
Findings of the Association for Computational Linguistics: ACL 2023, pages 1327–1343
July 9-14, 2023 ©2023 Association for Computational Linguistics

Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Yiqun Hu, Yiyun Zhao∗, Jiarong Jiang, Wuwei Lan, Henry Zhu, Anuj Chauhan,
Alexander Li, Lin Pan, Jun Wang, Chung-Wei Hang, Sheng Zhang, Jiang Guo,

Marvin Dong, Joe Lilien, Patrick Ng, Zhiguo Wang, Vittorio Castelli, Bing Xiang
AWS AI Labs

∗yiyunzhao@arizona.edu
{yiqunhu, jiarongj, lanwuwei, henghui, chaanj, hanboli, linpan, juwanga,

cwhang, zshe, gujiang, mingwd, lilienj, patricng, zhiguow, vittorca, bxiang}
@amazon.com

Abstract

There has been increasing interest in synthesiz-
ing data to improve downstream text-to-SQL
tasks. In this paper, we examined the exist-
ing synthesized datasets and discovered that
state-of-the-art text-to-SQL algorithms did not
further improve on popular benchmarks when
trained with augmented synthetic data. We ob-
served three shortcomings: illogical synthetic
SQL queries from independent column sam-
pling, arbitrary table joins, and language gaps
between the synthesized SQL and natural lan-
guage question (NLQ) pair. To address these
issues, we propose a novel synthesis frame-
work that imposes strong typing constraints,
incorporates key relationships from schema,
and conducts schema-distance-weighted col-
umn sampling. We also adopt an intermediate
representation (IR) for the SQL-to-text task to
further improve the quality of the generated
NLQ. When existing powerful text-to-SQL
parsers are pretrained on our high-quality syn-
thesized data, these models have significant ac-
curacy boosts and achieve new state-of-the-art
performance on Spider. We also demonstrate
the effectiveness of our techniques with abla-
tion studies.

1 Introduction

Text-to-SQL parsing refers to the semantic pars-
ing task that translates a natural language question
(NLQ) to a corresponding SQL query. In recent
decades, many industries have adopted high-level
digitalization in their workflow and possessed large-
scale datasets—many of which are stored as rela-
tional databases. Extracting insights from these
relational databases to further drive business de-
cisions is an important task. However, due to the
complexity of these relational databases, query lan-
guage experts are often needed to extract valuable
insights. Thus a high-performing text-to-SQL sys-
tem with a natural language interface would greatly

∗Work done during an internship at AWS AI Labs.

lower the barrier for business users to query their
databases.

In order to obtain high-quality training data for
the text-to-SQL parser, human annotators with SQL
expertise are needed to construct NLQ-SQL paral-
lel data, which are difficult and expensive to scale.
Thus data scarcity is a well-known bottleneck in the
text-to-SQL task (Yu et al., 2018b). To address the
data scarcity issue, there is an increasing interest
in leveraging synthetic data to improve the down-
stream performance. Yu et al. (2021) handcrafted
high-quality rules to synthesize SQL and NLQ si-
multaneously, but these grammar rules need to be
carefully designed through expensive manual work.
To automate the synthesis process, recent attempts
(Wang et al., 2021; Wu et al., 2021; Shi et al., 2021;
Zhong et al., 2020) utilize a two-stage approach
that synthesizes SQL first and then composes NLQ
with a SQL-to-text generator. Alternatively, Yang
et al. (2021) proposed a reversed pipeline that uses
an entity-to-question model to generate natural lan-
guage queries and then a text-to-SQL parser to
generate SQL queries.

In this paper, we delve into the two-stage syn-
thesizing method that first synthesizes SQL queries
and then generates NLQs. We first provide a com-
prehensive literature review and evaluate the contri-
bution of existing synthetic datasets for the text-to-
SQL task on popular benchmarks, such as Spider
(Yu et al., 2018b). Results show that they only
have negligible impact on boosting recent parsing
models accuracy (e.g. T5 + PICARD proposed
by Scholak et al. (2021)) when being augmented
to the original training set. We analyze the qual-
ity of these synthetic datasets and find they suffer
from three major issues, including illogical syn-
thetic SQL queries from independent column sam-
pling, arbitrary table joins, and language gaps be-
tween the synthesized SQL and NLQ pairs. We
then propose a novel framework1 aiming to reduce

1Source code will be made publicly available.

1327

these problems present in existing methods. During
the stage of SQL synthesis, we employ template
synthesis with strong typing constraints, template
key relationship preservation, and schema-distance-
weighted column sampling. As for the SQL-to-text
generation step, we adopt an intermediate represen-
tation (IR) to reduce the gap between SQL and tar-
get NLQ. We show that the top-performing text-to-
SQL parsers can have significant accuracy improve-
ments when being pretrained using our high-quality
synthesized data and achieve new state-of-the-art
performance on Spider.

