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Abstract

Prompt-based fine-tuning has boosted the per-
formance of Pre-trained Language Models
(PLMs) on few-shot Natural Language Un-
derstanding (NLU) tasks by employing task-
specific prompts. Yet, PLMs are unfamil-
iar with prompt-style expressions during pre-
training, which limits the few-shot learning per-
formance on downstream tasks. It would be
desirable if the models can stimulate prompting
knowledge while adaptation to specific NLU
tasks. We present the Adversarial Knowledge
Stimulated Contrastive Prompting (AKSCP)
framework, leading to better few-shot NLU
tasks for language models by implicitly stim-
ulate knowledge from pretrained language
model. In AKSCP, a novel paradigm Cloze-
driven prompt is proposed for joint prompt tun-
ing across word cloze task and prompt-based
learning, forcing PLMs to stimulate prompt-
ing knowledge. We further design an Adver-
sarial Contrastive learning method to improve
the generalization ability of PLM for different
downstream tasks. Experiments over a variety
of NLU tasks show that AKSCP consistently
outperforms state-of-the-arts for prompt-based
fine-tuning.

1 Introduction

In recent years, pretrained language models (PLMs)
have improved performance on various Natural
Language Understanding (NLU) tasks such as gen-
eral language understanding evaluation (GLUE)
(Wang et al., 2018; Radford et al., 2018; Devlin
et al., 2018; Yang et al., 2019; Liu et al., 2019;
Raffel et al., 2020). However, during fine-tuning,
PLMs would perform poorly with few training sam-
ples due to model over-fitting (Gao et al., 2020).

To alleviate the above dilemma for low-resource
scenarios, natural language prompts have been ap-
plied to enable few-shot or zero-shot learning with
PLMs (Brown et al., 2020b; Li and Liang, 2021;
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Liu et al., 2021b; Lester et al., 2021; Liu et al.,
2021a). To make prompts more flexible and task-
adaptive, prompt tuning freezes the PLM backbone
and only adjusts the representations of prompts
(Lester et al., 2021). This type of method is espe-
cially suitable for ultra-large PLMs that are diffi-
cult to tune. In addition, prompt-based fine-tuning
has been proposed, transforming text classifica-
tion tasks into cloze-style problems (Gao et al.,
2020; Schick and Schütze, 2020). To specify, task-
specific discrete templates with masked language
tokens are added to input texts. The result tokens
of the masked positions predicted by the Masked
Language Modeling (MLM) head are used for
class label prediction. Therefore, the pre-trained
knowledge acquired by PLMs can be better utilized
by “re-using” the MLM training objective. How-
ever, prompt construction is usually handcrafted
or searched by gradient descent, which may lack
coverage and bring considerable bias and high vari-
ances to the results (Hu et al., 2021a). A recent
work (Hu et al., 2021a) attempts to tackle the above
challenge using external training knowledge data.
Yet, these external knowledge data could be expen-
sive to obtain and not transferable. It would be
better if PLMs can stimulate more internal knowl-
edge while they are adapted to downstream tasks
without any external knowledge data.

A major limitation of task-based prompts is that
they are too coarse-grained and fail to capture the
fine-grained information in the input data. Ex-
isting methods use the same prompt for all in-
put data within a tuning task. However, the in-
put data also contains context-specific informa-
tion that can help the PLM retrieve more relevant
knowledge, such as the particular entity being dis-
cussed. Such knowledge embedded in the input
data should be fully exploited to unleash the po-
tential of prompts. The key challenge is that there
is a mismatch between prompt and pre-training,
because the template used in the prompt may not
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be present during pre-training (Gao et al., 2022;
Su et al., 2022; Zheng et al., 2022). To address
this issue, we propose a unified paradigm named
Cloze Driven Prompt (CDP). CDP uses a word
cloze task that is more compatible with PLM, that
is, it only masks and reconstructs the original input
(see Table 1) to activate the knowledge learned by
the original PLMs. To enable the model to better
understand the NLU task, we further propose a
novel adversarial contrastive learning objective to
encourage the PLM to discriminate between differ-
ent classes. Specifically, we propose a supervised
contrastive framework that clusters inputs from the
same class under different augmented "views" and
pushes away the ones from different classes. We
create different "views" of an example by append-
ing it with various language prompts and contextual
demonstrations. Furthermore, we design a prompt-
based adversarial training method to improve the
generalization abilities of PLMs. As our training
method does not actually generate adversarial sam-
ples, it can be applied to large-scale training sets
efficiently.

