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Abstract

Recent multilingual models benefit from strong
unified semantic representation models. How-
ever, due to conflict linguistic regularities, ig-
noring language-specific features during multi-
lingual learning may suffer from negative trans-
fer. In this work, we analyze the relation be-
tween a language’s position space and its ty-
pological characterization, and suggest deploy-
ing different position spaces for different lan-
guages. We develop a position generation net-
work which combines prior knowledge from
typology features and existing position vectors.
Experiments on the multilingual dependency
parsing task show that the learned position vec-
tors exhibit meaningful hidden structures, and
they can help achieving the best multilingual
parsing results.

1 Introduction

With the recent progress on multilingual text repre-
sentations, there has been a growing interest in de-
veloping unified models for NLP tasks crossing dif-
ferent languages (Ammar et al., 2016; Zeman et al.,
2018; Conneau et al., 2020). For high-resource
languages, a unified multilingual model is faster to
train and easier to deploy than a bunch of indepen-
dent monolingual models. For low(zero)-resource
languages, a multilingual model may help building
positive knowledge transfer among languages.

Words and their positions in the text are two
main features of any language’s sentences. For
words, various multilingual pre-trained models (De-
vlin et al., 2019) and alignment algorithms (Lample
et al., 2017) have been devoted to unifying lexical
semantic spaces among languages. For positions,
however, there are much less study on their roles
in joint multilingual learning: models simply adopt
one universal position representation for all lan-
guages. Since word positions describe word orders,
a single position space implies all languages are
compiled under the same word order system, which

is not true according to linguistic prior. For ex-
ample, adjectives are usually placed before nouns
in English, while in French they are almost after
nouns. Such conflicts of linguistic regularities may
break the effectiveness of word position features
in multilingual learning (especially for those tasks
sensitive to word order (e.g., syntactic and semantic
parsing (Ji et al., 2021))).

In this paper, we study the connection between a
language’s position space and its typological char-
acterization (especially, word order characteriza-
tion). By jointly learning position spaces with a
syntactic parsing task, we first have two findings.

• When position representations are separately
learned on each language, they can effectively
help identifying the language’s typological fea-
ture on word order (e.g., noun-adjective or
adjective-noun). Therefore, by replacing the uni-
versal position space with language-specific ones,
we have more room for handling different linguis-
tic regularities.

• The distances deduced from individually learned
position representations correlate well with lan-
guages’ typological distances (e.g., position
spaces of SVO languages and SOV languages
are apart). Therefore, customized position spaces
provide a clear and acknowledged path for posi-
tive transfer in multilingual learning.

We next develop methods to construct multi-
lingual position representations. Options may in-
clude attaching language ids to the existing univer-
sal position space (Östling and Tiedemann, 2017)
and learning position representations from scratch
(Bjerva et al., 2019). One main concern on those
approaches is on handling unseen languages: if
a language doesn’t appear in the training set, its
position representations are totally unknown.

Our key technical contribution is a generation
network for positions. It explicitly takes word typo-
logical features of a language as input and outputs
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a set of position vectors for that language. For un-
seen languages, we are free to obtain their position
vectors through prior on their typology. During the
generation process, we take the universal position
representations as basis vectors for each language’s
position space, which makes the learned vectors
still carry the prior of “representing a position in
texts”. Under this setting, we are able to exam-
ine the shift of languages’ position spaces with a
unified coordinate system.

We take multilingual dependency parsing as our
demonstrating task. The parser is trained on 13 lan-
guages from the universal dependencies treebanks,
and is tested with both languages present (13) and
absent (30) in the training set. The results show
that, with the typological guided position vectors,
the parser is able to achieve both significant im-
provements on seen (+4.1 LAS) and unseen (+1.2
LAS) languages compared with using universal
position representations.

2 Preliminary

Our multilingual models take Transformer
(Vaswani et al., 2017) as basic building blocks.
There are two types of position spaces, absolute
and relative.

Absolute Position Representation Given a se-
quence of word vectors x0:n = (x0,x1, · · · ,xn),
for each absolute position i, there is a position vec-
tor ai. The vector could be obtained by a lookup
function ai = lookup(Eabs, i), where Eabs is a
learnable matrix (Gehring et al., 2017), or by a fix
sinusoidal function (Vaswani et al., 2017),

ai[j] =

{
sin(ωk · i), if j = 2k
cos(ωk · i), if j = 2k + 1,

(1)

ωk = 1/100002k/d

Absolution position vectors are usually added to
the input word vectors.

Relative Position Representation Relative po-
sition is another widely applied positional feature
(Shaw et al., 2018; Dai et al., 2019; Wang et al.,
2020). Like absolute positions, for each relative
position i, a relative vector ri is obtained from
a lookup function ri = lookup(Erel, i). Com-
monly, relative positions are clipped in a small
range {−k,−k+1, . . . , k}. Unlike absolute posi-
tions, relative position vectors usually access the
Transformer block in self-attention layers, specif-
ically, in the computation of attention scores αij

between two words i, j and output hidden vectors
oi,

αij ∝ xi ·WQ ·
(
xj ·WK + rj−i

)⊤

oi =
∑

j

αij ·
(
xj ·WV + rj−i

)
, (2)

where WQ,WK and WV are parameter matri-
ces. Relative position representation can be
shared among multiple heads and layers of all self-
attention modules.

