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Abstract

Argument pair extraction (APE) aims to extract
interactive argument pairs from two passages
within a discussion. The key challenge of APE
is to effectively capture the complex context-
aware interactive relations of arguments be-
tween the two passages. In this paper, we elicit
relational semantic knowledge from large-scale
pre-trained language models (PLMs) via a prob-
ing technique. The induced sentence-level re-
lational probing graph can help capture rich
explicit interactive relations between argument
pairs effectively. Since the relevance score of
a sentence pair within a passage is generally
larger than that of the sentence pair from dif-
ferent passages, each sentence would prefer
to propagate information within the same pas-
sage and under-explore the interactive relations
between two passages. To tackle this issue,
we propose a graph decomposition method to
decompose the probing graph into four sub-
graphs from intra- and inter-passage perspec-
tives, where the intra-passage graphs can help
detect argument spans within each passage and
the inter-passage graphs can help identify the
argument pairs between the review and rebuttal
passages. Experimental results on two bench-
mark datasets show that our method achieves
substantial improvements over strong baselines
for APE.

1 Introduction

Dialogical argumentation, which focuses on the
analysis of argumentation in debates or discussions,
has rapidly emerged as a hot research topic in re-
cent years. Argument pair extraction (APE) (Cheng
et al., 2020) is a new and challenging task in the
field of dialogical argumentation, which aims to ex-
tract interactive argument pairs from two argumen-
tative passages within a discussion. As illustrated
in Figure 1, a peer review process involves rich in-
teractive arguments with each argument consisting

∗ Min Yang and Ruifeng Xu are corresponding authors.

Passage Id Sentences Label

Review

1 This paper proposed a data-driven method of selecting a 
linkage-based clustering algorithm from a large space. Non-Arg

… …

10

The curves in Fig 3 all look smooth, so I wondered 
whether one can simply apply a grid search on 
[0.1,0.2,...,1.0], the obtained algorithm should also be 
very good. Rev:

Arg-1

11

To demonstrate the advantage and necessity of the 
proposed search algorithm, I think it better to conduct 
an experiment with a higher dimensional search space,
so that grid search won't work well.

12 Although the authors have proved the generalization 
error, it is still better to empirically validate the …

Rev:
Arg-2

… … …

Rebuttal

1 Thank you for your careful review and thoughtful 
comments. Non-Arg

2
Yes, for the specific distributions in our experiments 
section, a sufficiently fine grid would find nearly 
optimal parameters. Rep:

Arg-1… …

9 If is bigger than the average number of discontinuities, 
then the grid search is actually more …

10 We agree that it would be interesting to validate our 
theoretical claims empirically by showing that the …

Rep:
Arg-2

… …

12 They also show that our proposed optimization 
algorithms are efficient enough to run on …

Figure 1: A example of APE where a review passage
and its corresponding rebuttal passage are shown on
the upper and bottom. Rev:Arg-i/Rep:Arg-i denotes
the i-th argument in the review/rebuttal and forms the
i-th paired arguments. The white area refers to non-
argument, while the green and yellow areas refer to
argument pairs.

of several consecutive sentences. An argument in
the review can form an argument pair with the cor-
responding argument in the rebuttal that discusses
the same topic.

The core of APE is to detect the arguments
within each passage and construct the relations be-
tween interactive arguments in the two passages.
Most existing works (Cheng et al., 2020, 2021; Bao
et al., 2022) apply powerful encoders, such as table
encoders and attention mechanisms, to learn the
sentence-level semantic representation for implic-
itly modeling relationships between argument pairs.
However, as revealed in (Cheng et al., 2021), the
sentence representations learned by pure attention-
based methods are difficult to effectively capture
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the complicated relations between the sentences
from different passages. Bao et al. (2021) explicitly
established argument links based on co-occurring
words within the sentence pairs and verified the
importance of word-level relations among argu-
ments. Nevertheless, they ignore the fact that the
sentence pairs within the argument pairs generally
contain semantically similar words, such as “space”
and “interval” in the sentence pair, as illustrated in
Figure 2. Although the semantic-aware relational
information is already contained in the continuous
representations of PLMs, neural networks lack an
optimal mechanism to benefit from such informa-
tion.

To address the aforementioned issues, we pro-
pose a novel ProbIng Graph dEcompositiON (PI-
GEON) framework for argument pair extraction
by exploiting explicit semantic knowledge induced
from large-scale PLMs. Specifically, we employ
a two-stage masked language modeling process to
construct sentence-level relation graphs between
sentences (global linguistic properties) based on the
number of highly similar word pairs within each
sentence pair. The key idea behind this probing
method is that we can obtain similar sentence pair
representations when we mask out one word from a
word pair with high similarity. The sentence-level
relation graph is essential to effectively identify
argument pairs.

