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Abstract

Existing question answering methods often as-
sume that the input content (e.g., documents
or videos) is always accessible to solve the
task. Alternatively, memory networks were
introduced to mimic the human process of in-
cremental comprehension and compression of
the information in a fixed-capacity memory.
However, these models only learn how to main-
tain memory by backpropagating errors in the
answers through the entire network. Instead,
it has been suggested that humans have effec-
tive mechanisms to boost their memorization
capacities, such as rehearsal and anticipation.
Drawing inspiration from these, we propose
a memory model that performs rehearsal and
anticipation while processing inputs to memo-
rize important information for solving question
answering tasks from streaming data. The pro-
posed mechanisms are applied self-supervised
during training through masked modeling tasks
focused on coreference information. We val-
idate our model on a short-sequence (bAbI)
dataset as well as large-sequence textual (Nar-
rativeQA) and video (ActivityNet-QA) ques-
tion answering datasets, where it achieves sub-
stantial improvements over previous memory
network approaches. Furthermore, our abla-
tion study confirms the proposed mechanisms’
importance for memory models.

1 Introduction

The question answering (QA) task is one of the
most important and challenging tasks in natural
language processing (NLP). A significant advance
has been seen in this subject thanks to models based
on deep learning (Hermann et al., 2015; Seo et al.,
2017; Chen et al., 2017; Devlin et al., 2019). How-
ever, these models assume that the whole input
(e.g., sentences, paragraphs, etc.) can always be
accessed while answering the question. This is
a reasonable and practical approach if the input
sequence is short but becomes less effective and
efficient as the input length grows. These models
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Figure 1: A rehearsal and anticipatory memory model
(RAM) for question answering. The model is fed with
a stream of data X , incrementally processed to fill a
memory M . Such memory is used to obtain question-
related Q clues to provide an answer A. Pretext self-
supervised tasks improve memorization by continually
rehearsing and anticipating coreference information.

are also cognitively implausible, lacking incremen-
tal human language processing (Tanenhaus et al.,
1995; Keller, 2010) (or visual (Goldstone, 1998)),
which could enable the models for online tasks
where data input is a stream, such as discourse,
dialog or video processing.

Memory-augmented neural networks (MANNs)
(Graves et al., 2014) offer a solution to this problem
as they introduce mechanisms to compress and
remember the input contents. MANNs have shown
effectiveness in various tasks (Graves et al., 2016;
Liu et al., 2019; Le et al., 2020), including question
answering (Miller et al., 2016; Xiong et al., 2016;
Han et al., 2019; Zhang et al., 2021). In the latter,
given a data sequence, the models process the input
incrementally, capturing relevant information in the
memory to answer a given query. This is akin to the
daily behavior of human beings. For instance, our
mental state is updated when we encounter a new
text segment while reading (Traxler et al., 1997).
Later, we can use the memorized information to
solve a specific task (Moscovitch et al., 2016).

Despite the success of MANNs and their similar-
ity to human memory processes, they still have one
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significant limitation. Most of these models rely
on learning a single task to maintain their memory;
for example, a MANN for QA must learn what to
store in memory while learning to answer questions.
Instead, some studies have suggested that human
beings are endowed with specific mechanisms for
memorization. On the one hand, rehearsal (Waugh
and Norman, 1965; Craik and Watkins, 1973) is a
mechanism humans use to memorize information
more effectively by repeating information over and
over to be remembered. On the other hand, anticipa-
tion (Hawkins and Blakeslee, 2004; Wittmann et al.,
2007; Cole et al., 2015) suggests that our memory
could lead to predictions of upcoming material.
Furthermore, both processes are potentially guided
by coreference information (Jaffe et al., 2020), an
integral part of discourse comprehension.

In this work, we propose a Rehearsal and
Anticipatory Memory model (RAM) consisting of
a memory module that uses a fusion module to in-
tegrate incoming information from a data stream
to solve the QA task. This model is supported by
two pretext tasks respectively inspired by human
rehearsal and anticipation processes to enhance
memory representation. These tasks are based on
masked modeling (Devlin et al., 2019) of corefer-
ence information, allowing the model to anticipate
a coreferent and link it to the past through memory
and rehearsal. We validate our proposed model
with datasets of short synthetic text sequences,
long realistic text sequences, and video question
answering. Results show that our model signifi-
cantly outperforms previous well-known memory
approaches due to the enhanced memory represen-
tation achieved by using the pretext tasks.