Multilingual Dependency Parsing A depen-
dency parser extracts arcs (head i, dependent j,
relation r) among words in sentences. Given a set
of training languages, we train a multilingual parser
on the union of training languages’ treebanks (high
resource). In testing time, we evaluate parsing per-
formances on two sets of languages, those are in
the training set and those are not (zero-resource)
An ideal multilingual parser would exhibit positive
transfer on both high and zero-resource languages.

We use the Transformer network to build the
parser. The input word representations are col-
lected from mBERT (Devlin et al., 2019), after
passing a Transformer, we use the biaffine scorer
(Dozat and Manning, 2017) to score each possible
head dependant pair. The performances are eval-
uated by the head-dependent labeled attachment
scores (LAS).

3 Position Spaces for Multilingual
Learning

Existing mutlilingual models use a universal po-
sition space for all languages. It is questionable
that whether one position space is enough to handle
languages with different linguistic constraints. In
order to inspect relations between position repre-
sentations and typological features, we experiment
a multilingual parser with language-specific posi-
tion vectors. For each language, the model assigns
a set of learnable vectors for each position (abso-
lute or relative), and the position vectors are jointly
learned with the parser.

First, we examine whether the learned position
vectors carry information about word order. Taking
the order of subject(S), verb(V) and object(O) as an
example, we merge datasets of English_en (SVO)
and Hindi_hi (SOV), and train a binary probing
classifier to discriminate two word orders. The clas-
sifier is a 2-layer MLP taking the mean pooling of
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Figure 1: a) The correlation between position space similarities (to English) and linguistic distance. b) The parsing
performances on English when substituting with different languages’ position vectors. The x-aix is the linguistic
distance defined in (Scholivet et al., 2019). c) The parsing accuracies of customized multilingual position vectors
(MPR) and universal position vectors (UPR).
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Figure 2: The probing accuracy of different language groups. a) SVO or SOV, b) NA or AN

the parser’s final layer hidden vectors as input. Fol-
lowing the general probing workflow, we may use
testing accuracies of the classifier to assert whether
word order information is encoded. However, a
high probing accuracy is not trustworthy here be-
cause the vocabulary overlapping of two languages
is usually small, and the probing classifier is able
to achieve high accuracies by simply ignoring the
actual word order features and only recognizing
differences of the two distinct vocabularies.

We adopt a different probing strategy. After
training the probing classifier on English and Hindi,
remaining languages are then divided into two
groups, the SVO group (Chinese_zh, Finnish_fi,
Hebrew_he, Italian_it, Russian_ru, Swedish_sv)
and the SOV group (Basque_eu, Japanese_ja, Ko-
rean_ko, Turkish_tr). We replace the position
vectors of English with those of the two groups,
and investigate the accuracy of SVO recognition
on English. If position vectors have successfully
learned the concept of word order across different
languages, we can expected a better probing per-
formances when the replaced vectors are from the
same group. Figure 2 shows that on English, posi-
tion vectors from SVO languages performs much

better than SOV languages. The results on noun-
adjective order (NA or AN) are similar.

Second, we can further ask whether the distance
between two position spaces reflects the typolog-
ical distance between two languages. We choose
a linguistic distance metric defined by Scholivet
et al. (2019). For position spaces, we compute
the average cosine similarities of two correspond-
ing position vectors. Figure 1 shows that the two
distances are highly correlated: similar languages
have similar position spaces. It suggests that the
customized position vectors may be consulted for
avoiding negative transfer in multilingual learning.
In fact, we perform another substitution experi-
ment directly on the learned parser (Figure 1). By
replacing English position vectors with distant lan-
guages (e.g., Japanese), the parsing performances
drop a lot. Therefore if we unify languages with a
universal position space, the conflict of language
regularities may cause negative transfer.

Finally, we compare overall multilingual parsing
performances when learning with universal posi-
tion vectors and learning with different position
vectors. Figure 1 shows that the latter always per-
forms better (+2.8 average LAS).
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4 Typology-guided Position Generation

Analyses above suggest us to apply different po-
sition spaces for different languages. However,
naively assigning learnable vectors for positions
can not generalized to unseen languages. In order
to make the multilingual model applicable to lan-
guages not appear in the training set, we propose to
generate position vectors under explicit guidance
of typological features.

4.1 Typological Features
Our first set of typological features are extracted
from World Atlas of Language Structures (WALS,
(Dryer and Haspelmath, 2013)). WALS is a
database of 192 structural properties (phonology,
word order, lexicon, etc) of 2,676 languages. We
follow (Naseem et al., 2012) to include six word
order features (WALS codes 81A, 85A, 86A, 87A,
88A, 89A), which have been discussed in (Zhang
and Barzilay, 2015; Ammar et al., 2016).

