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Abstract

When scoring argumentative essays in an edu-
cational context, not only the presence or ab-
sence of certain argumentative elements but
also their quality is important. On the recently
published student essay dataset PERSUADE,
we first show that the automatic scoring of ar-
gument quality benefits from additional infor-
mation about context, writing prompt and ar-
gument type. We then explore the different
combinations of three tasks: automated span
detection, type and quality prediction. Results
show that a multi-task learning approach com-
bining the three tasks outperforms sequential
approaches that first learn to segment and then
predict the quality/type of a segment.

1 Introduction

In educational settings, argumentative essays are
considered an important task type, since argumen-
tative writing encourages critical thinking and civic
participation (Andrews, 2009), which can only be
developed through practice. While segmentation
and classification of argumentative elements in
texts are important steps towards providing learners
with feedback on their writing structure, assessing
the quality of arguments is equally important, but
less researched.

For instance, in a writing prompt in the re-
cently published essay corpus PERSUADE (Cross-
ley et al., 2022), students were asked to write a
letter to their principal, who is considering making
community service a requirement for all students.
Two example essays start with the following seg-
ments:

(1) Students all across the nation are doing com-
munity service to help out their town or city.
Whether it is cleaning the streets, helping out
in an old people’s home, or tutoring children
at a school, all these deeds are good experi-
ence and good for the community.

(2) I have heard that many students are arguing
on whether community service should be done
by the students and I just wanted to share my
opinions with you to help your decision.

Both segments are classified as lead, an argumenta-
tive type that should grab the reader’s attention and
point toward the writer’s position. The first seg-
ment is labeled as effective, presumably because it
captures the reader’s interest through listing some
activities and effectively shows the author’s support
for community service. In contrast, likely because
it does not point to any position, the second lead
has been labeled as ineffective. As humans, we can
identify these segments and notice their differences
easily, but it is unclear how well a machine can lo-
cate, classify and predict the quality rating of each
argumentative element.

The essay example shown in Figure 1 comes
from of the Kaggle competition dataset "Feedback
Prize - Predicting Effective Arguments"1, which is
a subset of the aforementioned PERSUADE Cor-
pus. With the public release of this dataset, large-
scale argumentative essay data (4192 essays from
15 writing prompts) became publicly available with
seven types of argumentative elements being la-
beled on a three-point quality scale, marking ele-
ments as effective, adequate or ineffective. This
gives rise to the following research questions:

1. How does the scoring of argument quality inter-
act with additional information in the essay? Is
it beneficial to add context, writing prompt and
argument type?

2. Can we jointly learn where an argument occurs,
which type and of what quality it is? How do
the three tasks benefit from each other?

We answer both questions through the following
two studies:

1https://www.kaggle.com/competitions/
feedback-prize-effectiveness
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Figure 1: An essay example containing all seven argumentative types and all three quality levels.

In Study 1, we treat the quality prediction of
arguments as a classification task using logistic
regression and a large pretrained language model.
By including prompt, argumentative type and essay
context as additional features, we show that the
quality prediction performance benefits from this
information.

In Study 2, we learn the span detection, type and
quality prediction tasks in different settings. Com-
paring to a setup where the arguments were first
segmented and then classified into different types
and quality scales individually, we find that multi-
task learning settings have a better performance.

Our source-code is publicly available
at https://github.com/yuningDING/
multi-task-argument-mining.

2 Related Work

With the annotations in the PERSUADE Corpus, ar-
gument scoring can be seen as a three-step process:
the arguments spans are first detected, then classi-
fied into different argumentative types and lastly
assessed with different quality labels. We struc-
ture related work accordingly and begin with work
on argument mining, which concerns the first two
steps together, before moving to argument quality
prediction. Finally, we look at the application of
multi-task learning in the educational domain.

2.1 Argument Mining

Toulmin’s argumentation model (Toulmin, 1958,
2003) and variations of it are a main theoretic
framework used for argument mining in various
domains. One of the first approaches focusing on
automatically detecting arguments in student es-
says is the one by Stab and Gurevych (2014a), who
simplified the model to three labels (premise, claim
and major claim) and used it to annotate a corpus of
90 essays. Their span classification approach using
a Support Vector Machine (SVM) reached an F1-
score of .72 (Stab and Gurevych, 2014b). Persing
and Ng (2015) followed this schema to annotate the
International Corpus of Learner English (Granger
et al., 2009) and trained classifiers to predict the
argument boundaries with an average F1-score of
.57 (Persing and Ng, 2016).