2 Proposed Method

In this section, we introduce our model, which pro-
cesses inputs and builds memory representations
incrementally from a data stream, used later to pro-
vide an answer to a question (Figure 1). RAM lever-
ages attention and gating mechanisms along with
masked modeling-based self-supervision to create
a simple but effective method to improve memory
representation and memorization. We first describe
the problem formulation of QA with MANNs. We
then present our basic memory architecture for en-
coding input and decoding an answer. Finally, we
introduce our novel self-supervised mechanisms
inspired by rehearsal and anticipation guided by
coreference information.

G G

Figure 2: Our memory module consists of a self-
attention (SA) and cross-attention (CA) layer that fuses
the information from input Et to memory M t at step t.
It also uses a gating mechanism to allow it to forget.

2.1 Problem Formulation

Let X be an input stream and Q a question related
to the content of X . Standard QA approaches con-
sist of a model G(X,Q) that is trained to predict
an answer A. In an incremental processing setup
(Han et al., 2019), the model does not have access
to the whole input, so a fixed-size memory M is
used to compress the input stream X one step at
a time. Then a model G(M,Q) learns to infer the
answer A for any relevant Q.

2.2 Memory Model Overview

Here we present our basic model that incrementally
processes the inputs and integrates the relevant in-
formation into memory to then answer a question.

Input Encoding: The input to our model is a
sequence of segments (sequence of sentences or
images in our experiments). A segment Xt =
{xtn}Nn=1 at step t with N tokens is encoded by
projecting each token into the latent space by using
a linear function F . To inject information about
the position of the tokens in the segment, we add
learnable position embeddings PE. In this way, we
obtain the final token embeddings of the segment
Et = {etn}Nn=1 with dimension dmodel. We use this
procedure to encode the question as well.

Et = F (Xt) + PE (1)

Note that this form of representation allows the
model to granularly capture and memorize the rele-
vant elements of each segment, which differs from
previous approaches that rely on a sequence of sum-
pooled representations (Limbacher and Legenstein,
2020; Le et al., 2020).

Memory Module: Our model is augmented with
a parametric memory M = {mk}Kk=1 with K slots
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intended to compress the information from the in-
put stream effectively. For this we implement a
module that borrows the information fusion idea
from (Dou et al., 2022) and extends it to integrate
information into the memory incrementally.

As shown in Figure 2, at step t, our module
receives two inputs: a segment representation Et

and a memory M t to be updated. First, a self-
attention layer (SA) is used over the memory to
allow the slots to interact with each other. Then,
a cross-attention (CA) operation is performed to
merge the tokens’ information into memory (Eq. 2).
Note that the query matrix QM (with dimension dk)
is computed from the memory and the key KE and
value VE matrices from the segment. We employ a
residual connection around the two layers.

As a result, we obtain an intermedial memory
state M̂ t (Eq. 3) with K slots, which has been
updated with information from step t. Intuitively
each slot can, for example, describe an object or an
entity in the input or composition of them.

CA(M,E) = softmax

(
QMK⊤

M√
dk

)
VE (2)

M̂ t = CA(SA(M t), Et) (3)

To allow the model to “forget,” an essential abil-
ity for memory networks, we employ a gating
mechanism proposed by Hutchins et al. (2022).
First, the memory candidates are computed (Eq. 4).
Unlike the standard LSTM gating, the candidate
only is computed using the intermediate memory
state M̂ t as it indirectly depends on M t. Later,
the input (Eq. 5) and forget gates (Eq. 6) which
are used to obtain the new memory state (Eq. 7)
are calculated. Note that the matrices W and bias
vectors b are trainable.

zkt = tanh(Wzm̂
k
t + bz) (4)

ikt = σ(Wim̂
k
t + bi − 1) (5)

fk
t = σ(Wfm̂

k
t + bf + 1) (6)

mk
t+1 = mk

t ⊙ fk
t + zkt ⊙ ikt (7)

Finally, the new memory state M t+1 is projected
with a feedforward layer (FFN). We replace the
standard residual connection with the gating mecha-
nism explained above. Note that the parameters are
not tied, so this gating mechanism is not attached
to the previous one.