Since the review and rebuttal passages have dif-
ferent writing styles and word distributions, the
learned sentence-level probing graph may under-
explore the interactive relations between the two
passages. In particular, the relevance score of each
sentence pair within a passage is generally larger
than sentence pairs from different passages. For
example, as shown in Figure 1, the tenth review
sentence contains more semantically similar words
with the eleventh review sentence than the sec-
ond rebuttal sentence1. Consequently, the review
sentences would prefer to propagate information
within the same passage and under-explore the in-
teractive relation between two passages. To effec-
tively capture argument relations of different pas-
sages, we decompose the sentence-level probing
graph into four sub-graphs from intra- and inter-
passage perspectives. The intra-passage graph can
help detect the argument spans within each passage,
while the inter-passage graph is used to identify the
argument pairs from different passages. To fur-

1Further analysis is presented in Appendix A.1

ther improve the performance of our method, we
also design an auxiliary graph contrastive loss to
weaken the impact of noisy edges brought by the
probing procedure.

Our contributions can be summarized as fol-
lows. (1) We propose a probing technique to elicit
semantic-aware relational knowledge from large-
scale PLMs for constructing sentence-level prob-
ing graph. (2) We decompose the sentence-level
probing graph into four sub-graphs from intra- and
inter-passage perspectives so as to effectively de-
tect argument spans within each passage via intra-
passage graphs and identify argument pairs from
two passages via inter-passage graphs. (3) We con-
duct experiments on two APE benchmark datasets,
and the results show that our method outperforms
the strong baselines by a noticeable margin.

2 Methodology

Following previous works (Cheng et al., 2020; Bao
et al., 2021), we aim to automatically extract in-
teractive argument pairs from the review and re-
buttal passages by casting the argument mining
and argument pairs extraction as two sentence-
level sequence labeling problems using the stan-
dard BIOES scheme (Ratinov and Roth, 2009). For-
mally, given a review passage Sv = {sv1, . . . , svm}
consisting of m sentences and a rebuttal passage
Su = {su1 , . . . , sun} consisting of n sentences, we
first identify argument spans within the review and
rebuttal passages, and obtain a review argument
spans set Xv = {xv1, xv2, . . .} and a rebuttal argu-
ment spans set Xu = {xu1 , xu2 , . . .}, where xvi and
xuj are sentence-level spans in review and rebuttal
passages, respectively. Then, we extract the paired
arguments from review and rebuttal passages, and a
set of interactive argument pairs P = {p1, p2, . . .}
can be collected, where p = (xvi , x

u
j ) is an interac-

tive argument pair.
As illustrated in Figure 2, PIGEON contains

four components, including a sentence representa-
tion learning module, a probing graph construction
module, a graph decomposition module, and an
argument pair prediction module. Next, we will
describe each component of PIGEON in detail.

2.1 Sentence Representation Learning

We first apply BERT (Devlin et al., 2018) to ob-
tain the word-level context representation of each
sentence within the review and rebuttal passages.
Then, we use a shared bidirectional LSTM (BiL-
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smooth and the set of approximately optimal parameters is an arbitrarily small 
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Inter-passage 
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Figure 2: The architecture of PIGEON.

STM) (Hochreiter and Schmidhuber, 1997) to en-
code the sentence-level dependencies within each
passage. Specifically, we feed each sentence si into
BERT and obtain the sentence embedding ei ∈ Rdb

by mean pooling over all token representations,
where db is the vector dimension of the last layer
of BERT. A BiLSTM is then utilized to encode
the sentence representations {e1, e2, . . .} within
each passage into the contextual sentence represen-
tations {h1,h2, . . .}, where hi ∈ Rd and d is the
hidden size of BiLSTM. We denote the contextual
representations of review and rebuttal as Hv =
{hv

1,h
v
2, . . . ,h

v
m} and Hu = {hu

1 ,h
u
2 , . . . ,h

u
n},

respectively.

2.2 Probing Graph Construction

To effectively capture the relation between each
sentence pair, we need to detect the semantically
similar words from the sentence pair. So far, there
are many possible ways to derive semantically
similar words, such as WordNet (Miller, 1995),
Word2Vec (Mikolov et al., 2013), and GloVe (Pen-
nington et al., 2014). However, these methods gen-
erally focus on context-free word similarity and
ignore the context, failing to deal with words with
multiple meanings in different contextual scenar-
ios. In this paper, we elicit explicit semantic knowl-
edge from large-scale pre-trained language models
(PLMs) and build a relation graph between each
sentence pair through a probing procedure. It is
worth noting that such semantic knowledge is ex-
tracted in an unsupervised and off-the-line manner.

Formally, given a sentence pair (si, sj), we
first concatenate (si, sj) and obtain a single se-
quence s = {[CLS], si,[SEP], sj ,[SEP]},

where [CLS] and [SEP] represent the classifi-
cation and separation tokens respectively. Then,
we propose a probing approach with a masking
technique to learn the semantic similarity between
arbitrary word pairs from each sentence pair. We
employ a two-stage masked language modeling
(MLM) process to measure the impact a context
word has on predicting another word. After the
probing process, we can construct sentence-level
relation graphs based on the number of highly sim-
ilar word pairs with each sentence pair. The key
idea behind the probing process is that we can ob-
tain similar sentence pairs representations when we
mask out one word from a word pair with high sim-
ilarity. Concretely, we replace the k-th token wi

k in
sentence si with a special mask token [mask] and
feed the obtained new sequence s/wi

k
into BERT.