The PERSUADE corpus (Crossley et al., 2022)
used in this paper uses yet another version of the
Toulmin model (Nussbaum et al., 2005; Stapleton
and Wu, 2015) with seven argumentative elements,
namely lead, position, claim, counterclaim, rebut-
tal, evidence and concluding statement. In order
to detect these labels, Ding et al. (2022) trained
sequence tagging models using pretrained Long-
former (Beltagy et al., 2020) on different subsets
of this corpus and reported a F1-score of .55 Their
framework will be utilized in our experiments.
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2.2 Argument Quality Prediction

For argument quality prediction, we first introduce
quality criteria before looking into applications in
the educational domain. We disregard the huge
body of work using argumentation features to pre-
dict the overall score of an essay (e.g. Ghosh et al.,
2016; Persing and Ng, 2016; Nguyen and Litman,
2018), but focus on approaches assessing argument
quality specifically.

Although there is no common definition of argu-
ment quality, criteria proposed in the literature can
be classified into two groups (Wachsmuth et al.,
2017). Those measuring the logical quality of
arguments, such as relevance, acceptability, suf-
ficiency (Johnson and Blair, 2006) or structural
well-formedness (Damer, 2012) and those measur-
ing the rhetorical quality, which is operationalized
by criteria such as effectiveness (Blair, 2011). Both
of these two types of quality have been investigated
in student essays.

In terms of logical quality, Ong et al. (2014)
generate a rule-based score for the completeness
of argumentation by rewarding an essay for occur-
rences of different argument types. Rahimi et al.
(2014) introduce an evidence score, assessing how
well the essay’s stance is supported by the given
facts on a scale from 1-4. They predict this score
with a Random Forest model, reaching a Quadratic
Weighted Kappa (QWK) score of .64. Stab and
Gurevych (2017) annotate arguments in student es-
says as sufficient or insufficient and report convolu-
tional neural network results with a Macro F1-score
of .83.

In terms of the rhetorical quality, Persing and Ng
(2015) evaluate argument strength with a numeri-
cal score from one to four using an SVM. Similar
approaches were applied on thesis clarity and argu-
ment persuasiveness (Persing and Ng, 2013, 2017).

Using annotations of the PERSUADE corpus, in
this paper, we focus on effectiveness, which we will
henceforth also call quality. Unlike the work above,
we take the argument quality prediction either as a
span classification task, or as a sequence tagging
task in a multi-task learning setting.

2.3 Educational Multi-Task Learning

The common interpretation of multi-task learning
(MTL), which we also follow in our study, com-
prises approaches which learn different tasks on the
same data set with a combined loss. For example,
a multi-task Bi-directional Long Short-Term Mem-

ory Network (BiLSTM) (Rei, 2017) was trained
for the joint tasks of grammatical error detection
and automated essay scoring (Cummins and Rei,
2018). Another variant of hierarchical BiLSTMs
was trained for discourse element identification and
the organization evaluation in Chinese student argu-
mentative essays (Song et al., 2020). Muangkam-
muen and Fukumoto (2020) combined word and
sentence level BiLSTMs into a hierarchical model
to predict essay scores along with sentiment classes
of individual words. Similar to this strategy, we
utilize different annotations on the same essays and
define argument span detection, type and quality
prediction as our joint tasks.

3 Data

As mentioned above, the data in this paper stems
from the Kaggle competition “Feedback Prize - Pre-
dicting Effective Arguments”, which is a subset of
the PERSUADE Corpus (Crossley et al., 2022). In
the competition, the detailed annotation scheme is
shared along with an overall inter-annotator agree-
ment (IAA) of .73 on argument types. Although the
IAA on argument quality labels remains unclear,
we manually examined 10% of the essays and were
convinced of the validity of the annotation on their
effectiveness.