Classifier

GAP

Figure 3: The output decoder takes the question Q and
the last memory state MT as inputs to obtain an answer
A using a classifier.

Output Decoding: After the model has pro-
cessed the entire input stream and obtained our
memory fed MT , we use a decoder to obtain the
answer (Figure 3). We use a standard transformer
decoder (Vaswani et al., 2017), which allows con-
textualizing the question token embeddings and
aggregating question-relevant clues from memory
(Eq. 8). Then, we perform a global average pool-
ing (GAP) of the resulting representations HQ and
use a classifier Wclf to predict the answer (Eq. 9)
by optimizing a loss Lqa. To allow HQ to capture
enough information to answer the question, we per-
form multi-hop reasoning by iteratively updating
HQ states with the same decoder. This is equivalent
to having a multilayer decoder with tied weights.

HQ = Decoderqa(EQ,M
T ) (8)

A = Wclf (HQ) (9)

2.3 Rehearsal and Anticipation Mechanisms

Rehearsal and anticipation are important processes
that occur in our brain to refresh memory and pre-
vent forgetting. On the one hand, rehearsal consists
of continually bringing to our mind information
already experienced to strengthen those memories
(Waugh and Norman, 1965; Craik and Watkins,
1973). On the other hand, anticipation is like imag-
ining the future. It has been found that anticipation
can fire memory-forming regions of the brain —
even before an event has occurred (Mackiewicz
et al., 2006; Wittmann et al., 2007). Furthermore,
rehearsal and anticipation were found to be re-
lated, might be using the same machinery (Cole
et al., 2015), and guided by coreference informa-
tion (Jaffe et al., 2020).

Motivated by these findings, we propose imple-
menting rehearsal as the reconstruction of the past
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Figure 4: Our rehearsal and anticipation (r/a) decoder
receives a masked input Er/a and the more recent mem-
ory updated M t+1 to predict the masked tokens and
whether the segment belongs to the past or future.

(Zhang et al., 2021) and anticipation as the predic-
tion of the future (Oord et al., 2018; Araujo et al.,
2021). To use the same machinery, we pose these
processes as masked modeling tasks that predict
past and future coreference-related tokens.

Rehearsal: This process is performed at step t
by randomly selecting a previous (< t) segment to
mask some of its tokens. Using a standard trans-
former decoder (Figure 4), we compute an input
segment representation Er to obtain a contextual
representation Hr. This process aggregates rele-
vant clues through cross-attention from the updated
memory M t+1 to the representations (Eq. 10).

Anticipation: This process is performed simi-
larly to rehearsal (Eq. 10), but the next (t + 1)
segment embedding Ea is used instead. We use the
same decoder to compute the representation Ha.

Hr/a = Decoderr/a(Er/a,M
t) (10)

where r and a denote rehearsal and anticipation,
respectively. The final hidden vectors (Hr or Ha)
corresponding to masked tokens are fed into a clas-
sifier to predict the actual token.

What to rehearse and anticipate: Our model
has to store relevant information to predict future
elements and, at the same time, avoid forgetting
crucial information to predict the elements of pre-
vious segments. For this to happen, it is important
to mask significant tokens. Unlike the standard
masked modeling, we do not mask tokens randomly
but instead focus on masking coreference-related
tokens (for instance, person, object, or event).

The idea stems from the suggestion that coref-
erence information may be helpful in retrieving
probable antecedents from memory and in inform-

ing expectations about future words in language
comprehension (Jaffe et al., 2020). Intuitively, by
focusing on coreference relationships, our model
can anticipate a coreferent and link it to the past
through memory and rehearsal, also connecting the
related pieces of discourse information.

Separating the tasks: Since the task is the same
for both mechanisms, the model would learn to
predict the mask regardless of whether it is past
or future information. Therefore, we include an
additional signal to teach the model to distinguish
where the segment comes from. We use the [CLS]
token to create a binarized prediction task to clas-
sify whether the segment belongs to the past or the
future. As a result, we obtain three loss functions
that we additively combine to obtain our final self-
supervised modeling loss Lssm (Eq. 11). Our loss
function is used in conjunction with the QA loss
Lqa to optimize the whole model (Eq. 12).