We can obtain the contextualized representation
h/wi

k
of the k-th token. To calculate the correla-

tion between wi
k and the t-th word wj

t in sentence
sj , we further mask out wj

t from s/wi
k

to obtain
the second corrupted sequence s

/wi
kw

j
t

and feed it
into BERT. We use h

/wi
kw

j
t

to denote the new rep-

resentation of word wi
k when both wi

k and wj
t are

masked out simultaneously.
After that, we measure the distance f(wi

k, w
j
t )

between h/wi
k

and h
/wi

kw
j
t

to induce the semanti-

cally correlation between the k-th word wi
k of si

and the t-th word wj
t of sj . Here, we use the Eu-

clidean distance metric to implement the distance
function f(·) due to its simplicity and effectiveness
as follows:

f(wi
k, w

j
t ) = ||h/wi

k
− h

/wi
k
w

j
t
||2 (1)
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Note that one word may be split into multiple to-
kens, we mask all tokens for each split-up word
and apply a mean pooling over the token represen-
tations to obtain the word representation.

Word-level Similarity Matrix By repeating the
two-stage MLM process on each pair of words (wi

k,
wj
t ) of the sentence pair (si, sj), we can obtain a

word-level similarity graph M = {Mk,t}|s1|,|s2|k=1,t=1

for the sentence pair (si, sj), where Mk,t =

f(wi
k, w

j
t ) denotes the relation between word pair

(wi
k, wj

t ). Then, we utilize the min-max normaliza-
tion to reduce the impact of the range of correlation
scores. The normalized word-level similarity ma-
trix M̂k,t is computed by:

M̂k,t =
Mk,t −min

max−min
(2)

where max and min is the maximum and min-
imum similarity scores of all word pairs in the
review and rebuttal passages.

Sentence-level Probing Graph We construct the
sentence-level probing graph in which nodes are
sentences. The sentence-level relation matrix can
be derived from the word-level relation matrices
of all sentence pairs using the probing procedure.
Specifically, we compute the relevance between
each sentence pair (si, sj) based on the word pairs
with high semantic similarity. Formally, we com-
pute the relation between the sentence pair (si, sj)
as follows:

Ri,j =

|si|∑

k=1

|sj |∑

t=1

I(M̂k,t > σ) (3)

where σ is a pre-defined threshold. I is an indica-
tor function. By traversing all sentence pairs, we
can obtain the symmetrical sentence-level relation
matrix R = {Ri,j}|m+n|,|m+n|

i=1,j=1 for the review and
rebuttal passages. Intuitively, if two sentences have
many semantically similar word pairs, the corre-
sponding edge will have a large weight.

2.3 Graph Decomposition
The review and rebuttal passages have different
writing styles and word distributions. The rele-
vance score of each sentence pair within a passage
is generally larger than the sentence pair from dif-
ferent passages. To effectively capture argument
relations of different passages, we decompose the
sentence-level probing graph into four sub-graphs
from intra- and inter-passage perspectives. The

intra-passage graph can help detect the argument
spans within the review (or rebuttal) passage, while
the inter-passage graph is used to identify the argu-
ment pairs from the review and rebuttal passages.
Formally, we decompose the sentence-level rela-
tion matrix R ∈ R(m+n)×(m+n) of two passages
(Sv, Su) into four sub-matrices Rvv ∈ Rm×m,
Ruu ∈ Rn×n, Rvu ∈ Rm×n and Ruv ∈ Rn×m,
as illustrated in the left part of Figure 2. Among
these, Rvv and Ruu represent the intra-passage re-
lation matrices of the review and rebuttal passages,
respectively. Rvu and Ruv denote the inter-passage
relation matrices.

Intra-passage Graph Construction The intra-
passage graph of each passage takes the sentences
within the passage as vertices. The embeddings
of the vertices are initialized with the correspond-
ing sentence representations. Then, we refine the
edges and the corresponding weights by the rela-
tive positions between sentences and intra-passage
relevance matrices. Specifically, given a review
passage Sv (or a rebuttal passage Su), the edge
weight Avv

i,j for each sentence pair (si, sj) can be
computed by:

Avv
i,j =

{
Rvv

i,j

max(Rvv
i )

if |i− j| ≤ τ

0 otherwise
(4)

where τ is a pre-defined threshold. max(Rvv
i ) rep-

resents the maximum value of the i-th row of intra-
passage relation matrix Rvv.

Inter-passage Graph Construction The inter-
passage graph for each passage is a bipartite graph,
where each edge only exists between two sentences
from different passages. The inter-passage adja-
cency matrix Avu ∈ Rm×n of passage Sv can be
computed by:

Avu
i,j =

Rvu
i,j

max(Rvu)
(5)

where max(Rvv) is the maximum value of the
sentence-level relation matrix Rvv. Consequently,
each passage can derive two different graphs (i.e.
intra-passage and inter-passage graphs). Note that
the intra- and inter-passage graphs of each passage
are mutually independent though they are derived
from the same passage.