Table 1 lists the six features. For example, fea-
ture 81A indicates the order of subject, object and
verb. It takes four values (SOV, SVO, VSO and
Mixed). In English, 81A is SVO, while in Japanese,
it is SOV. We assign a 3 dimension vector for each
feature value. A typological vector l of a language
is obtained by concatenating value vectors of the
six features. The vectors are randomly initialized
and will be learned with the multilingual model.

We also experiments with other two sets of ty-
pological features. The second set is an extension
of above six features provided by (Scholivet et al.,
2019) which contains 19 features from WALS. The
third feature set is taken from the URIEL typology
database (Littell et al., 2017), which is a collection
of binary features extracted from multiple typologi-
cal and phylogenetic databases (WALS, PHOIBLE
(Steven et al., 2014), and Glottolog (Hammarström
et al., 2021)). This set contains 103 syntactic typo-
logical features.

4.2 Position Generation
Given the typological vector l(l) of a language l,
we train position generation networks (joint with
the multilingual model) to output position vectors
customized for l (absolute position a

(l)
i or relative

position r
(l)
i ). Throughout the paper, we set the

dimension of position vectors be 128, the range
of absolute positions be {0, 1, . . . , 127}, and the
range of relative positions be {−4,−3, . . . , 4}. We
describe two position generation models, a sim-
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Figure 3: Cosine similarity of the first 50 position vec-
tors. We can see that vectors learned from MLP ex-
hibit loose similarity patterns, while those learned with
prior position knowledge and self-attention (ATTN) still
keep some property of the sinusoidal position prior (e.g.,
symmetry). We can also observe that comparing with
sinusoidal vectors, self-attention vectors contain more
stripes along the diagonal. It means that they contain
more locality constraints: if position i is similar to posi-
tion j, it may be similar to positions around j.

ple MLP network and a self-attention network en-
hanced with prior on positions.

MLP Position Generator For each absolute po-
sition i, we deploy a two-layer MLP to learn non-
linear transformations from typology vector spaces
to positional spaces. Specifically, the i-th position
vector a(l)

i is obtained by

a
(l)
i = g

(
l(l) ·W 1

i + b1i

)
·W 2

i + b2i , (3)

where g(·) is a non-linear activation function and
W 1

i ,W
2
i , b

1
i and b2i are independent parameters for

each position. Relative positions are generated
in a similar way. Technically, for αij and oi in
Equation 2, we use two different position vectors
r
K,(l)
i , rV,(l)i generated by two MLPs.

Self-attention Generator The MLP generator
learns position vectors only based on position in-
dex i and typlogical vector l. It is possible (Figure
3) that the learned vectors no longer contains the
semantic of “position” (e.g., vectors of two close
positions are more similar than vectors of two dis-
tant positions). Therefore, we also try to include
prior knowledge on positions to regularize learned
vectors. We build a new position generator based
on multi-head self-attention layers.

For absolute position vectors, we assign one
head of the self-attention layer for each position
i. The typological vector ll is considered as the
query vector, and a set of prior position vectors
[c0, c2, . . . , c127] are key and value vectors. The
absolute position representation a

(l)
i of i is ob-
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Code Description (Order of . . . ) Value & Embeddings (∈ R3)

81A Subject, Object and Verb SOV SVO VSO Mixed
85A Adposition and Noun Phrase NPA ANP Mixed
86A Genitive and Noun GN NG Mixed
87A Adjective and Noun AN NA
88A Demonstrative and Noun DN ND DND
89A Numeral and Noun NumN NNum

Typological Features (∈ R18) Typological Features (∈ R18)

Arabic VSO⊕ANP⊕NG⊕NA⊕DN⊕NumN Bulgarian SVO⊕ANP⊕Mixed⊕AN⊕DN ⊕NumN

Table 1: Six word order typological features from WALS (above), and typological vectors l of Arabic and Bulgarian
(below).
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Figure 4: Attention patterns of position vectors. The x-aix is the 128 positions, and the y-aix describes differences
of attention scores allocated to the right and to the left (positive values means shift right). The x-aix is divided into 3
regions, the front part contains the first 30 positions, the back part contains the last 30 positions, and the middle part
contains the remaining 68 positions. Percentages report how many positions in middle parts shift left/right.

tained by weighted averaging over prior vectors.

α
(l)
ij ∝ l(l) · UQ

i ·
(
cj · UK

i

)⊤
,

a
(l)
i =

∑

j

α
(l)
ij ·

(
cj · UV

i

)
, (4)

where UQ
i , UK

i , UV
i are the parameter matrices of

position i and are shared among all languages. The
self-attention operation can be seen as a soft ver-
sion of selecting a vector from an existing position
vector set. In experiments, we set prior position
vectors via sinusoidal functions (Equation 1). We
can also build relative position vectors using the
prior vectors.