We conduct experiments over 15 public NLU
benchmarks. Evaluation results indicate that our
model Adversarial Knowledge Stimulated Con-
trastive Prompting (AKSCP) not only outperforms
the performance of the state-of-the-art models, but
also exhibits a good generalization ability over
extensive tasks. In addition, we find that with
the decrease of training data, the performance of
AKSCP with fine-tuned parameters consistently
outperforms the standard prompt learning method
which freezes LM parameters. We also analysis
the sample efficiency and the improvement margin
difference to further verify the correctness of our
motivation of AKSCP.

In this paper, we make three main contributions:
(1) introduce a knowledge stimulated method that
leverages knowledge of pre-trained language mod-
els (PLMs) to enhance the performance of prompt
tuning; (2) proposal of a unified cloze adversar-
ial contrastive prompting learning framework that
jointly optimizes the cloze prompts and the PLM
parameters in an adversarial and contrastive man-
ner; and (3) conduct extensive experiments on
fifteen few-shot natural language understanding
(NLU) datasets and demonstrate the effectiveness
of our approach.

Paradigm Mask Input
Pre-training 15% I just loved every minute M M film M
Fine-tuning 0 I just loved every minute of this film .
Prompt tuning 1 I just loved every minute of this film . It was M .
CDP top-k I just M every minute of this M , It was M .

Table 1: Masked examples. M denotes [MASK] to-
ken. Different colors represent different mask strategies’
tokens replaced by M. Italic words represent prompt
template. All models are large models trained with the
efficient pre-training.

2 Related Work

Prompt tuning Many studies (Li and Liang, 2021;
Liu et al., 2021b; Lester et al., 2021; Liu et al.,
2021a) have focused on how to design prompts
since good prompts can narrow the gap between
pretrained language models and downstream tasks.
Depending on the prompt types, existing researches
can be divided into two main categories: manu-
ally designed ones (Li and Liang, 2021; Liu et al.,
2021b; Lester et al., 2021; Liu et al., 2021a) and
automatically created ones (discrete prompts (Gao
et al., 2020; Schick and Schütze, 2020) or contin-
uous prompts (Shin et al., 2020; Hambardzumyan
et al., 2021)) , where continuous prompts focus
on utilizing learnable continuous embeddings as
prompt templates rather than label words. How-
ever, these prompts construction still lack coverage
and bring considerable bias and high variances to
the results. Recently, Hu et al. (2021a) propose to
utilize external knowledge data to solve this issue.
However, these works can not stimulate knowledge
without external data directly.
Contrastive learning Contrastive learning is a self-
supervised learning technique that aims to learn rep-
resentations that are semantically similar for sam-
ples from the same class (positive pair) and seman-
tically dissimilar for samples from different classes
(negative pairs). This technique achieves this by
maximizing the lower bound of the mutual infor-
mation between two augmented views of the sam-
ples (Bachman et al., 2019; Tian et al., 2020b,a).
Various contrastive learning methods have been
proposed (Wang et al., 2021; Logeswaran and Lee,
2018; Wang et al., 2020; Gao et al., 2021; Zhang
et al., 2021). Among them, SupCon (Khosla et al.,
2020) is a distinctive method that performs con-
trastive learning at the class level by clustering
two augmented batches of samples in the feature
space. This allows SupCon to generate more neg-
ative pairs, which enhances the efficiency of con-
trastive learning in practice.
Adversarial training Many approaches for im-
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Figure 1: An illustration of our proposed Adversarial Knowledge Stimulated Contrastive Prompting approach.