Relation-aware Sentence Representations We
use graph convolutional networks (GCNs) to learn
the representations of intra- and inter-passage re-
lation graphs. Each node in the graphs is updated
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according to the hidden representations of its neigh-
borhoods based on the adjacency matrices of intra-
passage and inter-passage graphs. Given the intra-
and inter-passage graphs of passage Sv, the update
of the l-th GCN block is defined as follows:

Gvv = ReLU(ÂvvZv,l−1W l
1 + bl1)

Gvu = ReLU(ÂvuZu,l−1W l
2 + bl2)

Zv,l = Gvv +Gvu + Zv,l−1

(6)

where Âvv (or Âvu) is the normalized adjacency
matrix learned from Avv (or Avu), and we have
Âvv

i =
Avv

i∑
j A

vv
i,j+1 . Zv,l−1 represents the sentence

representations of the review passage evolved in the
l-1-th GCN block. Here, the node representations
of the first GCN layer are defined as Zv,0 = Hv.
For simplicity, we denote the final output of the
GCN blocks as Zv. In this way, we can obtain the
updated representation Zv

i for the i-th sentence of
passage Sv by integrating the representations of its
neighbouring nodes within intra- and inter-passage
graphs. Similarly, we can compute the updated
sentence representations Zu of passage Su.

2.4 Argument Pair Prediction

After decomposing the probing graphs, the updated
sentence representations are used for argument min-
ing and argument pair extraction following previ-
ous works (Cheng et al., 2020; Bao et al., 2021).

Argument Mining We adopt a BiLSTM se-
quence tagger followed by a CRF sequence tagger
to identify all potential arguments. Concretely, we
feed the sentence representations Zv and Zu into
the BiLSTM tagger to learn output hidden states
Ov = {ov1, . . . ,ovm} and Ou = {ou1 , . . . ,oun}.
Then, Ov and Ou are put into the CRF tagger to
predict the argument labels Ŷ v = {ŷv1 , . . . , ŷvm}
and Ŷ u = {ŷu1 , . . . , ŷun} for review and rebuttal
respectively, where yi is the BIOES label for the
i-th sentence. Based on these two label sequences
Ŷ v and Ŷ u, we can further parse the potential ar-
gument spans for the review and rebuttal passages,
i.e. X̂v = {x̂v1, x̂v2, . . .} and X̂u = {x̂u1 , x̂u2 , . . .},
where x̂i is the i-th predicted argument span. The
sequence labeling loss LAM for each instance is
defined as follows:

LAM = −[log p(Yv|ov) + log p(Yu|ou)] (7)

where Yv and Yv are the ground-truth sequence
labels of review and rebuttal.

Argument Pair Extraction With the learned ar-
gument spans sets (Xv and Xb) and the argument-
specific sentence representations (Ẑv = Zv +Ov

and Ẑu = Zu + Ou), we can extract argu-
ment pairs with dual sequence taggers. Specif-
ically, we first produce the representation avk =

1
ek−bk+1

∑ek
i=bk

Ẑv
i of the k-th extracted argument

span xvk = (bk, ek) by mean pooling over the cor-
responding argument-specific sentence representa-
tions. Then, we concatenate avk to the argument-
specific sentence representation Ẑu of rebuttal Su

to obtain the argument xvk-specific sentence repre-
sentations {[avk, Ẑu

1 ], . . . , [a
v
k, Ẑ

u
n ]}, where [·, ·] is

the concatenation operation. We feed the learned
representations into a BiLSTM tagger and a CRF
tagger to predict the argument label sequences Yu

k

with its paired arguments from the rebuttal passage.
Similarly, we can perform the same procedure to
capture its paired arguments from review for the
k-th rebuttal argument by predicting the label se-
quences Yv

k with another BiLSTM and CRF tagger.
For APE, its sequence labeling loss LAPE in each
instance is defined as:

LAPE = −
∑

k

log p(Yu
k |av

k, Ẑ
u)−

∑

k

log p(Yv
k |au

k , Ẑ
v)

(8)

Graph Contrastive Loss We introduce an aux-
iliary graph contrastive loss to weaken the impact
of the introduced noisy edges brought by the prob-
ing procedure. Taking the intra- and inter-passage
graphs of review Sv as an example, we follow an
i.i.d. uniform distribution to randomly drop the
noisy edges (non-argument pairs) in the graph with
probability μ and generate auxiliary graph views
with adjacency matrices Ãvv = drop(Âvv) and
Ãvu = drop(Âvu) from the original graph. Noted
that the removal probabilities of the edges for the
argument pairs are zero. Then, we feed the learn
auxiliary graph views into GCNs and produce the
auxiliary updated node representations Z̃v and Z̃u

for the review Sv and rebuttal Su respectively. Af-
ter that, we employ a contrastive objective LGCL to
distinguish the representations of different views of
the same node from the representations of different
nodes:

LGCL = −
∑

i

log
exp(ψ(Zi, Z̃i))

exp(
∑

j �=i ψ(Zi, Zj) +
∑

j ψ(Zi, Z̃j))
(9)

where Z = [Zv, Zu] represent the updated node
representation matrices of passages Sv and Su.
ψ(·, ·) denotes the cosine similarity and g(·) is a
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two-layer perceptron.