We split the data through random sampling. The
splitting result is shown in Table 1. We notice that
both the argument type and the quality labels are un-
evenly distributed: claim and evidence occur more
frequently than the other types, with counterclaims
and rebuttals being particularly rare. Meanwhile,
adequate is the majority quality class. The essays
in the data set have been written in response to a
number of different writing prompts. We adopt
the 15 individual writing prompts detected by Ding
et al. (2022), who used a topic modeling approach
(Angelov, 2020) and a K-means clustering (Lloyd,
1982) on tf-idf vectors (Ramos et al., 2003).

3.1 Analysis - Label Distribution

To gauge why argument quality might benefit from
joint training with argument type identification, we
look at the distributions of quality labels for the dif-
ferent argument types in the training data. Results
are shown in Figure 2. While all types are most
likely to be adequate, we see some differences be-
tween them. It is for example especially likely for
positions to be adequate (68% of all positions are
adequate, while the average for all other labels is
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#Arguments
Label Train Valid. Test

Claim 9588 1165 1224
Concl. Statem. 2677 329 345
Counterclaim 1425 172 176
Evidence 9702 1187 1216
Lead 1835 235 221
Position 3210 405 409
Rebuttal 1003 121 120

Ineffective 5181 654 627
Adequate 16705 2106 2166
Effective 7554 854 918

Table 1: Data split per type and quality label.

57%). Moreover, evidence is the label that is most
likely to be ineffective (26% of all evidence spans
are ineffective, while on average 14% of the other
labels are). These priors that can be derived from
the training data may be informative during joint
training of both tasks, a token that is likely to be of
type position thus also increasing in likelihood of
being effective.

0 20 40 60 80 100

Claim
Concl.St.

Counterclaim
Evidence

Lead
Position
Rebuttal

12

18

12

26

16

12

16

59

57

63

50

54

68

56

29

25

25

24

30

20

28

Effective Adequate Ineffective

Figure 2: Distribution of the quality labels

3.2 Analysis - Structural and Semantic
Similarity

To identify properties of effective or ineffective ar-
guments, we ask whether arguments with the same
quality label are similar to each other in content
or structure. To answer this question, we com-
pare pairs of gold-standard arguments according to
either their structural or semantic similarity. To op-
erationalize structural similarity, we replace every
content word in an argument by their POS tag so
that only function words are left intact, and then
compute trigram overlap between argument pairs.
For semantic overlap, we compute cosine similar-
ity between S-BERT vectors generated using the
All-miniLM-L6-v2 model (Reimers and Gurevych,
2019). Table 2 shows both types of similarity av-
eraged over all pairs either consisting of two effec-
tive arguments, two ineffective arguments or one

effective and one ineffective argument. We only
compare arguments of the same type and report
results per type.

Label Overlap S-BERT

⊕⊕ ⊖⊖ ⊕⊖ ⊕⊕ ⊖⊖ ⊕⊖

Claim .013 .008 .010 .178 .126 .123
Concl. St. .036 .017 .025 .213 .135 .130
Countercl. .020 .010 .012 .219 .166 .156
Evidence .044 .014 .025 .172 .106 .100
Lead .024 .012 .016 .171 .117 .121
Position .019 .011 .013 .210 .145 .141
Rebuttal .043 .025 .032 .193 .154 .133

Average .028 .014 .019 .194 .135 .129

Table 2: Structural (Overlap) and semantic (S-BERT)
similarity of argument pairs for each argument type,
averaged over all prompts. ⊖ and ⊕ stand for ineffective
and effective.

In general, effective arguments are more simi-
lar to each other than ineffective ones, probably
because there are more ways to “get an argument
wrong" than to make it effective. While the abso-
lute values are of course not comparable between
structural and semantic similarity, we see that we
have the highest structural similarity values for ef-
fective arguments of type evidence and rebuttal,
while semantic similarity is highest for position,
concluding statement and counterclaim. In general,
our results suggest that effective arguments are eas-
ier to predict than ineffective ones, as they form a
more coherent group.

4 Study 1 - Additional Information in
Argument Quality Prediction

In a first set of experiments, we look at the task
of quality prediction in isolation. In other words,
we treat the task as a classification task and use
gold standard information about span boundaries
and - in some conditions - type of the argumenta-
tive spans. The objective of this task is to label
each span with one out of three labels (effective,
adequate, ineffective).

