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Abstract

Ensuring both interpretability and correctness
is a great challenge in automated geometry
problem solving (GPS), and the scarcity of la-
beled data hinders learning mathematical rea-
soning from samples. Therefore, we present
GeoDRL, a self-learning geometry problem
solving framework that integrates logic graph
deduction and Deep Reinforcement Learning
(DRL) to optimize geometry reasoning as a
Markov Decision Process. GeoDRL employs
a Graph Neural Network on a Geometry Logic
Graph, updating the problem state using a sym-
bolic system. Incorporating DRL into deduc-
tive reasoning enables GeoDRL to achieve un-
supervised self-learning while maintaining cor-
rectness. GeoDRL, through unsupervised learn-
ing, exhibits enhanced accuracy in the Geome-
try3K dataset, improving by 11.1% over previ-
ous SOTA methods, and simultaneously boosts
efficiency and interpretability.

1 Introduction

Automated geometry problem solving (GPS) has
been a long-standing task in mathematical reason-
ing research, drawing significant attention from
researchers (Wen-Tsun, 1986; Chou et al., 1996;
Seo et al., 2015; Sachan and Xing, 2017; Lu et al.,
2021, 2022b). As depicted in Figure 1, GPS can
be described as follows: given a geometry problem
description which typically consists of a diagram
and text, the objective is to produce a flow of so-
lution steps leading to the final answer. Solving a
geometry problem consists of two key steps: parse
and reason, where parsing involves extracting spe-
cific interpretation from the question diagram and
text and reasoning involves using the interpretation
to develop a solution.

There has been a long-standing debate between
symbolic and probabilistic approaches in mathe-
matical reasoning. In geometry problem solving,
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C

A BD
Question: In triangle ABC, AD = 4 and BD
= 9. Find CD.

Solution:

∠𝐵𝐵𝐵𝐵𝐵𝐵 + ∠𝐵𝐵𝐵𝐵𝐴𝐴 = ∠𝐵𝐵𝐴𝐴𝐵𝐵 = 90°
∠𝐵𝐵𝐵𝐵𝐴𝐴 + ∠𝐵𝐵𝐵𝐵𝐴𝐴 = ∠𝐵𝐵𝐵𝐵𝐵𝐵 = 90°

⇒ ∠𝐵𝐵𝐵𝐵𝐵𝐵 = ∠𝐵𝐵𝐵𝐵𝐴𝐴

∠𝐵𝐵𝐵𝐵𝐵𝐵 = ∠𝐵𝐵𝐵𝐵𝐴𝐴
∠𝐵𝐵𝐴𝐴𝐵𝐵 = ∠𝐵𝐵𝐴𝐴𝐵𝐵

⇒ △ 𝐵𝐵𝐵𝐵𝐴𝐴∽△ 𝐵𝐵𝐵𝐵𝐴𝐴

△ 𝐵𝐵𝐵𝐵𝐴𝐴∽△ 𝐵𝐵𝐵𝐵𝐴𝐴 ⇒
𝐵𝐵𝐴𝐴
𝐵𝐵𝐴𝐴 =

𝐵𝐵𝐴𝐴
𝐵𝐵𝐴𝐴 ⇒ 𝐵𝐵𝐴𝐴 = 𝐵𝐵𝐴𝐴 � 𝐵𝐵𝐴𝐴 = 6

Step 1:

Step 2:

Step 3:

(Angle-Angle Similarity Theorem)

(Triangle Exterior Angle Theorem)

(Side-Side-Side Similarity Theorem)

Answer: CD = 6.

Figure 1: A sample of plane geometry problem, includ-
ing a question diagram and textural description. The
figure also shows a potential solution process with three
steps.

the symbolic approaches (Seo et al., 2015; Sachan
and Xing, 2017; Lu et al., 2021) first parse the
question diagram and text into logical expressions
in a formal symbolic language, and then utilize
a predefined set of geometry theorems to solve
the problem. These approaches are known for
the mathematical rigor, as they construct a sym-
bolic system for logical interpretation and theo-
rem application. In contrast, the probabilistic ap-
proaches (Chen et al., 2021, 2022; Zhang et al.,
2023) view GPS as a special case of text gener-
ation with multi-modal input. These data-driven
approaches learn mathematical language and solv-
ing strategies from problem-solution samples to
generate human-readable solutions without prior
mathematical knowledge.

Nevertheless, there are notable limitations to
both categories. The symbolic approaches strug-
gle with selecting the appropriate theorem (Gel-
ernter, 1959; Nevins, 1975). The heuristic search
strategies tend to involve redundant steps (Lu et al.,
2021), which harms the readability of the solution.
On the other hand, the probabilistic approaches rely
heavily on manually annotated data, which is often
scarce and expensive. Furthermore, the solutions
generated by deep neural network are doubtful in
mathematical rigor and correctness (Chen et al.,
2021, 2022). Even an advanced language model
like GPT-4 is prone to make arithmetic mistakes
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(Bubeck et al., 2023), which is unacceptable in
mathematical problem solving.