Joint Training Objective We minimize the joint
loss function Ljoint by summing up the three train-
ing objectives as:

Ljoint = LAM + LAPE + λLGCL (10)

where λ is a tuned hyper-parameter controlling the
impact of LGCL.

3 Experimental Setup

Datasets We conduct experiments on the Review-
Rebuttal (RR) dataset, which is a benchmark
dataset proposed by (Cheng et al., 2020). The RR
dataset includes 4,764 review-rebuttal pairs col-
lected from ICLR 2013 to ICLR 2020. There are
two versions provided: RR-Passage-v1 (RR-P) and
RR-Submission-v2 (RR-S). Both RR-P and RR-S
are split by the ratio of 8:1:1 into train, dev, and test
sets. In the RR-P dataset, different review-rebuttal
passage pairs of the same paper submission could
be put into different sets, while in the RR-S dataset,
multiple review-rebuttal passage pairs of the same
submission are included in the same set. Since RR-
S is more challenging than RR-P, we conduct fur-
ther experiments on RR-S. The detailed statistics of
RR-P and RR-S are summarized in Appendix A.2.

Evaluation Metrics Following previous
works (Cheng et al., 2020; Bao et al., 2021), we
adopt precision (Prec.), recall (Rec.) and F1

scores to measure the performance of both argu-
ment mining (AM) and argument pair extraction
(APE).

Baselines To evaluate the effectiveness of PI-
GEON, we compare it with several strong baselines.
PL-H-LSTM-CRF (Cheng et al., 2020) learns sep-
arate sequence labeling and sentence relation clas-
sification models, and then combines two results
together to predict the argument pairs. Similar
to PL-H-LSTM-CRF, MT-H-LSTM-CRF (Cheng
et al., 2020) trains two subtasks via a shared
feature encoder in the multi-task learning man-
ner. MLMC (Cheng et al., 2021) is an attention-
guided model based on a table-filling approach.
MGF (Bao et al., 2021) proposes a mutual guid-
ance framework with an inter-sentence relation
graph. MRC-APE (Bao et al., 2022) applies ma-
chine reading comprehension framework with a
Longformer (Beltagy et al., 2020) as the encoder,
which is the state-of-the-art method on RR.

Implementation Details PIGEON is imple-
mented in PyTorch on an NVIDIA TITAN RTX
GPU. We apply the uncased BERT base2 as our
PLM. The AdamW optimizer (Loshchilov and Hut-
ter, 2018) is employed for parameter optimization,
and the initial learning rates for the BERT layer
and other layers are set to 1e-5 and 1e-3, respec-
tively. Similar to previous works (Cheng et al.,
2021), we set the batch size as 1 due to the lim-
ited memory. The maximum number of the GCN
blocks on RR-S and RR-P are set to 5 and 3, re-
spectively. The hidden size of BiLSTMs is set to
256. In addition, the parameters of BiLSTMs and
CRFs used in the three taggers are not shared 3.
All experiments are performed five times with dif-
ferent random seeds, and we report the averaged
scores. Our code and data are available at https:
//github.com/syiswell/PIGEON.

4 Experimental Results

4.1 Overall Performance

We report the overall performance of our proposed
framework and baseline methods in Table 1. Our
method achieves the best performance on both RR-
S and RR-P. On RR-S, our method outperforms the
current state-of-the-art method (i.e., MRC-APE)
by 2.94% in terms of F1 score on the APE sub-
task. On RR-P, our model also exceeds MRC-APE
and obtains about 3.05% higher F1 score on the
APE subtask. The experimental results verify the
superiority of our method on the APE subtask. In
addition, our PIGEON is also more efficient than
baselines, as shown in Appendix A.4.

We also observe that the pipeline method (i.e.,
PLH-LSTM-CRF) perform more poorly than the
other end-to-end baselines because it may lead to
error propagation. The attention-based method (i.e.,
MLMC) achieves significant improvement over
MT-H-LSTM-CRF, since MLMC can implicitly
model the argument correlation. The graph-based
method (i.e., MGF) surpasses MLMC but under-
performs MRC-APE. This may be because MGF
only considers the word overlap and explicitly con-
structs the incomplete argument correlation without
considering semantic information. Our PIGEON
performs better than all baselines by probing se-
mantic knowledge from PLMs.