In doing so, we want to investigate the influence
of three factors, which we assume the classifica-
tion will benefit from: context, argument type and
prompt information.

First, we investigate whether argument quality
depends on the textual material of the respective
argument alone or whether the context of the whole
essay is important. We assume that the influence of
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the essay context might be twofold: First, an argu-
ment could make more or less sense depending on
its surrounding material. Second, we observe that
87% of all essays contain only effective and ade-
quate or only ineffective and adequate arguments.
Thus, the quality of surrounding elements could
help to estimate the quality of an argument.

Second, we hypothesize that the prediction of
argument quality depends on the argument type. A
certain argumentative unit could be adequate as
lead, but inadequate as conclusion. Furthermore,
spans of different argument types have different pri-
ors to be of a certain quality level. Thus, knowing
the argument type might help.

Third, we investigate whether the argument qual-
ity prediction is prompt-dependent. The perfor-
mance of predictions could benefit from prompt
information, because students may find certain
prompts are more difficult to argument effectively
than other prompts.

4.1 Experimental Setup

Classifier and features We compare shallow
and deep learning methods. For shallow learning
we used logistic regression from scikit-learn (Pe-
dregosa et al., 2011) using 10,000 tf-idf weighted
uni- to trigrams and 10-fold cross-validation. For
deep learning, we fine-tuned a pretrained BERT-
model2. We trained with a batch size of 8 for a
maximum of 10 epochs with an Adam optimizer
(Kingma and Ba, 2014) and cross entropy (BCE-
WithLogitsLoss) as loss function, although the op-
timum on the validation data was usually reached
after one epoch already. For this experiment, all
models together were trained in under 10 hours on
a single GPU.

When integrating the three types of additional
information, we proceed in the following way: For
shallow learning, we appended an one-hot encod-
ing feature representation for argument type and
prompt to the n-gram feature vector. For context
information, we vectorized the whole essay in the
same way as the argumentative unit to be classified
and append the resulting vector. For deep learn-
ing, we also appended one-hot encoding feature
representations for argument type and prompt to
the BERT output vector. For context information,
we appended the complete essay to the input text
after a separator token.

2https://huggingface.co/bert-base-uncased

Log. Regr. BERT
Acc. QWK Acc. QWK

Baseline .65 .41 .67 .42
+ arg. type .66 .44 .68 .42
+ prompt .66 .43 .69 .46
+ essay .66 .47 .68 .47
+ all three .67 .50 .67 .49

Table 3: Influence of adding argument type, prompt and
context information.

Evaluation We evaluate the classification using
accuracy and QWK (where we treat the three ar-
gument quality labels as ineffective=0, adequate=1
and effective=2 points).

4.2 Results

Table 3 shows the averaged results of 10 folds in
logistic regression or 10 epochs in BERT, when
the three pieces of additional information are added
separately or all at once. Adding each of the addi-
tional features individually already improves per-
formance, adding all of them together leads to the
largest improvement for both classifiers.3

5 Study 2 - Multi-Task Learning

In Study 1, we treat quality prediction as a clas-
sification task using gold-standard spans as input.
Since the type information was annotated on the
same spans, we also trained a classification model
using the same architecture in the +essay setting
to predict their type. Results of these two classifica-
tion experiments (Gold-standard Span → Type,
Gold-standard Span → Quality) are the upper
bound of type and quality prediction, because such
gold-standard spans are usually not available in a
realistic classroom setting. Instead, spans and their
type and quality need to be predicted on raw text.
Aiming to explore different methods to learn these
labels, either jointly or sequentially, we designed
the following study.

5.1 Experimental Setup

In the Span → Type and Span → Quality baseline
setups, we first detect spans in a sequence tagging
step and then classify them as different types and
quality levels separately. The right arrow → indi-
cates that we take the detected spans from the first

3Along with the experiments above, we trained classifiers
for each prompt and each argument type separately. However,
most of these classifiers only predicted the majority class due
to limited amount of training data, so we do not present the
detailed results here.
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Figure 3: Architecture of multi-task sequence tagging.

step as the input for the following classification
step(s).