Accordingly we propose a self-learning GEOS
framework, GeoDRL, to addresses these issues.
Our framework consists of two phases:

1. Parsing the question diagram and text into a
Geometry Logic Graph (GLG). GLG is a het-
erogenous attributed graph encoding geomet-
ric information, where nodes represent geo-
metric primitives (point, line, etc.), edges rep-
resent relationships between primitives (per-
pendicular, parallel, etc.), and attributes rep-
resent properties of primitives (length of line
segment, measure of angle).

2. Integrating Deep Reinforcement Learning
(DRL) into the reasoning procedure. Here,
GLG serves as the state and a predefined
geometry theorem set serves as the action
space. We implement a Graph Neural Net-
work (GNN) to learn the graph representation
of GLG to estimate the Q-value of the state.
At each step, DRL agent selects a geometry
theorem as an action for the current state ac-
cording to the Q-value. The symbolic system
performs it, updates the state, and provides a
reward until the problem is solved.

By introducing reinforcement learning, we con-
struct a self-learning framework that enables un-
supervised learning of problem-solving strategies,
alleviating the scarcity of labeled data. Further-
more, our framework integrates neural network and
symbolic system in the deduction, resulting in inter-
pretable step-by-step solutions while maintaining
mathematical correctness.

Our contributions are summarized as follows:

• We propose a self-learning geometry prob-
lem solving framework, GeoDRL, which in-
tegrates Deep Reinforcement Learning into
deductive geometry reasoning. This enables
training without annotated solution data.

• We integrate decision-making of neural net-
work and symbol-manipulation of symbolic
system in our framework, which enables inter-
pretable step-by-step deduction while main-
taining mathematical correctness.

• We structure geometry information as Ge-
ometry Logic Graph(GLG), which preserves
geometry primitives, attributes and relations.

GLG demonstrates its effectiveness in geome-
try interpretation modeling by outperforming
sequential logical expressions.

2 Related Work

2.1 Geometry Problem Solving
Early work focus on geometry theorem proving
(Gelernter et al., 1960; Wen-Tsun, 1986; Chou
et al., 1996), which is to demonstrate the truth of a
geometric proposition through a logical deduction.
These early efforts utilized symbolic computer sys-
tems to perform logical deductions and symbol
manipulation. More recently, systems for solv-
ing geometry problems, such as GEOS (Seo et al.,
2015) and Inter-GPS (Lu et al., 2021), have been
developed. These systems take geometry diagram
and text as input and provide a problem solution,
which involves parsing multi-modal information,
utilizing theorem knowledge, and conducting quan-
titative reasoning. In recent years, there has been a
trend of training language model on large-scale cor-
pora to learn mathematical reasoning. Examples in
the geometry domain include GeoQA (Chen et al.,
2021) and UniGeo (Chen et al., 2022), which view
GPS as a special case of text generation and use
language models to generate solutions. While this
approach is highly generalizable, it also carries the
risk of lacking mathematical rigor.

2.2 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) is a machine
learning approach that aims to learn a long-term
strategy to maximize the reward signal in an opti-
mization problem. In recent years, there have been
numerous studies that apply DRL to solve mathe-
matical problems, including math word problems
(Wang et al., 2018; Lu et al., 2022a), arithmetic
expression calculation (Chen et al., 2018), math
theorem proving (Kaliszyk et al., 2018), symbolic
reasoning (Poesia et al., 2021) and so on. But there
are very few explorations that view geometry prob-
lem solving as a RL task. In this paper, we model
geometry reasoning as a Markov Decision Process
on a logic graph and use Deep Q-Network (DQN)
(Mnih et al., 2013) to choose appropriate theorems
for deductive reasoning.

3 Problem Statement and Preliminaries

3.1 Problem Definition
In this paper, we focus on Plane Geometry Problem
Solving. We define the task as follows: given a
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Problem Interpretation
C

A BD
Question: In triangle ABC, AD = 4 and BD
= 9. Find CD.

Primitives:
Point: A, B, C, D
Line: AB, AC, AD, BC, BD, CD
Angle: ∠𝐵𝐵𝐵𝐵𝐵𝐵,∠𝐵𝐵𝐵𝐵𝐵𝐵,∠𝐵𝐵𝐵𝐵𝐵𝐵,∠𝐵𝐵𝐵𝐵𝐴𝐴,∠𝐵𝐵𝐵𝐵𝐴𝐴,∠𝐵𝐵𝐴𝐴𝐵𝐵,∠𝐵𝐵𝐴𝐴𝐵𝐵
Triangle: △ABC, △ACD, △BCD 
Attributes: 
𝐵𝐵𝐴𝐴 = 4,𝐵𝐵𝐴𝐴 = 9
∠𝐵𝐵𝐵𝐵𝐵𝐵 = 90°,∠𝐵𝐵𝐴𝐴𝐵𝐵 = 90°
Predicates: 
D LiesOn AB

Table 1: An example of geometry interpretation, includ-
ing primitives, attributes, and predicates.

plane geometry problem P = {D,T} including
diagram D and text T , the objective is to find a
deduction sequence τ that satisfies the goal g of
P . The basic terms in our framework are defined
below.

Definition 3.1 (Primitive) A primitive is a basic
geometry element that constitutes the diagram,
such as point, line, circle, polygon, etc.