2We implement BERT using huggingface toolkit:
https://huggingface.co/

3More details about hyperparameter settings can be found
in Appendix A.3.
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Dataset Method AM APE
Pre. Rec. F1 Pre. Rec. F1

RR-S

PLH-LSTM-CRF 67.02 68.49 67.75 19.74 19.13 19.43
MT-H-LSTM-CRF 70.74 69.46 70.09 27.24 26.00 26.61
MLMC 69.53 73.27 71.35 37.15 29.38 32.81
MGF 70.82 73.19 71.99 40.45 30.77 34.95
MRC-APE 71.83 73.05 72.43 41.83 38.17 39.92
PIGEON (Our) 72.29 73.22 72.75 41.06 44.84 42.86

RR-P

PLH-LSTM-CRF 73.10 67.65 70.27 21.24 19.30 20.22
MT-H-LSTM-CRF 71.85 71.01 71.43 30.08 29.55 29.81
MLMC 66.79 72.17 69.38 40.27 29.53 34.07
MGF 73.62 70.88 72.22 38.03 35.68 36.82
MRC-APE 76.39 70.62 73.39 37.70 44.00 40.61
PIGEON (Our) 73.30 73.56 73.43 43.18 44.16 43.66

Table 1: Performance comparison. Our improvements over baselines are statistically significant with p < 0.05.

Dataset Method AM APE

RR-S

PIGEON 72.75 42.86
w/o GCL 72.16 42.33
w/o Intra-PG 71.31 42.02
w/o Inter-PG 71.77 35.45
w/o PG 70.65 34.49
w/o GD 71.71 39.81

RR-P

PIGEON 73.43 43.66
w/o GCL 73.00 43.37
w/o Intra-PG 72.23 42.39
w/o Inter-PG 71.62 35.17
w/o PG 70.49 34.48
w/o GD 72.22 40.36

Table 2: Ablation test performance in terms of F1.

4.2 Ablation Study

To analyze the impact of different components in
our proposed PIGEON method, we conduct abla-
tion test in terms of removing probing graph (w/o
PG), removing graph decomposition (w/o GD), re-
moving intra-passage graphs (w/o Intra-PG), re-
moving inter-passage graphs (w/o Inter-PG), and
removing graph contrastive learning (w/o GCL),
respectively.The results are reported in Table 2. We
can observe that both w/o Inter-PG and w/o Inter-
PG degrade the performance substantially, verify-
ing that the sentence relations within both the intra-
passage and inter-passage graphs are important for
the APE subtask. Removing graph decomposition
(w/o GD) leads to performance drops significantly,
demonstrating that probing graph decomposition
can help alleviate the problem that the review and
rebuttal passages have different styles and word dis-
tributions. It is no surprise that graph contrastive
learning also contribute to the effectiveness of our
method by reducing the impact of noisy edges in
probing graphs.

4.3 Graph Parameters Analysis

We analyze the hyperparameters used in the pro-
cesses of probing graph construction and decom-

Dataset Method AM APE

RR-S

Co-occurrence 71.78 37.75
Word2Vec 72.24 37.41
Glove 72.13 37.73
WordNet 72.15 38.32
Probing 72.75 42.86

RR-P

Co-occurrence 71.91 38.47
Word2Vec 72.15 38.49
Glove 72.07 38.61
WordNet 72.09 38.31
Probing 73.43 43.66

Table 3: The F1 scores when using different methods to
detect semantically similar words.

position, i.e., the threshold σ for determining
word pairs with high semantic similarity, the dis-
tance threshold τ for constructing the intra-passage
graph, and the number l of GCN blocks. The re-
sults on RR-S are illustrated in Figure 3. (i) From
Figure 3a, we observe that the best results can be
obtained when σ = 0.5. The small σ tend to intro-
duce infrequent word pairs and lead to noisy argu-
ment relations. (ii) From Figure 3b, our method
achieves the best performance when τ equals 3. A
too large distance threshold may introduce incor-
rect edges in the graph, while a too small threshold
will discard the correct relations between sentences.
(iii) We vary the block number l in GCNs from 1
to 10, and illustrate the results in Figure 3c. We
can achieve the best results when l = 5. While the
performance tends to decrease as the number of
GCN blocks increases when the block number is
greater than 5. This implies that roughly increasing
the number of GCN blocks is vulnerable to slash
the learning ability of the model owing to the sharp
increase of the model parameters.

4.4 Different Word Similarity Measures

We compare our probing method with several pop-
ular word similarity measures (e.g., Word2Vec,
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Figure 3: The impacts of graph parameters on RR-S.

(a)

xp
e

(b)

Figure 4: The inter-passage adjacent matrix and a word-
level similarity matrix of an example. The red blocks
denote the ground-truth argument pairs. The word-level
similarity matrix belongs to the sentence pair (9, 3) of
review and rebuttal passages.

GloVe and WordNet) for detecting word pairs with
high semantic similarity. The co-occurrence based
method focuses on string matching. The Word2Vec
and GloVe methods obtain the word pair similarity
by computing the cosine similarity of their word
vectors. The WordNet method computes the word
pair similarity based on the shortest path connect-
ing the two word senses in a taxonomy. After learn-
ing the similarity of arbitrary word pairs, we con-
struct the inter- and intra-passage graphs similar to
our PIGEON method. We report the AM and APE
results in Table 3. Our probing method performs
significantly better than the compared word simi-
larity measures by eliciting context-aware semantic
knowledge from large-scale PLMs.