Introducing prior vectors has another advantages
regarding interpretability: they provide a coordi-
nate system where we could compare the learned
position spaces for different languages. In other

words, for a newly learned position i, we can
compare its attention patterns in two different lan-
guages. For example, if the learned absolute posi-
tion vector ai shift left (attending more on its left
positions [ci−1, ci−2, . . .] than its right positions
[ci+1, ci+2, . . .]), this position feature may explicit
guide the multilingual model to attend more on left
contexts of i. We depict attention patterns of each
position in Figure 4 and find that,

• for almost all languages, positions near the front
end (0) and back end (127) always attend in-
wards: the front positions shift right, and the
back positions shift left. Therefore, for short
sentences, position vectors will always push the
model to see the whole input, and for long sen-
tences, they will suggest the model to replay the
input at the end.

• for those middle positions, their attention patterns
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correlate well with its language branching type: 1

for left-branching languages (i.e., head words
follow their complements), they usually shift left,
while for right-branching languages (i.e., head
words proceed their complements) , they shift
right 2.

• if we perturb the typological vector, the distribu-
tion of attention pattern can change accordingly.
For example, on Italian when we freeze all its
typological features but only change its noun-
adjective order feature from NA to AN, 5% of
its position vectors change from shifting right to
shifting left.

Above observations may suggest that, guided by the
typological features, position vectors are endowed
with meaningful and language specific hidden struc-
tures, and these structures could be virtualized with
the help of prior position vector bases.

Training and Testing During training, we sam-
ple one batch from 13 high-resource languages
with equal probability, which increases the diver-
sity of training for multilingual positional encoding.
During testing, we first generate the corresponding
positional encodings for the languages at once and
then use them directly as position vectors in the
parsing task, which means that our generative net-
work has almost no additional computational cost
during testing.

5 Experiments

Dataset Universal Dependencies (UD) is a frame-
work for consistent annotation of grammar (parts of
speech and syntactic dependencies) across different
human languages (Zeman et al., 2018). Following
Kulmizev et al. (2019); Üstün et al. (2020), We
choose 13 representative training languages (high-
resource) and 30 testing languages (zero-resource).
Statistics for the treebanks are listed in the supple-
mental material. The crosslingual word representa-
tions are derived from mBERT (Devlin et al., 2019).
Since the mBERT representation is subword-level,
we follow previous work in taking the first subword
as word-level representation.

1https://en.wikipedia.ahau.cf/wiki/Branching_
(linguistics)

2It is interesting to see that the attention pattern of position
vectors are different with the supervision signal from the pars-
ing task: position vectors require a head position attends its
complements’ positions, while the parsing signal requires a
dependent attends its head. The disagreement may suggests
that the learning of position vectors does not always follow
the parsing task’s inductive bias. We leave a deeper discussion
of this observation in future work.

Evaluation Parsing performance is measured
with labeled attachment scores (LAS). We use the
official evaluation scripts provided in the CoNLL
2018 shared tasks (Zeman et al., 2018). All of our
results are averaged over three runs.

Supplemental Material Full results for the 30
zero-shot languages (A), experimental details (in-
cluding hyperparameters, training time, model size
(B)), more visualizations of position representa-
tions (C), and dataset statistics (D) are placed in
the supplementary material.

5.1 Main Results

Baselines We denote Tabs, Trel to represent
Transformer with absolute position and relative po-
sition respectively, and denote the two position gen-
eration methods as MLP and ATTN. We conduct
experiments with following six baseline methods,
• udpipe (Straka, 2018), a monolingually trained

multi-task parser;
• uuparser (Kulmizev et al., 2019), a monolin-

gually trained BiLSTM parser using mBERT as
additional crosslingual feature;

• udify (Kondratyuk and Straka, 2019), an all
parameters fine-tuned mBERT parser could be
trained both monolingually and multilingually;

• udapter (Üstün et al., 2020), a multilingually
trained parser which only fine-tunes additional
adapter parameters in mBERT;

• ID, it assigns each language a vector (which will
be learned from scratch), and the vectors are
added directly to the universal position vectors
(Östling and Tiedemann, 2017);

• Feat, it direclty adds typology feature vectors
(constructed in Section 4) to the universal posi-
tion vectors (Scholivet et al., 2019).

Results We trained parsers monolingually (one
model per language) and multilingually (one model
for all languages) respectively (Table 2).

For the udify model which doesn’t include any
linguistic prior, its multilingual version underper-
forms its monolingual version on high-resouces,
which witnesses a negative transfer. On the other
side, the four methods (ID, Feat, MLP, ATTN)
adding typological prior (URIEL) can reduce the
gap to the best monolingual result, where language
ID embeddings (ID) has the least effect, next to
typological features (Feat), and our two proposed
position generation methods are more effective. In
particular, the ATTN method significantly improves
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ar en eu fi he hi it ja ko ru sv tr zh HR ZR

Monolingual (one model per language):

uuparser 81.8 87.6 79.8 83.9 85.9 90.8 91.7 92.1 84.2 91.0 86.9 64.9 83.4 84.9 -
udpipe 82.9 87.0 82.9 87.5 86.9 91.8 91.5 93.7 84.2 92.3 86.6 67.6 80.5 85.8 -
udify 83.5 89.4 81.3 87.3 87.9 91.1 93.1 92.5 84.2 91.9 88.0 66.0 82.4 86.0 -
Tabs 83.5 89.8 81.6 87.1 87.8 91.3 93.1 92.4 84.0 92.4 88.0 66.1 82.9 86.2 -
Trel 83.4 89.8 81.5 87.2 87.7 91.2 93.2 92.3 84.0 92.2 88.1 65.7 82.7 86.1 -