Next, we combine the two classification tasks
from the baseline into a multi-task learning prob-
lem (Span → (Type, Quality)MTL). We also
merge either one of the classification tasks with the
sequence tagging: Span+Type → Quality detects
argument spans of different types before predicting
their effectiveness, while Span+Quality → Type
predicts argument types after detecting effective
or ineffective spans. Finally, in the (Span+Type,
Span+Quality)MTL setup, span, type and quality
are learned jointly in a multi-task sequence tagging
approach.

Architectures For sequence tagging, we use
a longformer-based architecture developed by
Ding et al. (2022) predicting an Inside-Outside-
Beginning (IOB) tag for each token. Tokens were
classified into 2n+ 1 classes for a prediction task
in n classes, because we have a B-class and I-class
for each label, as well as an additional class (called
O class) for tokens that do not belong to one of the
classes. This architecture is modified for multi-task
learning in the (Span+Type, Span+Quality)MTL

setup by adding one additional classification head
with equal weight in the loss computation after shar-
ing the longformer block between both tasks, as
shown in Figure 3. In order to evaluate the predic-
tions on the span level, this architecture includes a
post-processing step, which assembles tokens into
segments predictions with token indices.

For classification, we use the architecture in the
+ essay setting from Study 1. Similarly to the
multi-task approach for sequence tagging, we add

a second classification head to the BERT model,
in order to classify argumentative type and quality
labels at the same time.

In all setups, we train for 10 epochs for each
task, evaluating after every epoch on the evalua-
tion data and choosing the model that maximizes
the F1-score, or in the case of multi-tasking, the
average F1-score of both tasks. We report results
from averaging over three individual runs to avoid
randomization artifacts. The total training and in-
ference time were around 110 hours on a single
GPU.

Evaluation As we treat one or both of the classi-
fication tasks as sequence tagging in some settings,
we must evaluate them differently from Study 1.
We follow the evaluation method proposed by the
Kaggle competition: A predicted span with at least
50% overlap with a gold span of the same type is
considered a true positive, while unmatched gold
spans are counted as false negatives and unmatched
predictions as false positives. The final score is
computed as the macro-averaged F1-score across
all seven argument types for type prediction and
across all three quality labels for quality prediction.
As the F1-measure does not reward a higher over-
lap once the predicted span matches at least 50%
of the gold span, we also evaluate accuracy on the
token level.

5.2 Results
Table 4 presents the results of this study.

Without the gold-standard spans, span labeling
in the baseline setting reaches a token accuracy of
.95, because most of the tokens can be easily pred-
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Setting Span Type Quality
F1 Acc F1 Acc F1 Acc

Gold-standard Span → Type 1 1 .71 .82 - -
Gold-standard Span → Quality 1 1 - - .51 .69

Baseline: Span → Type .63 .95 .37 .62 - -
Baseline: Span → Quality .63 .95 - - .33 .57

Span → (Type, Quality)MTL .63 .95 .33 .60 .39 .56
Span+Type → Quality .62 .89 .53 .73 .34 .58
Span+Quality → Type .58 .84 .39 .59 .35 .63

(Span+Type, Span+Quality)MTL
Type .89 .95 .53 .73 .39 .65
Quality .87 .95

Table 4: Performance on span detection, type and quality prediction in different setups.

icated correctly as the majority class (“I-Span").
However, the boundaries between spans cannot be
precisely positioned, leading to a F1-score of .63.
Based on these predicted spans, the results of the
argumentative type and quality classification are
not optimal.

By jointly learning the two classification tasks
(Span → (Type, Quality)MTL), the F1-score of
quality prediction was improved from .33 to .39. It
confirms the result in Study 1 that adding type in-
formation can benefit quality prediction. However,
the type prediction didn’t get any improvement
through learning quality labels.

By combining the type classification task with
span identification into one sequence tagging step,
i.e., in the setting Span+Type → Quality, we see
that both of the type and quality prediction perfor-
mance was substantially improved compared to the
baseline. In contrast, the Span+Quality → Type
setting has the worst performance on span identi-
fication among all settings. One possible reason
could be that spans and their types are more related
than spans and their effectiveness.

Lastly, the result of (Span+Type,
Span+Quality)MTL shows that our multi-
task approach combing all three tasks provides the
best performance. With the additional type and
quality information, span prediction reaches its
best performance. The span boundaries learned
together with type information are slightly more
precise than spans learned together with quality
information (.89 vs .87), which also indicates a
closer relation between span and type than between
span and quality.