Lssm = Lanticipation+Lrehearsal+Lbinary (11)

L = Lqa + Lssm (12)

Novelty of our proposed method: Although our
model builds on the RM setup and model (Zhang
et al., 2021) incorporating anticipation along with
rehearsal, we introduce important novelties.

RM trains an additional QA model for each
downstream task (history sampler), using the com-
plete input text to determine the important items to
answer a question and then use them to rehearse. A
key novelty of our method is that the memory uses
coreference-related tokens that can be obtained
by general-purpose part-of-speech (POS) taggers,
making it task agnostic as we do not need to train
additional models. By rehearsing and anticipating
this information, we induce the model to softly
learn coreference relationships, which is important
for discourse comprehension.

In addition, RM updates its memory using single-
head cross-attention and a disaggregated GRU net-
work. Instead, our model implements self-attention,
cross-attention, and gating in the same memory
module, providing better integration of the incom-
ing information with the one in the memory. Fi-
nally, our model is light and efficient due to the
above features. Our memory module is paralleliz-
able as it does not use a sequential GRU model
and does not need to train additional QA models to
decide what to rehearse or anticipate.
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3 Experiments

3.1 Experimental Settings

Implementation Details: We use PyTorch to im-
plement our model. We set the head number in all
attention layers to 8, our decoders have 3 weight-
sharing layers and K=20 memory slots. We tie
the input embedding and output embedding as it
has been demonstrated that it helps to improve lan-
guage models (Press and Wolf, 2017) and memory
networks (Liu et al., 2017). Also, this avoids hav-
ing multiple output embeddings for the masked and
QA modeling, reducing the model size.

We initialize the weights and bias of the gating
mechanism using a truncated normal distribution
with a mean of 0 and a standard deviation of 0.1,
and add a constant of -1 and +1 to the input (Eq. 5)
and forget gates (Eq. 6). We use Adam optimizer
with a learning rate of 4e-4 to train our model for
300 epochs with a batch size of 128. RAM for
short sequence QA has dmodel = 128, and for long
sequence QA has dmodel = 256, resulting in 1.2M
and 3M parameters, respectively.

For the anticipation and rehearsal masked mod-
eling, we use a POS tagging model to compute
coreference-related tokens (nouns, pronouns, and
verbs) for all the datasets. We rely on the FLAIR
library (Akbik et al., 2019), which provides fast
and accurate POS tagging models. We mask
coreference-related tokens up to a maximum of
40% of segment tokens, which have been shown to
be beneficial (Wettig et al., 2023).

Baselines: We compare our model with very
well-known and recent memory networks that in-
crementally process the input data: DNC (Graves
et al., 2016), NUTM (Le et al., 2019), H-Mem
(Limbacher and Legenstein, 2020), DAM (Park
et al., 2021), STM (Le et al., 2020), CT (Rae et al.,
2020), and RM (Zhang et al., 2021). We borrowed
the setup of Zhang et al. (2021), in which baselines
and memory size were adapted for a fair compari-
son with our model. Regarding the specific hyper-
parameters, the NUTM core number was set to 4,
the STM query number was set to 8, and the DAM
memory block number was set to 2. The CT model
uses a 3-layer transformer and a compression ratio
of 5. Besides, all the models were set to K=20.

We also include direct methods that solve the
task by accessing the entire input. We specify them
in the section of each task explored.

Method Mean Error Best Error

DNC† 16.70 ± 7.60 3.8
NUTM† 5.60 ± 1.90 3.3
H-Mem 8.93 ± 0.73 7.65
DAM† 1.53 ± 1.33 0.16
STM† 0.39 ± 0.18 0.15
CT† 0.81 ± 0.26 0.34
RM† 0.33 ± 0.15 0.12
RAM 0.25 ± 0.16 0.10

Table 1: Test error rates (in %) on the 20 bAbI QA tasks
for models using 10k training examples. We report
mean ± std. and best error over 10 runs. † is reported
from Zhang et al. (2021).