Definition 3.2 (Attribute) An attribute is a prop-
erty of the primitive, usually expressed as a numer-
ical value, such as the length of a line segment, the
measure of an angle, and the radius of a circle.

Definition 3.3 (Predicate) A predicate is a geom-
etry relation between primitives, such as point lies
on line, line 1 is perpendicular to line 2, etc.

Definition 3.4 (Interpretation) An interpretation
is a complete description of all primitives, at-
tributes, and predicates in a geometry problem.

Definition 3.5 (Theorem) A theorem is a priori
geometric knowledge applied in interpretation to
obtain new primitives, attributes or relations.

Table 1 shows an example of the interpretation
of a geometry problem. We further define solution
steps as follows: in a n-steps deduction sequence
τ = {p1, p2, ..., pn}, pt is the t-th step in τ , which

is expressed as pt = It−1
kt→ It, where k ∈ KB is

a theorem in geometry theorem set KB and I is the
geometry interpretation.

Based on the above definitions, the flow of Geo-
DRL is described as follows:

1. The parser implements a function Parse(·)
to extract the initial geometry interpretation
I0 and the goal g from the question diagram
D and text T , which is formulated as I0, g =
Parse(D,T ).

2. The reasoner implements a function
Reason(·) to produce a deduction sequence
τ , given the initial interpretation I0, the goal

g and a geometry theorem set KB, which is
formulated as τ = Reason(I0, g,KB)

A remaining issue is the selection of the opti-
mal solution τ∗ from multiple candidate sequences
C = {τ1, τ2, ...}. We prefer to choose the shortest
solution, and if there are multiple solutions of the
same length, choose the one with a lower time. It
is formulated as τ∗ = argminτ∈C(|τ |, T ime(τ))

3.2 Reinforcement Learning Modeling
In 3.1, we described geometry problem solving,
where the reasoning is modeled as solving Markov
Decision Process (MDP) (Puterman, 2014). The
MDP for geometry reasoning consists of all the
potential geometry interpretation states and the
transition probabilities between them. Hence, we
adopt Q-Learning, a DRL algorithm to choose ac-
tions based on the Q-value of state. In this frame-
work, geometry interpretations is the state space
S = {si|i = 1, 2, ...}, geometry theorem set is the
action space A = {ai|i = 1, 2, ...}. DRL agent is
a deep neural network that produces value Q(s, a)
for selecting action a in state s. Each time step en-
vironment performs an action according to Q(s, a),
updates to the new state s′, and provides a reward r.
The goal of the algorithm is to make the agent learn
a policy π : S → A to maximize the accumulated
reward.

4 Approach

This section introduces our proposed geometry
problem solving framework, GeoDRL. The over-
all architecture is illustrated in Figure 2. Here we
follow the flow described in 3.1 and introduce the
parser and reasoner separately.

4.1 Parser
The parser is aimed to extract primitives and at-
tributes from the question diagram and text, build
relations between primitives, and parse them into
the interpretation. For structured modeling of ge-
ometry information, we propose Geometry Logic
Graph (GLG) as the representation of geometry in-
terpretation in our framework. GLG is a heteroge-
nous attributed graph G = (V,E,Σ, L) where (1)
V is the set of vertices denoting primitive types; (2)
E ⊆ V ×V is the set of edges and e = (u, v) ∈ E
is an edge from vertex u to vertex v, denoting ge-
ometry relation between these two primitives; (3) Σ
is the domain of attributes and L is the function that
assigns attributes to vertices. l(v) is the attribute
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Circle O has a radius of 13 
inches. Radius OB is 
perpendicular to chord CD which 
is 24 inches long. Find OX.

C
B

O D
X

Diagram Text

PGDPNet Semantic 
Parser

Geometry Logic Graph

Parser

Symbolic Geometric System

Environment

State

𝑠𝑠0

𝑠𝑠1

13

12

𝑠𝑠2

𝑠𝑠3

Observe 
State 𝒔𝒔𝒕𝒕

State 𝒔𝒔𝟎𝟎

Agent

Reward 𝒓𝒓𝒕𝒕

Primitive Embedding

Attribute Embedding

Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

+

Edge Matrix

…

…

Graph
Transformer

Action

𝑎𝑎1

𝑎𝑎2

𝑎𝑎3

𝑎𝑎4

Take 
Action 𝒂𝒂𝒕𝒕

Add Auxiliary Lines

Circle Definition

Chord Bisector 
Theorem

Pythagoras Theorem

Reasoner

Solution
Step 1: (Add Auxiliary Lines)

Connect O and C.