5.3 Analysis
When looking at the individual classification results
of (Span+Type, Span+Quality)MTL in Table 5,
we find that, in line with the results of Ding et al.
(2022), arguments are overlooked rather than con-
fused. Among the type of confusions that do exist,
mixing up claim and evidence or claim and position
is the most common.

Whenever an argument (other than none) is iden-
tified, the labels effective and ineffective are rarely
confused (altogether 8 times), much more confu-
sion arises from neighboring quality labels. The
following examples illustrate that these labels are
in fact often hard to distinguish. Both are correctly
recognized as positions, but mislabeled regarding
their quality:

(3) I think that we should change the voting system
from the Electoral college to the most popular
vote.
(Gold: effective, predicted: adequate)

(4) I believe that we, the people, should have the
opportunity to choose whom we wish to be-
come President.
(Gold: adequate, predicted: effective)

While both positions make the same point of
wanting to adopt the system of using a popular
vote, the first one also mentions the current way
of using the Electoral College, whereas the second
one expresses the same position in a more indirect,
albeit more passionate, way.

If an argument is not found (i.e. the predicted
type is none), argument quality is not always none
and disproportionately often wrong when com-
pared to predictions of argument types other than
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Pred
Gold Claim Concl. S. Countercl. Evidence Lead Position Rebuttal

⊖ ⊙ ⊕ ⊖ ⊙ ⊕ ⊖ ⊙ ⊕ ⊖ ⊙ ⊕ ⊖ ⊙ ⊕ ⊖ ⊙ ⊕ ⊖ ⊙ ⊕

Claim

⊖ 6 6 - - - - 1 - - 1 1 - - - - 1 1 - - - -
⊙ 25 122 18 - 2 1 1 5 - 10 12 1 - 3 - 3 8 2 - - -
⊕ - 23 66 - - - - 1 - 1 1 3 - - - - - 1 - - -
⊘ 9 53 29 - 1 - - 1 - 2 4 1 - - - - 3 1 - - -

Conclud.
Statem.

⊖ - - - 12 9 - - - - 2 - - - - - 1 1 - - - -
⊙ - 1 - 9 107 12 - 1 - 2 3 - - - - 1 1 - 1 - -
⊕ - - - 1 16 44 - - - - - 1 - - - - - - - - -
⊘ - - - 3 20 12 - 1 - 1 1 - - - - - 1 - - - -

Counter
claim

⊖ - 1 - - - - 1 2 - - - - - - - - - - - - -
⊙ 2 7 - - - - 4 2 28 2 2 - - - - - 1 - - - -
⊕ - - 1 - - - - 8 14 - - - - - - - - - - - -
⊘ 1 2 1 - - - 2 10 3 - 1 - - - - - - - - - -

Evidence

⊖ 3 3 - 1 3 - - 2 - 65 35 1 1 1 - - - - 2 1 -
⊙ 5 20 2 1 3 - - 3 1 46 192 24 - 1 - 1 3 1 - 5 -
⊕ - 1 4 - - 1 - - - 3 51 159 - - 1 - - - - 1 2
⊘ 3 10 3 1 3 1 - 3 1 28 60 25 1 1 - - 1 - - 4 1

Lead

⊖ - - - - - - - - - - - - 3 3 - - - - - - -
⊙ 1 - 1 - - - - - - 2 2 - 9 61 14 2 5 - - - -
⊕ - - - - - - - - - - 1 - - 11 44 - - 1 - - -
⊘ - 1 - - - - - - - 1 1 - 1 7 7 - 1 - - - -

Position

⊖ - - - - - - - - - - - - 1 - - 2 2 1 - - -
⊙ 1 9 1 - 2 - - - - 1 1 - 2 4 - 7 104 16 - - -
⊕ - 4 1 - - - - - - - - - - - - - 8 17 - - -
⊘ - 3 1 1 - - - - 1 - 1 - 2 1 - 2 22 9 - - -