𝑍𝐾𝑏 𝑍𝐾𝑦

Figure 2: Abstract Logic of the proposed approach.
Solid lines indicate the existence of stimulation links
in both the probabilistic graph and the neural graph,
while dotted lines indicate different levels of stimulation
intensity, red lines mean backward optimization.

proving the model robustness against adversarial
perturbations (Szegedy et al., 2013) have been
advanced. Goodfellow et al. (2014) proposed a
FGSM method based on linear perturbation of non-
linear models. Later, Madry et al. (2017) presented
PGD-based adversarial training through multiple
projected gradient ascent steps to adversarially
maximize the loss. In NLU, Belinkov and Bisk
(2017); Iyyer et al. (2018) exploited structure invari-
ant word manipulation and robust training on noisy
texts for improved robustness. Adversarial training
also plays a role in improving model’s generaliza-
tion (Cheng et al., 2019). Dong et al. (2020) exploit
FGM-based adversarial training in self-learning for
improved NLU tasks. In our setting, we count on
adversarial training in the word embedding space
and show that PGD-based adversarial training re-

mains effective when the adversarial perturbation
is applied to noisy augmented examples.

3 Problem Formalization

In the low-resource NLU tasks, only a set of la-
beled training data D = {(x1, y1), . . . , (xn, yn)}.
Following the few-shot setting of Gao et al. (2020),
we assume to have access to a pre-trained language
modelM and D, we aim to learn a model pθ(y∣x)
fromD without any external knowledge and related
data. For all of the following experiments, there
are only K examples per class in D.

4 Methodology

This section first formulates the knowledge stim-
ulation method for low-resource NLU task. We
then introduce the two important components
in proposed Adversarial Knowledge Stimulation
Contrastive Prompt (AKSCP), including i) Cloze
Driven Prompt; ii) Adversarial Contrastive learn-
ing. Figure 1 shows the overall AKSCP.

4.1 Low-Resource Learning Framework

Figure 2 shows the graphical model of our ap-
proach. The model consists of four variables:
dataset D, cloze-driven D̃ construct by keyword
extraction method P , label Y, latent knowledge Zb

K

stimulated by word cloze task, and latent knowl-
edge Zy

K stimulated by prompt tuning. The vari-
able Zb

K bridges D and Zy
K guided by D̃ using

self-supervised learning, while Zb
K and Zy

K stimu-
lated each other simultaneously. Prompt tuning use
prompt to stimulate task-related knowledge Zb

K ,
while word cloze task narrows the gap between pre-

13497



training and prompt tuning, and stimulates more
enriched knowledge from PLMs. Moreover, to
improve the generalization abilities of PLMs, ad-
versarial attackA is applied at the embedding level.
In addition, Zb

K is an unsupervised knowledge that
does not require labeled data and has a good exten-
sibility. However, Zy

K is a supervised knowledge
that requires labeled data. Finally, Zb

K injects its
more enhanced knowledge into the Zy

K for down-
stream training. Therefore, the variables enable us
to model the objectives of different knowledge lev-
els with respect to keywords in a unified framework.
Some advantages of joint learning include (1) the
model and contrastive learning are more robust to
the noise in Zy

K inferred in the training process due
to the protection of each task; and (2) in terms of
prediction, the model can automatically control the
expression of knowledge, so it can easily adapt to
different scenarios without too much extra effort.
The overall objective of learning as

Lθ = E(X)∼D[logMθ
(D)] (1)

4.2 Cloze Driven Prompt

4.2.1 Prompt-based Learning
Fine-tuning is a common method to adapt PLM
to specific downstream tasks (Devlin et al., 2019).
However, for low-resource data augmentation, we
want the stimulated synthetic knowledge KLM to
be different from K, and provide new information
for NLU model learning. Fine-tuning PLM may
not be an optimal solution, as it may overfit to a
small number of training examples. Inspired by
the zero-shot instructions in GPT3 (Brown et al.,
2020a), we adopt prompt learning, which keeps the
whole PLM parameters frozen, and adds discrete
natural language task instructions (e.g. "translate
into English") before the task input. Freezing PLM
parameters may help with generalization during
training. However, finding a suitable discrete task
instruction is not easy to optimize in an end-to-
end manner, and requires additional human effort.
Compared with the previous methods (Brown et al.,
2020a; Gao et al., 2020) of generating prompts
by manual or neural network methods, we design
prompt mapping based on several heuristic rules:Gp represents the mapping of NLU tasks.
Let X and Gp = Gp(x) denote the input sentence
and the instance prompt respectively. Then we get
the input: xinput = [CLS]X[C]Gp [SEP],