Step 2: (Circle Definition)

C lies on Circle 𝑂𝑂 ⇒ 𝑂𝑂𝑂𝑂 = 𝑟𝑟𝑜𝑜 = 13

Step 3: (Chord Bisector Theorem)
𝑂𝑂𝑂𝑂 ⊥ 𝑂𝑂𝐶𝐶
B lies on Circle 𝑂𝑂
C lies on Circle 𝑂𝑂
D lies on Circle 𝑂𝑂

⇒𝑂𝑂𝐶𝐶 =
1
2
𝑂𝑂𝐶𝐶 = 12

Step 4: (Pythagoras Theorem)

𝑂𝑂𝑂𝑂 ⊥ 𝑂𝑂𝐶𝐶 ⇒∠𝑂𝑂𝐶𝐶𝑂𝑂 = 90°

⇒ 𝑂𝑂𝐶𝐶 = 𝑂𝑂𝑂𝑂2 + 𝑂𝑂𝐶𝐶2 = 5

Generate
Solution 𝝉𝝉

Figure 2: The overall architecture of GeoDRL. It consists of three stages: the parsing stage, where the problem is
parsed into logical forms and structured into a GLG; the reasoning stage, where the actions and state transitions are
incrementally deduced through interaction between the agent and symbolic geometry system; and the answering
stage, where a human-readable solution is delivered from the deductive sequence.

A

B O

Question: AB = 4. Find 
the radius of circle O.

Point Point

Point

Line
4

Circle
goal

Angle
90

Angle

Angle

Triangle

EndpointOf

VertexOfAngle

SideOfAngle

Line

Line

CenterOf

RadiusOf

LiesOnCircle

SideOfTriangle

InteriorAngleOf

Figure 3: An example of parsing a problem into a GLG.
GLG preserves geometry interpretation from the origi-
nal diagram and text and adds implicit relations between
primitives.

of v. For example, if v denotes a line segment
AB, then l(v) denotes the length of AB. GLG is
a directed graph, where each edge e = (u, v) be-
tween different types of primitive has its inverse
edge e−1 = (v, u). Furthermore, to represent the
interpretation I and the goal g within one graph,
we add the goal g as a special attribute of targeted
primitives in the GLG. Figure 3 shows an example
of GLG.

Here we discuss the advantages of GLG com-
pared with symbolic logical expressions in previous
works. First, GLG is structured as a graph incor-
porating geometry interpretation into its nodes and
edges, which avoids redundant symbolic grammar.
Second, in symbolic logical expression, a primitive
is identified by its notation, resulting in the feature
learned by the neural network being specific to its
notation. It is counter-intuitive, since changing the
notation of a point from A to X won’t affect the

problem substantially. In GLG, the feature of a
primitive is only determined by its type, attribute
and relations with others, instead of its notation.

Specifically, we parse the diagram and text sepa-
rately. For the diagram, we use PGDPNet (Zhang
et al., 2022) as the parser. PGDPNet is an end-to-
end model for extracting primitives and predicates
from geometry diagrams, achieving state-of-the-art
performance on plane geometry diagram parsing.
PGDPNet takes a diagram image as input, gener-
ates the instances of points, lines and circles, and
the logical expressions indicating relationships be-
tween primitives. For the text, we borrow the rule-
based text parser in Inter-GPS (Lu et al., 2021).
The semantic parser parses text into symbolic log-
ical expressions, usually including the goal. We
combine the logical expressions from the above
two branches and structure them into a GLG, con-
sisting of an initial interpretation I0 and the goal
g.

4.2 Reasoner
Given an initial interpretation I0, a goal g, and a
geometry theorem set KB, the reasoner is aimed
to produce a deduction sequence τ where It satis-
fies the goal g. We model it as a Markov Decision
Process and adopt DRL to solve the MDP. We im-
plement an environment, i.e., a symbolic geometric
system. The system parses the geometry interpre-
tation and goal, performs actions, updates states
and gives rewards. We design a DRL agent to im-
plement the DQN algorithm (Mnih et al., 2013),
using GNN to approximate the q-value function.
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DRL agent selects an action for the current state
according to the Q-value, and interacts with the en-
vironment to obtain the reward and the next state.

4.2.1 Environment
The environment is depicted as a symbolic geo-
metric system. The system resolves GLG from 4.1
and stores the geometry interpretation and goal. It
applies a geometry theorem, updates the interpreta-
tion and generates a reward according to the action
instruction given by the agent. In an update process
s→ s′, our reward function is set as follows:

Reward =

{
Solve(s′, g)− αe−

t
σ s ̸= s′

−1.0 s = s′

(1)

Solve(s, g) =

{
1.0 s ⊢ g

0.0 otherwise
(2)

Where t denotes the time spent in the process.
The system provides a positive reward 1.0 only
when the next state s′ satisfies the goal g, that is,
the problem is solved. We add a time penalty factor
−αe− t

σ to encourage the agent to choose more
efficient actions. If the state is not changed by
applying the theorem, the reward is set to −1.0 to
avoid this action. In one word, the reward function
encourages agent to choose a shorter and faster
path with less invalid actions.

4.2.2 Action Space
Action space is defined as a geometry theorem set
KB, where each theorem k is defined as a condi-
tional statement p ⇒ q with a premise p and a
conclusion q. At time step t, when applying the-
orem k on interpretation It−1, if It−1 satisfies the
premise p of k, then It−1 is updated according to
the conclusion q:

It−1 ⊢ p⇒ It ← It−1 ∧ q (3)

If It−1 does not satisfy the premise p, it will
not be updated. Moreover, even if p is satisfied,
It may remain unchanged. It often happens when
a theorem is used repeatedly in succession. We
call both cases invalid theorems, which leads to
r = −1.0.