3.2 Short Sequence QA
For short sequence QA, we use the bAbI dataset
(Weston et al., 2015), a synthetic benchmark widely
used to evaluate memory networks. This dataset
consists of 20 short-sequence reasoning tasks (less
than 100 words) that have to be solved with a com-
mon architecture. We use the percent error rate
as the metric, which would be the complement of
accuracy. Table 1 shows the results. Our model
achieves the best result compared to all baselines
over 10 runs. Also, RAM has a low variance, being
comparable with the most competitive models.

3.3 Long Sequence QA
For long sequence QA, we use NarrativeQA
(Kočiský et al., 2018), a dataset with long input
contents. It contains about 1,5000 stories and cor-
responding summaries (more than 600 words). In
addition, it includes around 47,000 questions. We
adopt the multiple-choice form proposed by the au-
thors. Given a question associated with a summary,
the idea is to retrieve the correct answer from a pool
of answer candidates drawn from the associated
questions. We use mean reciprocal rank (MRR)
(Voorhees and Tice, 2000) as the metric to mea-
sure how far down the ranking the first relevant an-
swer is. We include two direct models: AS Reader
(Kadlec et al., 2016) and E2E-MN (Sukhbaatar
et al., 2015) as additional baselines.

Table 2 shows the results for the validation and
test sets. Our model achieves 8.46% and 7.38% per-
centage differences of improvement with respect to
the memory baseline RM for validation and test set,
respectively. Note that our model also outperforms
direct QA methods, being 9.49% and 7.73%, the
percentage difference for validation and test set.
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Method Setting Val Test

AS Reader† Direct 26.9 25.9
E2E-MN† Direct 29.1 28.6

DNC† Memory 25.8 25.2
NUTM† Memory 27.7 27.2
HMem Memory 26.2 25.5
DAM† Memory 28.1 27.5
STM† Memory 27.2 26.7
CT† Memory 28.7 28.3
RM† Memory 29.4 28.7
RAM Memory 32.0 30.9

Table 2: Mean reciprocal rank (in %) on Narrative QA
for all the models. † is reported from Zhang et al. (2021).

Method Setting Test

E-MN† Direct 27.9
E-SA† Direct 31.8

HCRN† Direct 37.6

DNC† Memory 30.3
NUTM† Memory 33.1
HMem Memory 31.9
DAM† Memory 32.4
STM† Memory 33.7
CT† Memory 35.4
RM† Memory 36.3
RAM Memory 37.4

Table 3: Accuracy (in %) on ActivityNet-QA for all the
models. † is reported from Zhang et al. (2021).

These results demonstrate that incremental mem-
ory processing constitutes an effective and efficient
approach over direct methods when well-designed.

3.4 Video QA

For video QA, we use ActivityNet-QA (Yu et al.,
2019a), which consists of 58,000 QA pairs about
5,800 complex web videos, derived from the pop-
ular ActivityNet dataset. We used the same proce-
dure as for the bAbI task to predict the answer. As
evaluation metric for the test set, we use accuracy.

As the input stream is video, we adapt our net-
work to make it work with the visual modality. Fol-
lowing the original setup of ActivityNet-QA (Yu
et al., 2019a), we use fixed sampling to obtain 20
frames as the sequence that our model will process
incrementally. To encode the images and decode
the masked tokens, we closely follow the frame-
work proposed by Xie et al. (2022) for masked

image modeling. The images of the stream are
linearly projected to obtain a sequence of patch em-
beddings with a 32 × 32 pixel resolution, to which
position embeddings are added.

For the rehearsal and anticipation tasks, we use a
learnable mask token vector to replace each masked
patch. To decode the masked patches, we use a lin-
ear layer to yield patch logits to compute the L1
loss considering only the masked patches. The
inputs are images, so we no longer have content
words to mask. As an alternative, we propose using
the objects in the scene as tokens to mask. There-
fore, we use the object detector YOLO (Jocher
et al., 2022) to compute the patches of the objects
in a frame. We use all the object categories but
constrain the masking up to 40% of tokens.

Table 3 shows the test set results. Our model
achieves a percentage difference improvement of
2.98% with respect to the model RM and 5.49%
with respect to the model CT. Note that our model
performs almost comparable to the best direct base-
line, HCRN, having only a 0.5% percentage differ-
ence of improvement.

