004: Pro-
ceedings of the 20th International Conference on
Computational Linguistics, pages 501–507, Geneva,
Switzerland. COLING.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Subhabrata Mukherjee, Ahmed Hassan Awadallah,
and Jianfeng Gao. 2021. Xtremedistiltransformers:
Task transfer for task-agnostic distillation. CoRR,
abs/2106.04563.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. CoRR,
abs/2009.10297.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. arXiv preprint arXiv:2005.03642.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. CoRR, abs/2002.10957.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Sam Wiseman and Alexander M Rush. 2016. Sequence-
to-sequence learning as beam-search optimization.
arXiv preprint arXiv:1606.02960.

A Data statistics

We include the statstics for the data used in our
experiments. We access directly to CodeXGLUE
page5 for downloading data. CodeXGLUE gath-
ers datasets from multiple sources for each down-
stream task. For code summarization, the Code-
SearchNet (Husain et al., 2019) are used with the
number of examples for each train/dev/test are re-
ported in Table 4. The dataset comprise the code-
text pairs in 6 programming languages. CON-
CODE (Iyer et al., 2018) dataset is employed as
the benchmark for code generatiom with statistics
reported in Table 5. It contains pairs of Java mem-
ber function and natural language description Java
language.

Programming Language Training Dev Test

Python 251,820 13,914 14,918

PHP 241,241 12,982, 14,014

Go 167,288 7,325 8,122

Java 164,923 5,183 10,955

JavaScript 58,025 3,885 3,291

Ruby 24,927 1,400 1,261

Table 4: Statictisc of data used in code summarization

Split #Examples

Train 100,000

Dev 2,000

Test 2,000

Table 5: Statictisc of data used in code generation

B Hyperparameter selection

In the fine-tuning phase, we maintain the model
hyperparameter values as specified in the training
script provided by the official repositories. How-
ever, we make a modification by increasing the
batch size to fully utilize the memory capacity of
a NVIDIA A100 80GB. In the self-improvement
phase, we further decrease the learning rate by a
factor of 10.

5
https://github.com/microsoft/CodeXGLUE

13000

https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2102.04664
http://arxiv.org/abs/2106.04563
http://arxiv.org/abs/2106.04563
https://doi.org/10.48550/ARXIV.2203.13474
https://doi.org/10.48550/ARXIV.2203.13474
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
http://arxiv.org/abs/2002.10957
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://github.com/microsoft/CodeXGLUE


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

�3 A2. Did you discuss any potential risks of your work?
8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
4

�3 B1. Did you cite the creators of artifacts you used?
4

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. 4

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

13001

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4, Appendix D

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

13002