Multilingually (one model for all languages):

udify 80.1 88.5 76.4 85.1 84.4 89.3 92.0 90.0 78.0 89.0 86.2 62.9 77.8 83.0 35.3
udapter 84.4 89.7 83.3 89.0 88.8 92.0 93.5 92.8 85.9 92.2 90.3 69.6 83.2 87.3 36.5

T
a
b
s

ID 80.4 88.8 76.6 85.4 84.8 89.4 92.5 90.4 78.2 89.2 86.4 63.2 78.0 83.3 -
Feat 80.5 88.8 76.3 85.3 84.7 89.5 92.5 90.4 79.2 89.3 86.5 62.9 78.1 83.4 35.8
MLP 84.0 89.8 82.3 88.4 88.7 90.5 92.9 91.3 82.6 90.5 89.7 64.9 79.7 85.8 36.4
ATTN 84.3 90.1 83.2 89.4 88.9 92.5 93.2 93.0 86.0 92.5 89.9 69.9 82.7 87.4 37.0

T
r
e
l

ID 80.2 88.7 76.4 85.3 84.8 89.5 92.4 90.2 78.3 89.2 86.4 62.9 77.9 83.2 -
Feat 81.0 88.2 77.3 85.6 85.4 89.6 92.3 90.5 80.1 89.4 86.5 63.5 79.1 83.7 35.9
MLP 83.9 88.7 82.3 88.1 88.0 90.6 92.8 91.2 84.4 91.5 89.8 67.9 82.7 86.5 36.7
ATTN 85.3 90.0 83.8 89.6 89.3 92.7 93.4 93.0 86.4 92.5 90.2 70.6 83.9 87.8 37.2

Table 2: Multilingual parsing performances. Last two columns show average LAS of 13 high-resource (HR) and 30
zero-resource (ZR) languages respectively.

the performance of the multilingual parser, boost-
ing 4.0 LAS with Tabs and 4.1 LAS on Trel (com-
paring with Feat). It also outperforms monolin-
gual training by 1.2 LAS and 1.6 LAS. By simply
adding the prior to all position vectors (approx-
imates to a bias term), ID and Feat can hardly
control the learning of the single prior parameter,
so their performance gain is marginal. ATTN al-
ways outperforms MLP. It suggests that keeping a
correct semantic of “position” could be crucial for
learning an effective position space.

A major advantage of introducing language spe-
cific information in multilingual training is the
ability to parse languages that have not been seen
during training. On the 30 widely selected zero-
resource languages (a subset is in Table 3), all meth-
ods except the ID method improve performances.
The ATTN method still achieves the highest zero-
resources parsing scores, which could be the effect
of both effective way of encoding typological fea-
tures (self-attention) and using a proper position
prior.

The current best parser udapter is based on
adapter fine-tuning. Similar to MLP, udapter uses a
multi-layer perceptron to generate adapter parame-
ters from generic typological information (URIEL).
Unlike udapter, our methods focus on guiding the
position vectors, which account for a smaller num-
ber of parameters in the parser. Comparing with
udapter, ATTN leads 11 out of 13 high-resource
languages, while for zero-resources, it further im-
proves 0.5 LAS.
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Figure 5: (a) The average LAS of 13 high-resource
languages for the four different typological features. (b)
The value of the loss function during training as well as
the performance on the dev set.

These results suggest that explicitly associating
typological information with the learning of po-
sition vectors makes a better use of typological
information.

5.2 Analyses

The Effect of Typological Features To analyse
the effect of typological features, we conducted ex-
periments on four feature settings with two position
generation methods (Figure 5(a)):
• WALS-6: 6 word order features from WALS

(Naseem et al., 2012);
• WALS-19: 19 word order features from WALS

(Scholivet et al., 2019);
• URIEL: 103 word order features from URIEL

typology database (Littell et al., 2017);
• Random: random noise values instead of URIEL

features.
Both MLP and ATTN methods outperform the

baseline (Feat) on three meaningful sets, indicat-
ing that our method is applicable to a wide range
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In mBERT Out of mBERT
be cy kk mr ta te tl yo ZR aii bxr hsb kmr pcm yue ZR

udify 79.3 54.4 60.7 44.4 46.1 71.1 69.5 42.7 57.9 8.4 26.1 53.2 11.2 36.1 30.5 27.6
udapter 80.1 53.6 61.9 46.4 46.0 71.2 62.7 41.2 58.5 14.3 28.9 54.2 12.1 36.7 32.8 29.8

T
a
b
s MLP 79.6 53.7 61.6 46.5 46.3 71.3 63.4 41.7 58.0 12.6 28.4 53.9 11.7 36.3 32.5 29.2

ATTN 80.5 54.2 62.1 46.6 46.3 71.3 64.2 42.7 58.5 13.8 28.8 54.3 12.0 36.7 32.9 29.8

T
r
e
l MLP 80.0 54.2 61.5 46.5 46.2 71.3 63.7 41.9 58.2 13.5 28.5 53.8 11.8 36.4 32.6 29.4

ATTN 80.7 54.4 62.2 46.3 46.5 71.6 66.0 42.9 58.8 14.1 28.9 54.4 11.8 36.9 33.2 29.9

Table 3: We select a subset of the zero-resource languages for demonstration. Eight languages are in the pre-training
process of mBERT, six languages are not (complete zero-shot).

of word order typological features. Furthermore,
we can observe that the largest boost from URIEL
because it has the richest typological features.