In summary, our main contributions are:
• We systematically compare the existing text-

to-SQL synthesis methods and identify three
shortcomings that lead to the low quality;

• we propose three novel techniques for generat-
ing synthetic data and demonstrate its augmen-
tation benefits for various text-to-SQL parers,
underscoring the importance of high synthesis
quality;

• we adopt an intermediate representation (IR)
for the SQL-to-text task, which further im-
proves the quality of the NLQ generation.

2 Existing Synthesis Methods and
Limitations

We first conduct a detailed investigation towards
the existing text-to-SQL synthesis frameworks to
understand each of their advantages and shortcom-
ings, the details of which can be found in Appendix
A. In particular, Figure 5 summarizes and compares
the key characteristics from different dimensions.

In this section, we experiment with two recent
synthetic datasets (Wang et al., 2021) and (Wu
et al., 2021), and leverage the latest state-of-the-art
text-to-SQL model T5 + PICARD (Scholak et al.,
2021) to assess their effectiveness. We find that
they only bring negligible impact on the perfor-
mance when being used to train the parsing model.
We then discuss three main shortcomings in these
synthetic datasets based our manual inspection and
analysis.

2.1 Synthetic Data Effectiveness Assessment

As a pilot study, we use T5-Large + PICARD as
the text-to-SQL parser to examine the synthetic
data quality. The baseline model is trained on Spi-
der training set only. To add synthetic data during
training, we setup a two-stage process. In Stage
1, the model is (pre-)trained using only the syn-

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
id

er
 d

ev
 [e

xa
ct

 m
at

ch
]

Stage 1 Stage 2

Wang et al. 2021
Wu et al., 2021
SQL2NLQ (ours)
IR2NLQ (ours)
baseline

Figure 1: Comparison of different synthetic data on
Spider dev set performance. The baseline model is
trained using Spider data only. Previous synthetic
datasets (Wu et al., 2021; Wang et al., 2021) fail to
bring additional performance boost to the model. Our
synthetic data (SQL2NLQ and IR2NLQ) yield better
results on both stages. (Stage 1 is training with syn-
thetic data only and Stage 2 is finetuning with real Spi-
der training set.)

thetic data. In Stage 2, we finetune the model with
the original Spider training set (also see Training
Configurations in Section 4.1).

As shown in Figure 1, the exact match (EM)
accuracy of the models trained on both synthetic
datasets (blue and light blue curves) are less than
20% during Stage 1, in contrast to 60% (green
curve) when trained with real Spider data. This
gap indicates the limited transferability from exist-
ing synthetic data to real data. Further finetuning
on Spider training data in Stage 2 does not outper-
form the baseline model which is only trained using
Spider data, indicating the ineffectiveness of these
synthetic datasets. However, our synthetic data (red
and gray curves for IR2NLQ and SQL2NLQ2) can
still yield better performance for both two stages.
We will discuss in detail our methodologies in Sec-
tion 3.

2.2 Synthetic Data Quality Analysis

We now provide an analysis towards the previous
synthesis methodologies and identify three proba-
ble causes for obsolescence.

2.2.1 Illogical Synthetic SQLs from Invalid
Grammars or Templates

Both Wang et al. (2021) and Wu et al. (2021)
adopted context-free grammars (CFG) to gener-
ate SQL queries. The CFG designed by Wu
et al. (2021) is constrained and they limited
SQL generation to one table. While Wang et al.
(2021) designed flexible grammars, they neglected

2SQL2NLQ and IR2NLQ referring to two different SQL-
to-text models we use during NLQ synthesis, more discussion
in Section 4.1 and 4.2

1328

the constraints between operators and column
types. This negligence leads to mistakes such as
SUM(student.name), where an aggregation opera-
tor is applied to a text column.

Furthermore, CFG or probabilistic CFG (PCFG)
generated SQL queries often fail to capture foreign-
key and key relations between columns. This leads
to invalid SQLs such as SELECT name, age FROM
student INTERSECT SELECT address FROM
teacher, where it intersects two sub-queries with
different number of columns. In fact, designing
a grammar to produce high coverage and logical
SQLs is a difficult task due to the implicit depen-
dencies of SQL elements.

Alternatively, SQL templates extracted from
training data better preserves column typing in-
formation (Zhong et al., 2020). This approach
drastically reduces the invalid SQLs caused by a
misalignment between operators and column types.
However, existing work still misses the critical key
relations in the templates.

2.2.2 Over-Complex SQLs from Arbitrary
Multi-table Joins

When SQLs are materialized, the column/table se-
lection from existing work is independent and re-
sults in SQL queries with unnecessary complexity.
Those queries often have unclear intents and thus
are difficult to be correctly translated to natural
language questions. An example is presented in
Table 2, where a simple template that requires only
two columns can be turned into a complicated and
nonsensical SQL query with three table joins.