4 Further Experimentation

4.1 Ablation Study

The ablation study allows us to understand which
components or configurations impact our model’s
performance most. We are interested in analyz-
ing the impact of the proposed pretext tasks and
masking strategy.

Table 4 shows the four ablation results we per-
formed compared with the default model. First, we
found that randomly masking tokens in the masked
modeling task slightly affects the results for both
bAbI and NarrativeQA. However, for ActivityNet-
QA, the impact is negligible, suggesting that ran-
dom masking is good enough to capture relevant
visual information, as shown in (Xie et al., 2022).

Also, we found that when we remove the pretext
tasks entirely (w/o Lssm), the performance drops
dramatically, resulting in being competitive with
the no-self-supervised memory STM. By remov-
ing only the anticipation task (w/o Lanticipation) or
only the rehearsal task (w/o Lrehearsal), the per-
formance approaches the RM model. This means
that the backbone of our model is more robust, pos-
sibly due to the gating mechanism or the fusion
module. Note that removing the anticipation task
impacts performance more than removing the re-
hearsal task, but both mechanisms help to boost
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Method bAbI (Error Rate) NarrativeQA (MRR) ActivityNet-QA (Acc)

RAM 0.25 ± 0.16 30.9 37.4
RAM (random masking) 0.28 ± 0.19 30.6 37.4
RAM w/o Lanticipation 0.31 ± 0.17 28.9 35.9
RAM w/o Lrehearsal 0.34 ± 0.17 29.7 36.4

RAM w/o Lssm 0.37 ± 0.18 28.0 35.0

Table 4: Ablation results for all the datasets. All results are obtained on test sets.
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Figure 5: Performance of models across different mem-
ory sizes for (a) NarrativeQA and (b) ActivityNet-QA.

performance. This supports that rehearsal is a cru-
cial mechanism for memory networks (Park et al.,
2021; Zhang et al., 2021) and confirms that antici-
pation is a helpful signal to improve memorization.

4.2 Effect of Memory Size

Figure 5 shows the results of our model and some
of the more robust memory-based baselines for
NarrativeQA and ActivityNet-QA. We evaluate all
the models using 10 to 25 memory slots. We do
not include the results of the bAbI task because
we found that the performance does not vary sub-
stantially when changing the memory size of the
models.

We found that the performance for all models
gradually increases with growing memory size. As
shown, the CT model is the most affected when the
size is reduced, followed by the STM model. The
behavior of STM, RM, and RAM is slightly similar
but with a difference in performance. We found that
our model with low memory is almost equivalent
to the performance of RM, but as memory capacity
increases, the performance gap also increases. We
noticed that memory slots higher than 25 do not
show substantial improvements, suggesting that
20-25 slots are adequate for these tasks.

4.3 What is the Attention Capturing?

This section aims to reveal what kind of interac-
tions are taking place between the inputs and the

S1: fred picked up the football there .
S2: fred gave the football to jeff .
S3: bill went back to the bathroom .
S4: jeff grabbed the milk there .
S5: jeff gave the football to fred .
S6: fred handed the football to jeff .
Q: what did fred give to jeff ?
A: football

(a) Slot 8

S1: fred picked up the football there .
S2: fred gave the football to jeff .
S3: bill went back to the bathroom .
S4: jeff grabbed the milk there .
S5: jeff gave the football to fred .
S6: fred handed the football to jeff .
Q: what did fred give to jeff ?
A: football

(b) Slot 18

Figure 6: Attention visualization for a random example
of bAbi task 5. Each subfigure shows the intensity of
attention from a memory slot to each word of the sen-
tence during reading and from each word of the question
to the memory slot. Strongly highlighted tokens mean
higher attention weights. The most relevant slots to an-
swer the question are shown: Slot (a) 8 and (b) 18.

memory slots by visualizing the attention weights.
Our approach uses cross-attention to both integrate
information in the memory and also to retrieve
query-relevant information from the memory to ob-
tain the answer. Therefore, we analyze the attention
of those layers obtained from random examples.