Specifically, we define 24 theorems in this work,
covering various classes such as angles, circles,
triangles, and polygons. In addition, we define
auxiliary-line as a class to deal with some difficult
geometry problems.

4.2.3 GNN Architecture
We utilize a GNN to learn the graph representation
of GLG to estimate the Q-value of the state. This
is accomplished through the implementation of a
Heterogeneous Attributed Graph Transformer built
upon a transformer-based architecture. Given a
GLG G = (V,E,Σ, L), the input of our model is
a sequence of nodes with a special token [GRAPH]
as the start. [GRAPH] aggregates the node features
to capture the global graph representation. Each
node includes node type vi and node attribute l(vi),
which are projected to node embedding hi:

hi = Etype(vi) + Eattr(l(vi)) (4)

Node type is the type of primitive such as point,
line and circle. Node attribute is commonly ex-
pressed as a number or math expression with vari-
ables. In practice, recording the specific value of
every attribute makes little sense. For example,
AB=3.2cm, BC=3.5cm. In this case, we only need
to know that the lengths of AB and BC are two
unequal numerical values. Therefore, we use sev-
eral replacement words to replace the less frequent
attribute values.

The model encodes the structural information of
GLG by modifying the self-attention mechanism
in transformer. Edges are incorporated into self-
attention by adding bias term matrix B, formulated
as:

Attention(Q,K, V ) = softmax(
QKT

√
d

+B)V

(5)

Bi,j =





Eedge(ei,j) (vi, vj) ∈ E

0 i = j

−∞ otherwise

(6)

When there exists an edge ei,j from vi to vj , the
edge embedding of ei,j is added into the position
(i, j) of attention score as a bias term. Otherwise,
we block the attention channel by setting the score
to -∞. Global graph token [GRAPH] attends to ev-
ery node to aggregate all the features as the global
graph feature. As a result, we implement a one-hop
graph attention network. Finally, the graph feature
vector is sent to an FFN with the output dimension
of action space size |A| to produce the Q-value.

4.2.4 Agent Operation
DRL agent operates by interacting with the en-
vironment, i.e., the symbolic system. Algorithm
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Algorithm 1 DRL Agent Operation

1: s, g ← env.init()
2: M ← {}
3: Solved← False
4: while Solved = False do
5: Q(s, ai)← GNN(s), i = 0, 1, 2, ...|A|
6: a← epsilon− greedy(Q(s, ai), ϵ)
7: s′, r ← env.step(s, a)
8: if s′ ⊢ g then
9: Solved← True

10: end if
11: M .append((s, a, s′, r))
12: if M.amount() > N then
13: GNN.update()
14: end if
15: s← s′;
16: end while

1 describes DRL agent operation. First, the sys-
tem initializes an interpretation with GLG obtained
from 4.1 as the initial state s0. Then it enters a
while loop, where each time step t GNN takes
GLG of st−1 as input and calculates Q(st−1, ai)
for every action ai. DRL agent adopts ϵ-greedy
exploration strategy to choose action at. The sym-
bolic system performs action at, updates state st,
and returns a reward rt. Meanwhile, the system
checks if st ⊢ g, and if so, assigns a flag Solved
indicating jumping out of the loop. The data sam-
ples {(st−1, at, st, rt)|t = 1, 2, ...} are accumu-
lated and stored into an experience memory. After
it contains a certain amount of samples, we ran-
domly sample one batch each time from it to train
the Q-Net using the Bellman-Equation:

Q(s, a) = max
a′

(γQ(s′, a′) + r(s, a)) (7)

where the training objective is to minimize the
SmoothL1 loss (Girshick, 2015) of Q(s, a) and
maxa′(γQ(s′, a′)+r(s, a)). In the inference stage,
DRL agent chooses the action a that maximizes
Q(s, a) for the current state s. The symbolic sys-
tem performs the action and updates the state until
the problem is solved. Finally, we gather each step
pt and obtain the deduction sequence τ .

Considering the interpretability of the solution,
τ needs to be further processed to deliver a human-
readable answer. There might be redundant up-
dated parts in interpretations. For example, there
are several pairs of similar triangles at step 2 in

Figure 1, but only△ACD ∼ △CBD leads to the
goal. To address it, we record the In ∩ g and back-
track the updates that lead to it. Eventually, we get
the final answer.

5 Experiments

In this section, we conduct experiments on public
geometry problem datasets and compare the perfor-
mance of GeoDRL against the previous methods.
Furthermore, we analyze the contribution of dif-
ferent schemes by ablation study and discuss the
superiority and limitations of our model with typi-
cal cases.

5.1 Implementation and Setup

5.1.1 Dataset and Parameter Settings

We mainly conduct experiments on Geometry3K
(Lu et al., 2021), a public geometric dataset with
3000 SAT-style plane geometry problems. PGDP-
Net is employed as the parser with the public avail-
able model weight1. Our symbolic system is built-
upon Inter-GPS (Lu et al., 2021), with an improved
logical parser and expanded geometry theorem set.
We implement a Graph Transformer with 12-layer,
12 attention heads, a maximum of 256 nodes, and
a dimensionality of 768, as the Q-Net. For fairness,
transformer-based baselines share the same param-
eter settings and random seeds. Each experiment
for GeoDRL is repeated three times and obtained
the mean scores. For more parameter settings and
experiment details, please refer to Appendix A.