We use [C] as a special token to separate the
prompt from the input sentence. For example,
the input of Figure 1 is "I love every minute of
the movie, it was [MASK].", where the prompt
Gp is "it was [MASK]". If a sentence does not
follow this format, we append multiple [MASK]
tokens to the end of the sentence. The number
of [MASK] tokens in the prompt is a predefined
hyper-parameter lmask. We use demonstrations
of label words to construct our input as follows:
xd = x0, t0([MASK]), xi, ti(wordi), where ti and
wordi are the template and the label word for si
respectively, and si is sampled from the training set.
During training, we update the parameters using
masked language modeling (MLM) loss:

L = MLM(xinput, y) (2)

where y denotes the label word that corresponds to
xinput.

4.2.2 Word Cloze Task
Table 1 illustrates that conventional prompt-based
learning approaches rely on a single mask token to
infer the label of an entire sentence. However, this
method faces a challenge because pre-trained lan-
guage models (PLMs) are not exposed to prompt-
style expressions during pre-training, resulting in a
gap between the prompt and the PLM’s knowledge.
To address this issue, we propose a word cloze task
that bridges the gap between pre-training, prompt-
ing, and fine-tuning in natural language understand-
ing (NLU).

The word cloze task has a significant impact on
knowledge stimulation, especially in low-resource
setting. Hu et al. (2021a) propose to further train
the full PLM parameters using external knowledge
bases (KBs) to enhance the knowledge capabil-
ity. However, this strategy (i.e., full PLM training)
incurs high data collection costs and substantial
computational overhead. In contrast, we propose to
directly train the parameters using the word cloze
task without any external training data. Assuming
that knowledge stimulation updates the parameters
based on partial information (such as keywords)
through the MLM model, we propose the Signif-
icant Keywords to Sentence cloze task. Given a
piece of text, we use the unsupervised keyword
extraction algorithm to extract keywords. Given
these keywords, the Cloze Sequence is trained to re-
construct the original text blocks. When the Cloze
Task is applied to knowledge stimulation, we only
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need to fine-tune the Cloze Sequence under un-
supervised learning. This training process is con-
ducted jointly with the prompt-based learning pro-
cess. We only use the few-shot training data. For-
mally, the Significant Keywords to word cloze task
creates a corrupted version xc for an input xinput:
xc = [CLS]X

′
[C][SEP], where X

′
is the corrupted

version of X using Significant Keywords masking.
After constructing this corrupted version of the se-
quence, the MLM model attempts to predict the
masked tokens to restore the original tokens. The
word cloze task loss is then defined as:

LC = MLM(xc, xinput) (3)

4.3 Adversarial Contrastive Learning
4.3.1 Multi-View Constrastive Learning
Previous works often limit the encoder inputs to
demonstration or view in a random strategy, such
as random demonstration (Gao et al., 2020) and
random view (Jian et al., 2022a). The relatively
random sampling could mislead the model with
cross target or event result in grouping together
in the latent space. To enrich the positive pair
construction, we propose Multi-View to generate
positive pairs from the input view (conditional on
keywords in the input statement) and the output
view (conditional on labels). Figure 1 illustrates
examples of these two views. As shown in Al-
gorithm 1 (line 4 to 5), after fine-tuning the Word
Cloze task in PLMs, AKSCP first generatesHI andHO from the input view and output view respec-
tively. AKSCP then extracts labels from HI and
[MASK] statement fromHO. We select sentences
with the same [MASK] tokens and the same label
as positive instances, and negative instances other-
wise. In order to reduce the inconsistency caused
by masking between training and evaluation, we
keep the probability δ mentioned by a phrase un-
changed in a direct alignment. In this way, the
resulting output text should maintain a higher level
of distinguishability and diversity in latent space
and stimulate more task/keyword agnostic novel
knowledge. We use SupCon (Khosla et al., 2020)
to compute the contrastive learning loss. To apply
SupCon on multiple views of input text, we need to
first obtain two views of text: s1 = x0,Gp0, xi,Gpi
and s2 = x0,Gpj , xj ,Gpj We generate candidate
demonstrations for each input instance based on
different Gp. Let s̃2b−1, s̃2b be two augmented
views of input batch sb, and r2b and r2b−1 are the
features of s̃2b−1 and s̃2b, yb denote the label for xb,

then we can calculate the SupCon loss as follows:

LS = SupCon(r2b−1, r2b, yb) (4)

4.3.2 Adversarial Training
After completing the two kinds of Multi-View
data augmentation, we obtain synthesized data
that is substantially less noisy, denoted as ĤLM =HI ∪HO, as shown in Algorithm 1 (line 6). We
then proceed to train the model f(; θ) for the final
NLU tasks. As a special training regimen, we adopt
adversarial training, which aims to minimize the
maximal loss caused by label-preserving adversar-
ial perturbations (Szegedy et al., 2013; Goodfellow
et al., 2014), thereby making the model more ro-
bust. Specifically, adversarial training is especially
effective in a Natural Language Inference (NLI)
framework when used to exploit augmented data,
as it encourages the model to be more resilient to
the variation among similar words and word orders
in different source sentences and to better adapt to
the new moderately noisy data. We confirm this
hypothesis in our experimental results (see SNLI
in Table 3). Adversarial training is based on the
idea of finding optimal parameters θ to make the
model robust against any perturbation r within a
norm ball on a continuous (sub-)word embedding
space. Hence, the loss function becomes:

LAdv(xi, yi) = L(f(xi + rAdv(xi, yi); θ), yi) (5)

rAdv(xi, yi) ≈ ϵ ∇xiL(f(xi; θ̃), yi)∣∣∇xiL(f(xi; θ̃), yi)∣∣2 (6)

Madry et al. (2017) demonstrated that projected
gradient descent (PGD) allows us to find a better
perturbation radv(xi, yi). In particular, for the norm
ball constraint ∣∣r∣∣ ≤ ϵ, given a point r0,∏∣∣r∣∣≤ϵ aims
to find r that is closest to r0 as follows:

∏∣∣r∣∣≤ϵ(r0) = argmin∣∣r∣∣≤ϵ ∣∣r − r0∣∣ (7)

In order to explore more optimal points in the
latent space, one needs to perform K-step PGD dur-
ing the training process, which entails K forward-
backward passes through the network. Under a
linear approximation and an L2 norm constraint,
each iteration of PGD takes the following form:

rt+1 = ∏∣∣r∣∣≤ϵ(rt + α
∇rtL(f(xi + rt; θ̃), yi)∣∣∇rtL(f(xi + rt; θ̃), yi)∣∣2 ) (8)

Here, α is the step size and t is the step index.
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Algorithm 1 Optimization Algorithm

Require: s:number of training iterations
1: D ∶ few-shot labeled dataset
2: M ∶ model
3: N ← 1
4: HI ← GEN(D, I) ▷ input view
5: HO ← GEN(HI ,O) ▷ output view
6: ĤLM ←HI ∪HO

7: while N ≠ s do
8: LS = SupCon(MN , ĤLM)
9: LP = CE(MN , ĤLM)

10: LC = CE(MN , ĤLM)
11: # Build ĤAdv

LM with PGD
12: LAdv = L(MN , ĤAdv

LM)
13: L = LP + γLC + βLS + αLAdv
14: MN ← TRAIN(M, ĤLM)
15: N ← N + 1
16: end while
17: return M

4.4 Joint Learning
To enable the integration of CDP and Adversarial
Contrastive learning, we propose a joint training
method:

L = LP + γLC + βLS + αLAdv (9)

where β , α and γ are loss balance weights, and
α, γ, β ∈ (0.0, 1.0). We note that γ > 0.0 is required
to ensure that the parameters of the word cloze
task can be optimized through back propagation.
γ < 1.0 is necessary to prevent the cloze task loss
from reducing the performance of prompt tuning
(Zhang et al., 2019).

5 Experiments

This section is organized as follows. Section 5.1
introduces the experimental settings. Main exper-
imental results were reported in Section 5.2. In
Section 5.3, we perform ablation studies. And Sec-
tion 5.4 compares AKSCP and standard prompting
under different settings and analyzes the sample
efficiency.