Figure 6 shows an example from bAbI task 5. In
this example, the objective is reasoning over argu-
ment relations. We found that 20 slots of memory
capture several repeated patterns, so we analyze
some of them. We notice that slot 8 is specialized
to capture relationships between entities (e.g., fred,
jeff), as more attention is seen on entity names and
action verbs across all the steps. Besides, the at-
tention from the query to slot 8 was related to the
entities and the activity they carried out.

Regarding slot 18, we notice that this slot is
specialized to capture the relation between entities
and objects. We found that some slots became more
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S1: Frankie Ryan works as a page boy at a radio station
located in Hollywood .
S2: His friend Jeff works in the same place , but as a
porter .
...
S5: When they try to help the station receptionist ,
Anne Mason , by setting up a false audition for the
position as singer , they are almost fired for their antics
...
Q: What happens when Frankie and Jeff try to help the
station receptionist ?
A: They almost get fired .

(a) Slot 2

S1: Frankie Ryan works as a page boy at a radio station
located in Hollywood .
S2: His friend Jeff works in the same place , but as a
porter .
...
S5: When they try to help the station receptionist ,
Anne Mason , by setting up a false audition for the
position as singer , they are almost fired for their antics
...
Q: What happens when Frankie and Jeff try to help the
station receptionist ?
A: They almost get fired .

(b) Slot 6

Figure 7: Attention visualization for a random example
of NarrativeQA. Each subfigure shows the intensity of
attention from a memory slot to each word of the sen-
tence during reading and from each word of the question
to the memory slot. Strongly highlighted tokens mean
higher attention weights. The most relevant slots to
answer the question are shown: Slot (a) 2 and (b) 6. Ver-
tical dots refer to sentences not presented in that space.

specialized to capture specific items, such as this
one for the "football" object. We can see that all
entities have high attention and the word "football",
which suggests that this slot is tracking the state
of the football through the steps. Interestingly, we
found that the question attention over the slots is
very high for the word "what", showing that slot 8
contains information about the football.

Figure 7 shows an example from NarrativeQA.
In this case, the example consists of several sen-
tences, so we only include some relevant ones to
solve the question. The example shows an outcome
question inquiring about the specific result of a par-
ticular event. We notice that slot 2 mainly tracks
people of the story, for instance, "Ryan", "Jeff" and
"Anne". It is also possible to see that attention is
paid to the pronoun tokens.

Regarding slot 6, we find that the attention is a
bit more distributed across the tokens. However,

more attention is paid to verbs (for example, "try"
and "help"), which suggests that this slot special-
izes in events and participants. Note that attention
to the question also presents the same behavior.

Figure 8 shows an example from ActivityNet-
QA. This example presents a counting task across
the steps. In this case, the input stream is images.
Our visualizations show bright regions when atten-
tion is high. We find a behavior similar to text-
based models since some slots specialize in entities
or the interaction between them or with objects.

We see that slot 7 is paying attention to the ob-
jects and the people around, suggesting that this
slot captures the interaction between entities and
objects across the steps. Note that slot 7 got the
most attention for the words "how many", which
supports the hypothesis that this slot tracks entity
information.

As for slot 12, we find that it is specialized to
capture information about the objects (cups, in this
case). The focus is mainly on the cups; however,
sometimes, in other places in the image. This sug-
gests that attention tracks the interaction between
objects in the scene.

These results support our initial hypothesis that
slots could capture information about entities, ob-
jects, and relations between them. Also, it is pos-
sible to see that our model can track the state of
those entities or objects across the steps, suggesting
it can represent sequentially coreference-related in-
formation when updating the memory.

5 Related Work

5.1 Question Answering

In recent years there has been a significant advance
in QA. This is thanks to the new datasets and novel
deep learning architectures proposed to solve them.
One of the most important datasets is SQuAD (Ra-
jpurkar et al., 2016), which proposes span predic-
tion as the task for QA about a given paragraph.
SQuAD has been one of the reasons for progress in
the field (Liu et al., 2021), as several attention mod-
els have been proposed for this task. For example,
BiDAF (Seo et al., 2017) proposes a specialized
bi-directional attention mechanism.