5.1.2 Training Method

To accelerate the training process by avoiding
extensive initial exploration, we adopt Imitation
Learning (IL) method to make our agent learn an
initial policy. Specifically, we utilize the heuristic
strategy in Lu et al. (2021) to search for deduction
sequences on a few training data samples (500 prob-
lems) and train a teacher model on them. We then
use the teacher model to interact with the environ-
ment and generate samples to Experience Memory
following Algorithm 1. A randomly-initialed stu-
dent model is then pre-trained on these samples
for 2000 steps to learn an initial policy from the
experiences of the teacher model. Following this,
we proceed to train the student model as a DRL
agent on the train set.

1https://github.com/mingliangzhang2018/PGDP
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Method All Angle Length Area Ratio Line Triangle Quad Circle Other
Human 56.9 53.7 59.3 57.7 42.9 46.7 53.8 68.7 61.7 58.3
Human Expert 90.9 89.9 92.0 93.9 66.7 95.9 92.2 90.5 89.9 92.3
FiLM(Perez et al., 2018) 31.7 28.7 32.7 39.6 33.3 33.3 29.2 33.6 30.8 29.6
FiLM-BERT(Devlin et al., 2019) 32.8 32.9 33.3 30.2 25.0 32.1 32.3 32.2 34.3 33.3
FiLM-BART(Lewis et al., 2020) 33.0 32.1 33.0 35.8 50.0 34.6 32.6 37.1 30.1 37.0
Inter-GPS(Lu et al., 2021) 57.5 59.1 61.7 30.2 50.0 59.3 66.0 52.4 45.5 48.1
Inter-GPS(GT) 78.3 83.1 77.9 62.3 75.0 86.4 83.3 77.6 61.5 70.4
GeoDRL(ours) 68.4 75.5 70.5 22.6 83.3 77.8 76.0 62.9 53.8 48.1
GeoDRL(GT) 89.4 86.5 93.7 75.5 100.0 87.7 93.1 90.2 78.3 77.8

Table 2: Accuracy(%) results of GeoDRL and compared baselines on the Geometry3K dataset. GT denotes using
the ground truth parsing results, which can be considered as an individual evaluation of the reasoner.

Method Settings Overall Avg Avg
Acc(%) Time(s) Step

Inter-GPS(GT) Predict 77.5 6.35 6.68
Low-first 77.3 9.41 15.30

GeoDRL(GT) Beam Size=1 84.7 2.67 2.27
Beam Size=5 89.4 6.03 2.34

Table 3: Evaluation results of GeoDRL and Inter-GPS
with different settings. Avg Time means the average
time spent on each solved problem. Avg Step means the
average number of steps to solve each problem.

5.1.3 Inference
In the inference stage, we adopt the Beam Search
algorithm to choose the final solution τ∗. The score
of a candidate sequence τ is calculated as:

p(st|st−1, at) =
eQ(st−1,at)

∑
a′∈A eQ(st−1,a′)

(8)

score(τ) =
∑

t

log(p(st|st−1, at)) (9)

Where p(st|st−1, at) is the transition probabil-
ity from st−1 to st by taking action at, which is
calculated by applying softmax function on the Q-
value. With the beam size of k, we finally obtain
k candidate sequences {τ1, τ2, ..., τk} with the top
k scores and select the optimal τ∗ as the result. In
this study, we implement GeoDRL with the default
beam size of 5.

5.2 Evaluation
We evaluate GeoDRL on the Geometry3K dataset
with several baselines: three probabilistic ap-
proaches including FiLM (Perez et al., 2018),
FiLM-BERT (Devlin et al., 2019), FiLM-BART
(Lewis et al., 2020), and a symbolic approach Inter-
GPS (Lu et al., 2021), which is the state-of-the-
art method on Geometry3K. Table 2 shows the re-
sults. GeoDRL significantly outperforms the other
methods in overall accuracy and most problem

types. Compared to the previous state-of-the-art
method Inter-GPS (Lu et al., 2021), GeoDRL ob-
tains 11.1% and 10.9% enhancements in overall
accuracy with or without the ground truth parsing
results. Notablely, GeoDRL(GT) achieves compa-
rable accuracy scores to the human expert, which
demonstrates the superiority of our reasoner.

We evaluate the efficiency of GeoDRL and Inter-
GPS. For fairness, both methods use ground truth
parsing results of Geometry3K to avoid the impact
of different parsers. As shown in Table 3, com-
pared to Inter-GPS, GeoDRL demonstrates supe-
rior performance, achieving not only higher accu-
racy scores - up to 89.4% with beam size 5 versus
77.5% for Inter-GPS, but also taking less time - a
minimum average of 2.67 seconds against Inter-
GPS’s 6.35 seconds. Additionally, GeoDRL solves
each problem in fewer steps, averaging 2.27 steps
with beam size 1, in contrast to Inter-GPS’s 6.68
steps. Considering that our symbolic system is
derived from Inter-GPS, comparing the time and
steps of these two methods makes sense. Due to
the heuristic algorithm in choosing theorems, Inter-
GPS is found to generate solutions with redundant
steps, leading to a longer solving time and more
steps. Overall, GeoDRL is notably superior to the
previous state-of-the-art Inter-GPS in terms of ef-
fectiveness and efficiency.