5.1 Experimental Setup
Following the few-shot setting in LM-BFF (Gao
et al., 2020), we conduct experiments on 15
tasks. For each benchmark, we perform shot-16
experiments following (Gao et al., 2020). We
repeat the experiments 5 times and report the
average results according to the previous works

Task LM-BFF♣ PET♣ LM-SupCon♣ AKSCP
SST-2 (acc) 89.0±0.7 88.4±1.0 90.6±0.1 91.5±0.2
Subj (acc) 90.2±0.5 89.2±1.5 90.4±1.1 90.8±0.8
SST-5 (acc) 47.9±0.8 46.0±0.9 49.5±1.1 49.8±1.6
CoLA (Matt.) 6.1±5.3 3.5±3.4 10.2±5.8 10.7±6.3
TREC (acc) 82.8±3.1 77.8±9.1 83.3±1.5 86.6±0.6
MNLI (acc) 61.0±2.1 58.2±1.1 64.0±2.0 64.1±2.4
MNLI-mm (acc) 62.5±2.1 59.8±1.2 65.5±2.7 65.6±2.3
SNLI (acc) 66.9±2.4 63.1±2.5 69.9±2.4 72.6±1.9
QNLI (acc) 60.7±1.7 61.5±3.3 66.4±3.5 66.5±4.5
QQP (acc) 62.5±2.6 61.9±3.5 68.8±3.8 68.9±3.0
RTE (acc) 64.3±2.7 60.9±4.7 65.1±3.5 66.0±3.0
MRP (F1) 75.5±5.2 70.6±6.0 78.2±3.1 78.3±2.9
MR (acc) 83.3±1.4 85.0±0.6 85.8±0.6 86.2±0.8
MPQ (acc) 83.6±1.8 81.3±2.6 84.6±1.5 85.3±1.2
CR (acc) 88.9±1.0 89.3±1.0 89.4±1.0 89.5±0.9

Table 2: Few-shot experiments of baseline methods
and ours (mean ± std). LM-BFF is a prompt-based
method with demonstrations of label words, PET is one
without demonstrations, LM-SupCon is SOTA approach.
The experimental results show the means and standard
deviations from 5 different train-test splits. ♣ results
taken from (Jian et al., 2022a).

(Gao et al., 2020; Jian et al., 2022b). The Baseline
model is Roberta-BASE model, which only uses a
few-shot training data D for training. We use the
same hyper-parameter settings to train the same
Roberta-BASE model. We compare our methond
with LM-BFF (Gao et al., 2020) (a method with
demonstrations) and PET (Schick and Schütze,
2020) (a method without demonstrations). We use
the state-of-the-art method LM-SupCon (Jian et al.,
2022a) as a prompt tuning method for all tasks.

Implementation Details AKSCP is based on the
RoBERTa-base (Liu et al., 2019). Our method uses
a single prompt/template (primary prompt) for the
prediction of each task, and a set of prompts (aux-
iliary prompts) for generating multi-view inputs
for contrastive learning. We use the Adam opti-
mizer with a learning rate 1e-5, warm-up rate of
0.1 and weight decay of 1e-3 in training process.
The number of [MASK] tokens in word cloze task
is lmask = 2. The batch size is set to 16. We con-
duct the training on 8 Nvidia Tesla V100 32G GPU
cards. The γ in Eq.9 is set to 0.3. Early stopping
on validation is adopted as a regularization strat-
egy. We determine all the hyperparameters by grid
search.