Since our method adds additional network pa-
rameters (from MLP or positional attention net-
works), it may make comparisons unfair. So we
conduct parameter size fairness experiments by
modifying the values of URIEL to random values.
It means that our generative networks are guided
by nonsensical information. The results show that
even though we retain the additional parameters,
the random feature values severely hurt the gain
from the generative networks. Therefore, our mod-
els’ performance improvments are not due to the
additional parameters.

The Effect of Sinusoidal Priors In the self-
attention position generator (Equation 4), we intro-
duce sinusoidal prior vector ct. As the sinusoidal
prior describes some properties of positions, it can
avoid the generated positions deviating too far from
the basic position space (Figure 3). It might also
be able to speed up convergence and improving
the model’s inductive bias. Figure 5 (b) compares
loss function curves and LAS curves on the valida-
tion set of three models, ATTN, ATTN-sinusoidal,
and MLP. ATTN-sinusoidal means replacing the
sinusoidal priors with random initialized learnable
vectors. The results show that ATTN-sinusoidal
degenerates to be comparable to MLP. This demon-
strates that the sinusoidal priors not only converge
faster, but also help ATTN ending up with higher
performances.

6 Related Work

Multilingual Parsing Dong et al. (2015); John-
son et al. (2017) identify the (positive) transfer -
(negative) interference trade-off problem in mul-
tilingual neural machine translation. Early multi-
lingual dependency parsing studies consider word
representation as a negative transfer factor and

learn delexicalized parsers (McDonald et al., 2013;
Naseem et al., 2012; Duong et al., 2015). Although
they avoid negative transfer, valuable lexical infor-
mation was lost. As a result of the development
of multilingual word representations, Ammar et al.
(2016); Straka (2018) train multilingual parsers us-
ing multilingual word embeddings. Kondratyuk
and Straka (2019); Üstün et al. (2020) train multi-
lingual parsers using multilingual pretrained rep-
resentations (mBERT (Devlin et al., 2019)). Once
word representation became positive factor, recent
studies found that word order became a new neg-
ative factor. Ahmad et al. (2019); Ji et al. (2021)
observe the negative transfer phenomenon of word
order in a zero-shot cross-lingual scenario. Pre-
vious work simply consider word order features
as input (Östling and Tiedemann, 2017; Scholivet
et al., 2019; Üstün et al., 2020). Instead, we ex-
plicitly associate it with order-related parameters
(i.e., position representations) in the Transformer
network.

7 Conclusions

We studied the role of position spaces in multilin-
gual learning. By comparing a univeral position
space and language-specific position spaces, we
showed the latter could either handle linguistic con-
straints of different language efficiently or provide
a clear path for positive transfer in multilingual
learning. We developped a self-attention based po-
sition space generator. We showed that by utilizing
typological prior and existing position space prior,
the multilingual dependency parser could enjoy
positive transfer on both high-resource and zero-
resource languages. One future work is to investi-
gate whether the obtained position vectors could
help other multilingual and monolingual tasks. It is
also interesting to compare the position spaces in-
duced from different multilingual tasks (supervised
or unsupervised).
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Limitations

An obvious limitation is that our work relies on the
typology features of languages. Some extremely
rare languages might lack typology studies (its fea-
tures are missing values in the WALS database).
Our approach is limited for these languages. An-
other non-critical limitation is that the technical
contribution of our work is limited. After detailed
analyses of position vectors, our methods for gener-
ating position vectors are not that complex, but we
believe that an effective method is not neccessarily
complex, and designing experiments to reveal key
properties of position features and their connection
with linguistic knowledge could still make solid
contributes to NLP community.
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Supplementary Material for
Typology Guided Multilingual Position Representations: Case on Dependency Parsing

A Zero-Shot Results

Table 4 shows LAS scores on all 30 zero-resouce
languages for two types of Transformer guided by
three typological methods, respectively, UDapter
(Üstün et al., 2020), and udify (Kondratyuk and
Straka, 2019). Languages with “*” are not present
in mBERT training data. Overall, our ATTN ap-
proach achieves state-of-the-art performance, es-
pecially for the Transformerabs model. Our MLP
approach also has visible improvements and is able
to compete with udapter. This suggests that posi-
tion representation guided by typological features
can be successfully transferred to unseen zero-shot
languages. In addition, we specifically look at lan-
guages that are not in the mBERT training set,
which implies that the cross-lingual word repre-
sentations are not well aligned. The performance
of these languages is almost always unacceptably
low. This suggests that multilingual word represen-
tations are the foundation of multilingual position
representation.