5.3 Ablation Study

We conduct an ablation study on Geometry3K to
figure out the contributions of different schemes in
our framework. Results are shown in Table 4. Com-
pared to traditional symbolic expressions, GLG
significantly improves the accuracy of single-step
theorem prediction from 67.1% to 84.7% when the
beam size is set to 1. To explore the effectiveness of
unsupervised-learning, we generate solutions with
random search and train our model on it. Compared
to supervised learning, the self-learning RL strat-
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Method Beam Overall Avg Avg
Size Acc(%) Time(s) Step

GeoDRL(GT) 1 84.7 2.67 2.27
5 89.4 6.03 2.34

-w/o GLG 1 67.1 2.22 1.92
5 86.9 4.21 2.37

-w/o RL 1 81.9 3.54 2.22
5 88.4 8.56 2.37

-w/o TP 1 84.3 2.93 2.28
5 88.2 6.53 2.33

-w/o Agent N/A 86.5 5.83 9.58

Table 4: Results of ablation study on Geometry3K. -
w/o GLG means replacing GLG with symbolic logical
expression sequence. -w/o RL means replacing RL with
supervised learning on solutions from random search.
-w/o TP means removing the time penalty in the reward
function. -w/o Agent means replacing DRL Agent with
a heuristic search strategy.

egy significantly improves prediction efficiency:
the average time is reduced by 24.6% (0.87s) and
29.6% (2.53s) for beam sizes of 1 and 5, respec-
tively, and also an improvement in accuracy. This
indicates that our designed RL strategy with time
penalty contributes to learning more efficient so-
lutions. With the heuristic search strategy from
Inter-GPS (Lu et al., 2021), we obtain poor-quality
solutions with numerous redundant steps, averag-
ing as high as 9.58 steps. Additionally, increasing
the beam size leads to an improvement in accuracy,
but also increases the average solving time.

5.4 Discussion

Here we discuss the interpretability of our solu-
tion. Compared to probabilistic approaches, Geo-
DRL has explicit parsing and reasoning phases.
The parser generates human-readable intermedi-
ate results and a visualizable graph. The reasoner
provides a step-by-step deduction procedure with
mathematical justifications. Unlike symbolic ap-
proaches, GeoDRL generates an explicit probabil-
ity score for each theorem to search for a high-
probability solution, providing explanations for ev-
ery step.

By utilizing the beam search algorithm, based
on state transition probabilities, GeoDRL is able
to produce multiple solutions for a single geom-
etry problem. Figure 4 shows an example. Pro-
viding various solutions is highly beneficial, par-
ticularly in online-education applications for stu-
dents of varying skill levels, where we can tailor
the solutions to the student’s learning progress and
knowledge base.

Question: Circle O has a radius of 13 inches. Radius OB is 
perpendicular to chord CD which is 24 inches long. Find OX.

C
B

O
D

X

Connect OC.

𝑂𝑂𝑂𝑂 ⊥ 𝐶𝐶𝐶𝐶
B lies on Circle 𝑂𝑂
C lies on Circle 𝑂𝑂
D lies on Circle 𝑂𝑂

⇒𝐶𝐶𝐶𝐶 =
1
2
𝐶𝐶𝐶𝐶 = 12

C lies on Circle 𝑂𝑂 ⇒ 𝑂𝑂𝐶𝐶 = 𝑟𝑟𝑜𝑜 = 13

𝑂𝑂𝑂𝑂 ⊥ 𝐶𝐶𝐶𝐶 ⇒∠𝑂𝑂𝐶𝐶𝐶𝐶 = 90° 𝑂𝑂𝐶𝐶 = 𝑂𝑂𝐶𝐶2 + 𝐶𝐶𝐶𝐶2 = 5⇒

Connect OC and OD.

C lies on Circle 𝑂𝑂
⇒𝑂𝑂𝐶𝐶 = 𝑂𝑂𝐶𝐶 = 𝑟𝑟𝑜𝑜 = 13

D lies on Circle 𝑂𝑂

𝑂𝑂𝑂𝑂 ⊥ 𝐶𝐶𝐶𝐶
𝑂𝑂𝐶𝐶 = 𝐶𝐶𝐶𝐶
𝑂𝑂𝐶𝐶 = 𝑂𝑂𝐶𝐶

⇒ △ 𝑂𝑂𝐶𝐶𝐶𝐶 ≌△ 𝑂𝑂𝐶𝐶𝐶𝐶

△ 𝑂𝑂𝐶𝐶𝐶𝐶 ≌△ 𝑂𝑂𝐶𝐶𝐶𝐶 ⇒ 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 =
1
2
𝐶𝐶𝐶𝐶 = 12

Add Auxiliary Lines

Circle Definition Circle Definition

Chord Bisector Theorem Triangle Congruence 
Theorem (RT)

Triangle Congruence 
Theorem (SSS)

Pythagoras Theorem

Figure 4: Two available solutions generated by Geo-
DRL. The left one is more simple and concise, but for
students who have not learned the chord bisector theo-
rem, the right proof of triangle congruence will be easier
to understand.