5.2 Main Results

In this subsection, we introduce the specific results
and provide possible insights of AKSCP.
Main results on 15 tasks Table 2 summarizes the
experiment results in shot-16. In all tasks, our
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methond can consistently boost the performance
of baseline prompt tuning method LM-SupCon.
There has a maximum improvement of 3.3% in
TREC. The reason is obvious since the selection of
label words among the vocabulary becomes inaccu-
rate when labeled data is limited. Prompt empow-
ered AKSCP successfully avoids this problem and
stimulate PLM’s inner ability distribution among
neurons to support model training on downstream
tasks. In terms of variance, we can see that AKSCP
enjoys smaller variances than baseline methods in
most cases, demonstrating that the better cover-
age of label words stabilizes the training. Table
2 also shows that our method works outperform
well than prompt-based methods without demon-
strations. PET, which is a method without demon-
strations, works consistently worse than AKSCP. In
some tasks, e.g., SST-2, SST-5, QNLI, QQP, RTE
MRPC, MR, and CR, the contribution of AKSCP
can be even larger than the sole use of the demon-
strations for label words. Figure 3(a),(b) and (c)
shows the performance in shot-{16~2048} settings.
AKSCP is always superior to other models in all
settings. Compared with TREC and SNLI, the im-
provement of SST-2 is smaller. This may be due to
the relatively high performance of SST-2 baseline
(90.6%).

LM-SupCon performs consistently worse than
AKSCP (e.g., more than 2.7% score gap in the
SNLI and TREC experiment). This is because
LM-SupCon tuned full PLMs, which can easily
memorize the limited labeled training data and over-
fitting. In contrast, the adversarial contrastive learn-
ing allows AKSCP to maintain high generalization
ability and CDP provide additional stimulated sig-
nals to the NLU models. The results from AKSCP
are all statistical significant, compared to the Base-
line model (paired student’s t-test, p < 0.05).

5.3 Ablation Study

We conduct ablation study to evaluate the effects
of word cloze task, multi-view contrastive learning
and adversarial training on the SST, TREC and
SNLI datasets under the 16-shot setting.
Word Cloze Task To verify the contributions of
the proposed prompt module, we replace the cloze-
driven prompt with standard prompt. Table 3 shows
the result: Cloze-driven Prompt (83.5%) outper-
forms the standard prompt tuning (82.2%) by up to
1.3% on average. The results verify the correctness
of our motivation and the effectiveness of the word

Model SST-2 TREC SNLI
Few-shot Baseline♣ 90.6 83.3 69.9

AKSCP 91.5 86.6 72.6
w/o. word cloze task† 90.7 84.5 71.3

AblationforMulti − V iew Contrastive Learning

output 90.9 85.6 72.0
input 91.1 86.0 72.2

w/o. Multi-View Contrastive Learning 90.8 85.0 71.8
w/o. Adversarial Training 90.9 85.9 71.3

Table 3: The ablation Acc scores over SST, TREC and
SNLI of AKSCP for few-shot learning setting. w/o. de-
notes that we only remove one component from AKSCP.
†refers to standard prompt tuning. ♣ results taken from
(Jian et al., 2022a).

knowledge stimulation. This is because the key
words in the sentence play a hint role, which makes
the model ignore the overall semantic representa-
tion in the context, thus leading to representation
collapse and generalization issue. Masking the
phrase mentions forces the model to learn represen-
tations from context which prevents overfitting and
representation collapse (Gao et al., 2020).
Multi-View Contrastive Learning We then ex-
amine the effect of Multi-View Contrastive Learn-
ing in AKSCP. We generate positive and negative
data pairs from the input view and output view,
respectively. As shown in Table 3, the data pairs
from these two single views improve the model
performance compared to the baseline. However,
their performance is still inferior to that of AKSCP.
This suggests that data from different views pro-
vide complementary training signals for NLU tasks.
Interestingly, models trained with the output view
outperform those trained with the input view, which
indicates that the output pair provides more useful
positive and negative examples for the task, and can
guide the model to better learn from the contrastive
learning objective.
Adversarial Training Finally, we examine the ef-
fect of Adversarial Training in AKSCP. In Table
3, we show the NLU model performance without
adversarial training. The training has an important
effect on the NLU performance. Without adversar-
ial training, the performance gap almost disappears.
The result show that adversarial training has a posi-
tive effect on the NLU performance. In particular,
in SNLI Benchmark, the NLU model performance
improves 1.3% acc score with adversarial training.