4.5 Case Study

We provide an exemplary case that is selected from
RR-S test set by visualizing the adjacent matrix
of the inter-passage graphs, where the distribution
of edge weights is similar to the distribution of
ground-truth argument pair labels. As shown in
Figure 4b, the probing method can catch the seman-

tic similarity between the word pair “observation”
and “visible” with the help of elicited knowledge
from PLMs. We believe that our PIGEON can
probe rich semantic knowledge from PLMs, help-
ing detect argument relations for APE.

5 Related Work

Argument Pair Extraction Most existing argu-
ment mining methods focus on modeling the argu-
ments in monologues, such as argumentation struc-
ture parsing (Stab and Gurevych, 2014; Morio et al.,
2020), argument quality assessment (Lauscher
et al., 2020), and argumentation strategies mod-
eling (Al Khatib et al., 2017). However, in real-life
scenarios, arguments are often in the form of di-
alogues. Several prior studies detect agreement
and disagreement in online debates and discus-
sions (Morio and Fujita, 2018; Chakrabarty et al.,
2019; Ji et al., 2021). Subsequently, Cheng et al.
(2020) introduced a new argument pair extraction
(APE) task in the domain of peer review and re-
buttal, aiming to extract the argument pairs from
the review and rebuttal passages simultaneously.
Cheng et al. (2021) applied an attention mechanism
and a table-filling approach to implicitly model the
interaction between argument pairs. To explicitly
model the relations between argument pairs, Bao
et al. (2021) proposed a mutual guidance frame-
work with an inter-sentence graph for APE. Bao
et al. (2022) explored a bidirectional machine read-
ing comprehension (MRC) to capture the interac-
tions between argument pairs. Different from pre-
vious works, we explicitly capture the relations
between argument pairs by eliciting context-aware
semantic knowledge from PLM. In addition, we
propose a graph decomposition method to deal with
the issue that the review and rebuttal passages have
different styles and word distribution.
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Probing Knowledge from PLMs Recently, the
success of PLMs has led to plenty of studies apply-
ing the probing technique to elicit rich knowledge
from large-scale PLMs (Jawahar et al., 2019; Clark
et al., 2019; Wu et al., 2020; Wang et al., 2022). A
typical probing study is to investigate the knowl-
edge and linguistic properties contained in PLMs,
such as morphology (Belinkov et al., 2017), word
sense (Reif et al., 2019), syntax (Hewitt and Man-
ning, 2019; Dai et al., 2021). The key idea behind
these works is to define a precise task, and then
design a simple model (called a probe) to solve
the task using the contextualized representations
provided by PLMs. There are also some studies
(Petroni et al., 2019; Zhong et al., 2021) that seek
to answer to what extent PLMs store factual, rela-
tional and commonsense knowledge.

6 Conclusion

In this paper, we designed a probing technique to
elicit semantic-aware relational knowledge from
large-scale PLMs, which captured rich explicit in-
teractive relations between argument pairs. In addi-
tion, we proposed a graph decomposition method to
decompose the probing graph into four sub-graphs
from intra- and inter-passage perspectives, which
could alleviate the issue that different participants
might have different writing styles and word distri-
butions for the APE task. Experimental results on
two benchmark datasets showed that our method
outperformed strong baselines significantly.

Limitation

To better understand the limitations of the proposed
model, we carry out an analysis of the errors made
by PIGEON. Specifically, we randomly select 100
instances that are incorrectly predicted by PIGEON
and summarize the primary types of error. The first
error category is boundary prediction error. Since
we modeled the APE task as a sequence labeling,
our model may only recognize a part of an argu-
ment. Thus, multiple consecutive arguments may
be identified as a single argument. The second type
of error is caused by the absence of semantically
similar words in the argument pairs. In this case,
the proposed probing graphs cannot model the re-
lations between argument pairs. Third, another
error category occurs when semantically similar
words are also presented in non-matching argu-
ment pairs. The argument relation may be misled
by these words. It suggests that certain relation

modeling method needs to be devised in the fu-
ture so as to better infer argument relation. For
example, we may leverage the high-level topic in-
formation over argument pairs to guide the learning
of relation-specific features.

In addition, the proposed probing approach may
be computationally expensive and we can alleviate
this problem by saving the similarity of all word
pairs for one time for the entire dataset. We will
address this issue in future work.
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A Appendix

A.1 Sentence Relevance Analysis

In Figure 5, we randomly select 100 samples from
the RR-S test set and show the distributions of the
number of similar words and similarities of sen-
tences from intra- and inter-passages. The number
of similar words between sentences is computed
by our probing procedure, while the sentence sim-
ilarities are measured by the cosine similarity of
sentence representations obtained from BERT. We
can observe that the number of similar words in
the sentences within a passage is larger than that in
the sentences from different passages, as shown in
Figure 5a. In addition, the sentence representations
in the intra-passage, on average, have higher sim-
ilarity than that in the inter-passage, as illustrated
in Figure 5b. This may be because the review and
rebuttal passages have different writing styles and
word distributions.