Question: Find the area of the shaded region.

Figure 5: Failure examples of GeoDRL.

In some cases, the pipeline of parsing and reason-
ing can have negative impacts on problem-solving.
The most common one is the shaded area problem,
as shown in Figure 5. The key to solve such prob-
lems is to express the shaded area as the arithmetic
results of regular shapes’ areas, which requires
joint efforts of parser and reasoner on the specific
diagrams.

6 Conclusion and Future Work

In this paper, we propose GeoDRL, a self-learning
geometry problem solving framework by integrat-
ing Deep Reinforcement Learning into deductive
geometry reasoning, which enables unsupervised
learning of problem-solving strategies. We struc-
ture geometry information as Geometry Logic
Graph to glue discrete geometry literals together.
The combination of neural network and symbolic
system allows efficient solution while maintaining
correctness. Experiments demonstrate that Geo-
DRL outperforms state-of-the-art approaches in
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terms of accuracy, efficiency and interpretability.
Our work presents a promising idea of integrat-

ing reinforcement learning into deductive reason-
ing for geometry problem solving. We believe that
this framework is applicable to a majority of mathe-
matical reasoning tasks. In the future, we intend to
expand our framework to broader mathematical do-
mains to become a general-purpose mathematical
reasoning framework.

Limitations

1. Error accumulation: incorrect parsing results
will affect the reasoner. In our experiments on
Geometry3K dataset, incorrect parsing results
lead to a substantial 21.0% performance drop.

2. The reasoner relies on manually predefined
theorems, which limits its adaptability.

3. The random exploration in the RL training
process leads to uncertainty in the rate of con-
vergence.

Ethics Statement
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sure that our study adheres to the ACM Ethical
Principles. All data used in this study have been
publicly available. This work may inspire the fol-
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potential risk of this work is that students may use
the system as an auto-problem-solving tool to cheat
on exams or assignments.
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A Experiment Details

The number of parameters of Graph Transformer
model is around 44,000,000. The model is trained
on the train set of Geometry3K dataset for 50000
steps using the AdamW optimizer (Loshchilov and
Hutter, 2019), with a batch size of 32 and a learn-
ing rate of 3e-5. It costs around 90 minutes to
train 1000 steps on 4 Nvidia Titan X GPUs. In
reinforcement training, the parameters are set as
ϵ = 0.1, γ = 0.5 and α = 1.0, σ = 60 for the
reward function. In the inference stage, the time
limit to solve one problem is set to 300s.

B Implementation Details

Primitive Attribute
Point N/A
Line Length
Angle AngleMeasure
Arc ArcMeasure
Circle RadiusLength
Triangle Area
Polygon Area

Table 5: The types of primitive and attribute.

Edge Type Domain
EndPointOf(R) <Point, Line>
LiesOnLine(R) <Point, Line>
VertexOfAngle(R) <Point, Angle>
SidePoint(R) <Point, Angle>
CenterOfArc(R) <Point, Arc>
EndPointOfArc(R) <Point, Arc>
CenterOf(R) <Point, Circle>
LiesOnCircle(R) <Point, Circle>
Vertex(R) <Point, Triangle/Polygon>
Equal <Line, Line>
Parallel <Line, Line>
Perpendicular <Line, Line>
SideOfAngle(R) <Line, Angle>
SideOf(R) <Line, Triangle/Polygon>
RadiusOf(R) <Line, Circle>
Equal <Angle, Angle>
InteriorAngleOf(R) <Angle, Triangle/Polygon>
Equal <Arc, Arc>
Congruent <Triangle, Triangle>
Similar <Triangle, Triangle>
Similar <Polygon, Polygon>

Table 6: The edge types between primitives in GLG. (R)
denotes there is an inverse edge type of it.

Class Name
Circle Circle Definition

Thales’ Theorem
Inscribed Angle Theorem
Tangent Secant Theorem
Chord Theorem
(Chord Bisector)
(Intersecting Chord)

Parallel Parallel Lines Theorem
(Alternate Interior Angles)
(Alternate Exterior Angles)
(Consecutive Interior Angles)
(Consecutive Exterior Angles)
(Corresponding Angles)

Single Triangle Triangle Angle-Sum Theorem
(Interior Angles)
(Exterior Angles)
Isosceles Triangle Theorem - Angle
Isosceles Triangle Theorem - Side
Equilateral Triangle Theorem
Pythagoras Theorem
Triangle Center of Gravity Theorem
Angle Bisector Theorem
Law of Sines
Law of Cosines

Double Triangles Triangle Congruence Theorem (Apply)
Triangle Congruence Theorem (Prove)
(SSS)
(SAS)
(ASA)
(AAS)
(HL)
Triangle Similarity Theorem (Apply)
Triangle Similarity Theorem (Prove)
(AA)
(SSS)
(SAS)

Polygon Polygon Similarity Theorem
Median Line Theorem
Area Equation
Polygon Angle-Sum Theorem

Auxiliary Line Connect Points

Table 7: Predefined geometry theorems in the symbolic
system. Theorems in brackets are the sub-theorems.
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