5.4 Discussion

Comparasion with standard prompting. Fig-
ure 3(d) compare our AKSCP and baseline model
(LM-SupCon) with fine-tuned parameters and stan-
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Figure 3: Results of sample efficiency analysis. Mean and variance are calculated over 5 different train-test splits.
(a) Comparison of AKSCP and strong baselines with different shot K on SST-2. (b) Comparison of AKSCP and
strong baselines with different shot K on TREC. (c) Comparison of AKSCP and strong baselines with different
shot K on SNLI. (d) Comparison of LM parameters fine-tuning and fixing on SST-2.

dard prompting (frozen the parameters of the LM)
(Brown et al., 2020b) on SST-2 in shot-{4~2048}
settings. Basically, when there are enough train-
ing data (e.g., > 16 shot), fine-tuning prompt can
further improve the model performance than fixed
parameters. With the decrease of shot, the perfor-
mance of our pompt is consistantly outperform than
the fixed methond. However, the results of baseline
are opposite. The performances of LM-SupCon
drop a lot when shot<16. In particular, acc drops
by 29.5% (from 89.2% to 59.7%) in shot-8, even
underperform than fixed model (67.5%), and the
smaller the training size is, the bigger the gap is
between the model with fixed parameters and the
model with fine-tuned parameters. This is because
the parameters will be over-fitted when the training
size is small. AKSCP without word cloze task have
the similar result. The reasons are i) word cloze
task is Self-Supervised Learning (SSL), which can
trained along with supervision signals provided by
itself; ii) the keywords of sentence may play a hint
role, which makes model ignore the overall seman-
tic representation in the context, thus leading to
representation collapse and generalization issue (Li
et al., 2022). Masking the phrase forces model to
learn representations from context which prevents
overfitting and representation collapse with limited
data (Li et al., 2022; Gao et al., 2020). Other tasks
have the same experiment result.

Sample Efficiency We discuss how the perfor-
mance of AKSCP, LM-SupCon, PET and LM-BFF
varies when the number of training samples in-
creases. In Figure 3(a),(b) and (c), we show the
trend of these methods on the SST-2, TREC and
SNLI datasets. For 16-shot to 2048 samples, our
model is consistently better than others. The gap
enlarges as the shot becomes fewer. Sepcifically,
on TREC benchmark, the model performance is im-
proved from 86.6% to 91.0% acc score in average.
Comparing the baseline methods, AKSCP gener-

ally wins over other methonds by a large margin
especially in a low-shot setting. The reason is ob-
vious since the selection of label words among the
vocabulary becomes inaccurate when labeled data
is limited (Hu et al., 2021b). And cloze-driven can
stimulate inner ability distribution among neurons
of PLM to enrich the selection (Su et al., 2022). In
terms of variance, we can see that AKSCP enjoys
smaller variances than baseline methods in most
cases, demonstrating that the adversarial training
effectively improves the robustness of the model.
Improvement Margin Difference As shown in
Table 2, the improvement margins in the classifica-
tion tasks are generally larger than the ones in the
similarity and paraphrase tasks. The reasons are
two-folds: i) the similarity and paraphrase tasks are
more fine-grained and knowledge-intensive task
than the single sentence classification task; ii) the
stimulated knowledge for the similarity and para-
phrase tasks includes entity type and boundary,
which is more difficult for PLMs to mining, in
particular for low-resource settings, compared to
the sentence classification task (Wang et al., 2022).
Joint Learning paramerter We investigate the
effect of Joint Learning in AKSCP. It can be ob-
served that, in general, a lower weight loss balance
weight leads to better performance in most cases.
Specifically, in Eq.9, setting γ to 0.3 is always bet-
ter than other values on the SST dataset. This is
because the weight of the word cloze task should
not be too large, so as to avoid interfering with the
prompt tuning tasks.

6 Conclusion

In this paper, we propose the first prompt-based
knowledge stimulation model AKSCP for low-
resource NLU tasks. We conduct experiments on
15 tasks and demonstrate the effectiveness of our
approach. For future work, we plan to expand our
model to other NLP tasks such as QA and NLG.
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Limitations

In this paper, we only evaluated our method on a
limited number of NLU tasks and datasets. It is
possible that our method may not generalize well to
other tasks or domains that require different types
of prompting knowledge or cloze-driven prompts.
A promising direction for future work is to inves-
tigate how the prompt design and the learning ob-
jective influence the performance and robustness
of PLMs on few-shot NLU tasks.
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