Recently, more complex QA tasks were pro-
posed, such as long-range QA (Kočiský et al., 2018;
Pang et al., 2022) and commonsense QA (Talmor
et al., 2019). Also, other modalities were explored,
using images (Johnson et al., 2017; Goyal et al.,
2017) or videos (Lei et al., 2018; Yu et al., 2019b)
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S:6 S:9 S:12
Q: how many people
are playing games in
the video ?
A: 4

(a) Slot 7

S:6 S:9 S:12
Q: how many people
are playing games in
the video ?
A: 4

(b) Slot 12

Figure 8: Attention visualization for a random example of ActivityNet-QA. Each subfigure shows the intensity
of attention from a memory slot to each patch of the frame during reading and from each word of the question to
the memory slot. Brighter regions of images mean higher attention weights. We show the most relevant slots and
frames to answer the question: (a) Slot 7 and (b) Slot 12.

as input. For these, large pre-trained models (De-
vlin et al., 2019) have achieved outstanding results.

The models mentioned above always have ac-
cess to the whole input. However, this is ineffective
when the input is a data stream or a long sequence.
For this reason, memory networks have been pro-
posed to perform incremental processing to accu-
mulate knowledge into memory and afterward per-
form the QA task (Miller et al., 2016; Xiong et al.,
2016; Han et al., 2019; Zhang et al., 2021).

5.2 Memory-augmented Neural Networks

MANNs introduce models with external memory to
store and access the past contents by differentiable
operators. These models attempt to mimic human
memory processes, bringing them closer to biolog-
ical plausibility. NTM (Graves et al., 2014) and
DNC (Graves et al., 2016) are well-known memo-
rization and reasoning models which use memory
instead of original input to generate inferences.

In this line of research, several papers have pro-
posed new approaches for different NLP tasks, such
as language modeling (Santoro et al., 2018), dia-
logue (Zhang et al., 2019), machine translation
(Kaiser et al., 2017), coreference resolution (Liu
et al., 2019), question answering (Henaff et al.,
2017), and visual question answering (Xiong et al.,
2016). These approaches propose new ways of
storing and retrieving information (Henaff et al.,
2017; Banino et al., 2020), relational or associa-
tive mechanisms (Santoro et al., 2018; Limbacher
and Legenstein, 2020; Le et al., 2020), and meth-
ods to improve memory representation and prevent
forgetting (Park et al., 2021; Zhang et al., 2021).

In recent years, some works have been proposed
with the latter objective. DAM (Park et al., 2021)
introduced a rehearsal task to ensure a current input
is well stored by reproducing it using the memory.
RM (Zhang et al., 2021) was proposed to tackle
the long-term memorization problem, as this model
can rehearse a current input and previous ones em-
ploying a recollection and familiarity task. Our
work extends these approaches and builds on re-
cent findings from neurocognitive science that posit
that our memory is guided by rehearsal and antici-
pation of coreference information, and they might
use the same machinery to improve human memo-
rization (Cole et al., 2015). Unlike DAM and RM,
our model proposes to perform not only rehearsal
but also anticipation using masked modeling and a
task to detect whether the information belongs to
the future or the past. These mechanisms aim to
improve memorization and prevent forgetting.

6 Conclusion

This article presents RAM, a QA memory model
supported by two self-supervised pretext tasks to
improve memory presentation. It uses masked mod-
eling to mimic the human processes of rehearsal
and anticipation of coreference information. Our
experiments on short sequence QA, long sequence
QA, and video QA show that our model substan-
tially outperforms previous memory models. Our
further experimentation demonstrates that the re-
hearsal and anticipation tasks help to improve mem-
orization and that the model leverages coreference
information to support the processes.
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Limitations

This work has some limitations regarding the ar-
chitecture and the data used: Our model assumes
that masked modeling could be used as rehearsal
and anticipation tasks; however, other approaches
could also be effective. We use transformer layers,
so our model scalability is tied to the scalability of
the transformer model. Also, our approach relies
on obtaining additional annotation from pre-trained
models for the masking process, so we are limited
to the misprediction of those models. We only
tested our model with the English language; further
exploration of other languages would be valuable
to validate the language-independent functionality
of the model.

Ethics Statement

Our article presents a novel approach and has not
been published in whole or in part elsewhere. The
data used to train the model does not imply any
violation of privacy. The potential negative social
impacts from this work are similar to any other
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potentially be used to create malicious chatbots.
This work does not include experimentation with
humans or animals.
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