Rebuttal

⊖ - - - - - - - - - - 1 - - - - - - - 2 4 1
⊙ - 1 - - - - - - - 1 1 - - - - - - - 1 9 2
⊕ - - 1 - - - - - - - 1 - - - - - - - - 4 7
⊘ 6 26 3 1 4 - 1 5 - 11 28 1 1 - - - 7 - 2 4 2

none

⊖ 32 131 61 7 9 4 2 17 3 45 71 11 5 4 1 7 37 9 4 11 3
⊙ 11 53 20 1 8 2 1 8 2 14 53 12 2 5 1 1 9 3 - 4 3
⊕ 1 11 15 1 2 2 - 1 1 10 14 7 - 1 1 - 1 4 1 1 2
⊘ 102 473 229 27 86 37 9 71 17 153 313 120 24 45 24 27 165 42 11 47 13

Table 5: Confusion matrix for multi-task learning of argument span, type and quality, with ⊖, ⊙, ⊕ and ⊘ denoting
ineffective, adequate, effective and none quality prediction, respectively. Cells highlighted in green indicate that both
type and quality were predicted correctly, while blue (purple) cells show where only the argument type (quality)
classification is correct.

none, indicating a general difficulty to handle these
spans regarding both tasks. In case an incorrect
argument type other than none is predicted, the
quality label is still correct about half of the time.

Setting Label P R F

MTL

Adequate .43 .49 .46
Effective .40 .51 .45
Ineffective .26 .28 .27

overall .40 .45 .39

Span + Quality

Adequate .46 .44 .45
Effective .33 .45 .38
Ineffective .20 .27 .23

overall .38 .42 .35

Table 6: Precision, Recall and F1-score in the MTL
(both) and the MTL (quality only) conditions.

In an effort to understand how learning quality
labels benefits from argument type information in
the multi-task learning setting, we inspect how the
quality classification results are influenced by the
inclusion of the other task. Therefore, we in Table
6 compare the multi-task and span+quality results

in more detail. When comparing the performance
of the individual quality, all three labels show im-
provement in their F1-scores, with the majority la-
bel adequate showing the smallest increase of .01,
while the inceases are larger for ineffective (.04)
and effective (.07) arguments. Precision of classi-
fying effective and adequate arguments improves
more (.06 and .05) than it does for ineffective ones
(.01). Interestingly, jointly learning argument types
does not increase false positives for ineffective and
effective arguments, but it does for adequate ones.
Still, this is evened out by an increase in true posi-
tives, which is pronounced enough to overall lead
to the observed in increase in F1-score. On a side
note, our findings in the dataset analysis, namely
that effective arguments are more similar to each
other than ineffective ones, is confirmed here by a
higher F1-score of effective arguments compared
to ineffective ones.

When evaluating the token classification results
in a binary fashion, only distinguishing between B-
and non-B tokens, recall and precision increase by
.01 and .04, respectively. The joint training is thus
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leading to a more precise recognition of argument
borders between quality spans, perhaps due to cer-
tain argument types being more tightly associated
with certain keywords (Ding et al., 2022).

6 Conclusion

In this paper, three tasks in automatic scoring of
argumentative essays were examined, namely ar-
gument span detection, type and quality prediction.
We found that the quality prediction benefits from
prompt information as well as essay context. We
further found that, compared to a setup where the
arguments were first segmented and then classified
into different types and quality scales, multi-task
learning settings performed better.

Limitations

A fraction of 157 essays was too long to fit into our
transformer model so that arguments later in the
text have not been identified at all.

As gold standard information about the writing
prompt for a specific essay was not released with
the dataset, we had to rely on automatically as-
signed prompt information with an estimated av-
erage accuracy of 0.97 according to Ding et al.
(2022). In a realistic class-room setting, however,
the information about the writing prompt would be
readily available, thus we probably underestimated
the effect of adding prompt information.

We tested our models on the PERSUADE dataset
of English high-school writings only, thus we can-
not be sure whether results transfer to other edu-
cational contexts and languages. We will address
this further in future work, where we aim at using
essays in German and from EFL contexts as well.

Since our model was trained on a limited amount
of data, it may have the potential risk of discour-
aging students to write innovative, but effective ar-
guments. As discussed in automatic essay scoring
approaches, computers may be able to analyze writ-
ing for the presence or absence of certain words or
structures (in our case arguments), but they cannot
really understand or appreciate a writer’s message
in the same sense that human readers can (Powers
et al., 2002).
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