B Experimental Details

Implementation Our parser’s implementation is
based on the framework proposed by Kulmizev
et al. (2019). The only difference is that we have
replaced their BiLSTM context encoder with the re-
cently popular Transformer context encoder. This
is because the position representations we focus
on are an important part of Transformer encoder.
The hyperparameters of the parser classifier are
identical to those of Udapter (Üstün et al., 2020)
without applying a new hyperparameter search. Un-
like Udapter, which fixes the mBERT and trains
the extra added adapter modules in it, we train the
extra Transformer context encoder with multilin-
gual position encoding on top of the fixed mBERT.
Together with the additional Transformer context
encoder and multilingual position generation net-
works that are picked manually by average high-
resource parsing LAS, hyper-parameters are sum-
marized in Table 5.

Training Time and Model size In terms of train-
ing time, on the NVIDIA RTX3090 GPU, our
parser takes about 15 minutes for one epoch over

the full training set. Comparing different multilin-
gual position generation methods, they have a simi-
lar training time. In terms of number of trainable
parameters, our ATTN has 63.0M (24.5M for po-
sition generation, 30.7M for Transformer encoder,
7.8M for classifier) total number of parameters, and
MLP has 69.3M (30.8M for position generation).
As a comparison, UDify uses 191M parameters,
UDapter uses 550M parameters in total (302M for
adapters and 248M for classifier), and monolingual
UDify models use 2.5B parameters (13x191M).
The number of training parameters in our method
is much smaller than the baseline parsers. In ad-
dition, we can pre-generate multilingual positions
during the inference phase and the model parame-
ters can be reduced to 38.5M, which is only 7% of
the UDapter.

C Additional Visualization

Figure 6 shows a visualization of the position vec-
tors for three languages containing English, Italian
and Chinese. We can see that they do not exhibit
loose similarity patterns and still keep some prop-
erties of the sinusoidal position prior (e.g. sym-
metry). And these patterns clearly differ between
languages. This further suggests that it is not rea-
sonable to use the same position representation for
different languages. It is necessary to guide mul-
tilingual position representations by appropriate
methods (e.g. our word order features).

D Dataset

The statistics (including treebank name, word or-
der, language family and number of sentences) of
Universal Dependency (UD) treebanks are sum-
marized in Table 6 and Table 7. The 13 high-
resource languages from UD v2.3 and 30 zero-
resource languages from UD v2.5 are consistent
with the selection made by Kulmizev et al. (2019);
Üstün et al. (2020). The dataset UD v2.3 can be
freely download from http://hdl.handle.net/
11234/1-2895, and v2.5 can be download from
http://hdl.handle.net/11234/1-3105.

Typological Features : We conducted experi-
ments on three feature settings including
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Figure 6: Cosine similarity of the first 50 position vectors. We can see that vectors learned from English, Italian and
Chinese keep some property of the sinusoidal position prior (e.g., symmetry). We can also observe that the three
languages have distinctly different patterns.

• WALS-6: codes 81A, 85A, 86A, 87A, 88A, 89A
from WALS;

• WALS-19: codes 81A, 82A, 83A, 85A, 86A,
87A, 88A, 89A, 90A, 92A, 94A, 95A, 96A, 97A,
144A, 143A, 143E, 143F, 143G from WALS;

• URIEL: 103 word order features from URIEL
typology database.

Where WALS-6 and WALS-19 can be freely down-
load from https://wals.info, while URIEL can
be freely download from https://github.com/
antonisa/lang2vec.
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Tabs Trel
Code udify udapter MLP ATTN MLP ATTN

aii* 8.4 14.3 12.6 13.8 13.5 14.1
akk* 4.5 8.2 8.9 9.4 9.0 9.8
am* 2.8 5.9 6.5 6.8 6.5 7.1
be 80.1 79.3 79.6 80.5 80.0 80.7
bho* 37.2 37.3 37.9 38.3 38.2 38.5
bm* 8.9 8.1 8.3 8.9 8.4 9.3
br* 60.5 58.5 59.3 60.8 60.4 60.7
bxr* 26.1 28.9 28.4 28.8 28.5 28.9
cy 53.6 54.4 53.7 54.2 54.2 54.4
fo* 68.6 69.2 69.8 69.9 69.9 69.7
gsw* 43.6 45.5 45.1 45.8 45.3 45.9
gun* 8.5 8.4 9.3 9.5 9.2 9.7
hsb* 53.2 54.2 53.9 54.3 53.8 54.4
kk 61.9 60.7 61.6 62.1 61.5 62.2
kmr* 11.2 12.1 11.7 12.0 11.8 11.8
koi* 20.8 23.1 22.8 23.5 23.5 23.7
kpv* 12.4 12.5 12.4 12.9 12.6 13.2
krl* 49.2 48.4 48.5 49.4 48.9 49.6
mdf* 24.7 26.6 26.9 27.3 27.1 27.1
mr 46.4 44.4 46.5 46.6 46.5 46.3
myv* 19.1 19.2 18.9 19.7 19.4 19.9
olo* 42.1 43.3 43.1 43.7 43.6 43.8
pcm* 36.1 36.7 36.3 36.7 36.4 36.9
sa* 19.4 22.2 22.5 22.9 22.6 23.2
ta 46.0 46.1 46.3 46.3 46.2 46.5
te 71.2 71.1 71.3 71.3 71.3 71.6
tl 62.7 69.5 63.4 64.2 63.7 66.0
wbp* 9.6 12.1 11.9 12.9 12.5 13.3
yo 41.2 42.7 41.7 42.7 41.9 42.9
yue* 30.5 32.8 32.5 32.9 32.6 33.2