A.2 Data Statistics

The detailed statistics of the RR-S and RR-P
datasets are summarized in Table 4. Both RR-S and
RR-P dataset contain 4,764 review-rebuttal pairs
collected from ICLR 2013 to ICLR 2020, which
are split by the ratio of 8:1:1 into train, dev, and test
sets. In the RR-P dataset, different review-rebuttal
passage pairs of the same paper submission could
be put into different sets, while in the RR-S dataset,

(a) (b)

Figure 5: Visualizing the distributions of the number of
similar words and similarities of sentences in the intra-
and inter-passages.

Dataset RR-S RR-P
Train 3817 3811
Dev 473 477
Test 474 476
Sentences 217.8K 190.5K
Arguments 40.9K 40.5K
Argument Pairs 19.1K 18.6K
Avg. SPA in Review 2.84 2.53
Avg. SPA in rebuttal 4.16 3.82
Avg. SPA 3.41 3.09

Table 4: The statistics of the evaluated datasets, where
SPA denotes sentences per argument

multiple review-rebuttal passage pairs of the same
submission are included in the same set. Thus,
RR-S is more challenging than RR-P.

A.3 Hyperparameter Settings
We manually tune the hyperparameter values (e.g.,
the weight λ for graph contrastive loss and the
drop probability μ of noisy edges) on the RR-S.
We report the results in Table 5 and Table 6. The
weight λ of graph contrastive loss is tuned from
0.001 to 1 with a ratio of 10. The drop probability
μ is tuned from 0.1 to 0.5 with a step size of 0.1.
From the results in Table 5 and Table 6, we set the
value of λ to 0.01 and the value of μ to 0.1.

A.4 Computational Cost
Table 7 shows the training time, the testing time,
the number of parameters, and the APE results of
our model on the RR-S development set. As the
number of GCN blocks increases, the performance
on the development set improves yet the perfor-
mance on the testing set becomes worse. It implies
our model might suffer from the overfitting issue
with the increasing layers of GCN blocks. In addi-
tion, our PIGEON is more efficient than baselines
during inference owing to the fewer model parame-
ters. Note that MRC-APE with fewer parameters

13085



λ AM APE
1 71.53 41.99

0.1 71.81 42.32
0.01 72.75 42.86

0.001 72.19 41.94

Table 5: The F1 scores when applying different values
for the graph contrastive loss weight λ.

μ AM APE
0.1 72.75 42.86
0.2 72.27 42.03
0.3 72.19 41.45
0.4 72.31 41.83
0.5 71.94 42.17

Table 6: The F1 scores when applying different values
for the drop probability μ for noise edges

Model Layer RT (min) TT (sec) # Params APE
F1(Dev)

PIGEON

1 17.1 36 4.52M 44.10
2 17.3 36 4.77M 44.50
3 17.4 36 5.02M 44.77
4 17.5 37 5.77M 44.23
5 17.6 37 6.02M 45.02
6 17.7 37 6.27M 44.68
7 17.8 37 6.52M 44.58
8 18.0 37 6.77M 45.07
9 18.1 37 7.02M 44.46

10 18.4 37 7.27M 45.00
MLMC - 44 106 9.10M 36.65
MGF - 15 48 7.27M 37.42

MRC-APE - 100 188 0.94M 40.73

Table 7: Running Time (RT) per epoch (minutes), Test-
ing Time (TT) in the test set (second), number of param-
eters (except the part of BERT or Longformer), and the
APE F1 score of our PIGEON with baselines on RR-S.

requires the most running and testing time because
it needs to repeatedly implement multi-turn ma-
chine reading comprehension if there are several
arguments within an instance.

Graph Augmentation AM APE
Noisy edge dropping 72.75 42.86

Random edge dropping 72.19 42.25

Table 8: The F1 scores when applying different graph
augmentation methods.

A.5 Different Graph Augmentation Methods

We also explore an additional random dropping
method for graph augmentation. The results are
provided in Table 8. The random dropping method
randomly removes a certain percentage of edges,
without considering whether the edge is a noisy
edge or not. We find that the random dropping
method performs worse than the noisy edge drop-

ping method for graph contrastive learning. This
may be because the random dropping method re-
moves the important edges and corrupts the true
argument relations. By contrast, the noisy edge
dropping method only focuses on the noisy edges
within non-argument pairs and achieves better per-
formance.

Method AM APE
SBERT 70.93 35.83

SROBERTA 71.92 35.70
Probing 72.75 42.86

Table 9: The F1 scores when applying different sentence
similarity measures.

A.6 Different Sentence Similarity Measures
We also explore two sentence similarity mea-
sures i.e., SBERT and SROBERTA (Reimers
and Gurevych, 2019). The results of SBERT,
SROBERTA and our method on RR-S are pre-
sented in Table 9. We can observe that our
method significantly outperforms both SBERT and
SROBERT. The reason may be that sentences with
a high degree of similarity are not certainly in the
same argument pair, but may also be expressing
similar opinions on different topics and then incor-
rectly establishing argument relations.
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