ZR 35.3 36.5 36.4 37.0 36.7 37.2

Table 4: Multilingual parsing performance on 30 zero-resource languages respectively. The “*” marker shows
languages not present in mBERT training data. The last row (ZR) shows average LAS of each method.
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Layer Hyper-parameter Value

Input Fixed mBERT 768

Transformer

Layer 4
Hidden 768

Head 12
Dropout 0.2

Position range
Absolute [0, 128)
Relative [-4, 4]

MLP with WALS-6 Din → Dhid → Dout 18→256→768
MLP with WALS-19 Din → Dhid → Dout 57→256→768
MLP with URIEL Din → Dhid → Dout 103→256→768

ATTN with WALS-6 WQ,WK ,W V R18×768,R768×768,R768×768

ATTN with WALS-19 WQ,WK ,W V R57×768,R768×768,R768×768

ATTN with URIEL WQ,WK ,W V R103×768,R768×768,R768×768

Classifier
Dependency tag dimension 256
Dependency arc dimension 768

Label smoothing 0.03

Trainer

Optimizer Adam
Learning rate 1e-3

(β1, β2) (0.9, 0.98)
Batch size 80

Epochs 80

Table 5: Hyper-parameters for our parser.

Language Code Treebank Family {S,V,O} {N,A} #Train #Test

Arabic ar PADT Afro-Asiatic, Semitic VSO NA 6.1k 680
Basque eu BDT Basque SOV NA 5.4k 1799
Chinese zh GSD Sino-Tibetan SVO AN 4.0k 500
English en EWT IE, Germanic SVO AN 12.5k 2077
Finnish fi TDT Uralic, Finnic SVO AN 12.2k 1555
Hebrew he HTB Afro-Asiatic, Semitic SVO NA 5.2k 491
Hindi hi HDTB IE, Indic SOV AN 13.3k 1684
Italian it ISDT IE, Romance SVO NA 13.1k 482
Japanese ja GSD Japanese SOV AN 7.1k 551
Korean ko GSD Korean SOV AN 4.4k 989
Russian ru SynTagRus IE, Slavic SVO AN 15k 6491
Swedish sv Talbanken IE, Germanic SVO AN 4.3k 1219
Turkish tr IMST Turkic, Southwestern SOV AN 3.7k 975

Table 6: Statistics of the high-resource languages from UD v2.3. We chose the same treebank as Kulmizev et al.
(2019); Üstün et al. (2020).
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Language Code Treebank Family #Test

Akkadian akk PISANDUB Afro-Asiatic, Semitic 1074
Amharic am ATT Afro-Asiatic, Semitic 101
Assyrian aii AS Afro-Asiatic, Semitic 57
Bambara bm CRB Mande 1026
Belarusian be HSE IE, Slavic 253
Bhojpuri bho BHTB IE, Indic 254
Breton br KEB IE, Celtic 888
Buryat bxr BDT Mongolic 908
Cantonese yue HK Sino-Tibetan 1004
Erzya myv JR Uralic, Mordvin 1550
Faroese fo OFT IE, Germanic 1207
Karelian krl KKPP Uralic, Finnic 228
Kazakh kk KTB Turkic, Northwestern 1047
Komi Permyak koi UH Uralic, Permic 49
Komi Zyrian kpv LATTICE, IKDP Uralic, Permic 210
Kurmanji kmr MG IE, Iranian 734
Livvi olo KKPP Uralic, Finnic 106
Marathi mr UFAL IE, Indic 47
Mbya Guarani gun THOMAS, DOOLEY Tupian 98
Moksha mdf JR Uralic, Mordvin 21
Naija pcm NSC Creole 948
Sanskrit sa UFAL IE, Indic 230
Swiss G. gsw UZH IE, Germanic 100
Tagalog tl TRG Austronesian, Central Philippine 55
Tamil ta TTB Dravidian, Southern 120
Telugu te MTG Dravidian, South Central 146
Upper Sorbian hsb UFAL IE, Slavic 623
Warlpiri wbp UFAL Pama-Nyungan 54
Welsh cy CCG IE, Celtic 956
Yoruba yo YTB Niger-Congo, Defoid 100

Table 7: Statistics of the zero-resource languages from UD v2.5. We chose the same treebank as Kulmizev et al.
(2019); Üstün et al. (2020).
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