2.2.3 Language Gap between SQL and NLQ
Recent work typically trains a sequence-to-
sequence model to obtain corresponding NLQs
from synthetic SQLs (Wang et al., 2021; Shi et al.,
2021). The gap between SQL-NLQ pairs are well
recognized in text-to-SQL task and intermediate
representation (IR) is commonly used to reduce
such mismatch (Gan et al., 2021b; Guo et al.,
2019a; Yu et al., 2018a; Shi et al., 2021). However,
the reverse of the source and target in SQL-to-text
brings in its own challenge, such as incorrect refer-
ences for SELECT *, missing conditions within long
and complex SQL queries, and misinterpretation
of ORDER phrases.

3 Proposed Method

Our synthesis framework builds on top of the
template-based SQL synthesis approach similar to

Figure 2: Our NLQ-SQL synthesis framework.
Novel components include strong-typing, key rela-
tions, schema-distance-weighted column sampler, and
SQL→ IR converter.

Zhong et al. (2020); Zhang et al. (2019) and gener-
ates SQL-NLQ pairs with a sequence-to-sequence
model. Figure 2 provides a general overview of
our pipeline. We develop the following techniques
to address the issues in existing synthesis methods
discussed in the previous sections:

• for SQL synthesis:
– introducing strong typing for columns

w.r.t. semantic types and key properties,
– encoding the key relation with the ex-

tracted templates for more logical SQLs,
– proposing a schema-distance-weighted

column sampling strategy to avoid over-
complex joins,

• for NLQ synthesis:
– designing an improved IR to bridge the

gap between SQL and NLQ specifically
for the SQL-to-text task.

3.1 SQL Synthesis

To create new SQLs on training data schemas, we
utilize a template-based approach following Zhong
et al. (2020): First, a pool of SQL templates are cre-
ated by normalizing the schema-related mentions
(column and value) and removing JOIN phrases.
During SQL generation, a template is sampled
based on the training distribution, and columns
are sampled with constraints to fill in the normal-
ized slots of the template. We highlight several
improvements made to the existing approaches.

3.1.1 Strong Typing
When normalizing columns, we enforce strong typ-
ing of a template by enriching and preserving the
data type (e.g., text, number, date, etc) as well as
key identity (key or not) for each column. For ex-
ample, in Table 1, we use textkey instead of key
to normalize artist_name because operators such
as MAX can be applied to number key but usually
not to other text key.

1329

SQL SELECT artist_name FROM song INTERSECT
SELECT artist_name FROM artist

Previous SELECT col1_key INTERSECT col2_key
Ours SELECT col1_textkey INTERSECT col2_textkey_fk1

Table 1: Our modifications for template extraction:
strong typing is highlighted in blue and key relation
preservation is highlighted in pink.

3.1.2 Template Key Relationship
Preservation

A foreign key is a column in a table referring to
the primary key (unique identifier) of another table.
In multiple table join scenarios, key and foreign
key are the most common columns to be joined
on. Restricting a column to be a foreign key to
another key column is critical for a SQL to be valid
especially in the following two cases: 1) queries
including INTERSECT, EXCEPT, UNION, and 2)
queries containing nested queries in WHERE condi-
tions. For instance, the query in Table 1 implies
the constraint that song.artist_name should be a
subset of artist.artist_name. In our template,
FK1 captures the constraint of the key relationship
between the two artist_name columns, which
prevents the template from generating nonsensi-
cal queries such as SELECT gender FROM artist
INTERSECT SELECT country FROM artist.

3.1.3 Schema-distance-weighted Column
Sampling

To mitigate the issue of arbitrary multi-table joins,
we implement a weighted sampling function biased
toward columns that are close, in terms of table
distance (defined below), to the columns already
selected in a SQL template.

For a given database d, we first establish an undi-
rected graph for all the tables in d. Each table
represents a node in the graph. The distance be-
tween any two tables, e(·, ·), is the least number of
joins necessary to join the two tables (i.e. short-
est path distance) under the restriction that table
join can only take place with qualified primary key
and foreign key pairs. See Appendix B for a de-
tailed example demonstrating how table distances
are computed.

Define a template t as (q, c,v), where q is the
flat template string, c = [c1, . . . , cm] is the set
of column placeholders, and v = [v1, . . . , vn] is
the set of value placeholders in q. Denote Tc to
represent the table that contains column c and Sd(τ)
as the set of columns in d with the strong type
τ . Given a template t and a qualified database

Algorithm 1: Single SQL Synthesis with
Schema-Weighted Column Sampling

Input : template t = (q, c,v), database d,
decay rate γ

Output: SQL query y
1 Let y = q
2 Random sample z1 from Sd(τc1) and

replace c1 with z1 in y
3 Compute sampling weights

w(z) =

{
1, if Tz = Tc1

1

γδc1 (z) , o.w.
, ∀z

where δc(z) = e(Tc, Tz)
4 for c← c2 : cm do
5 Compute sampling distribution

p(z) =

w(z)∑
z′:τz′=τc

w(z′) , if τz = τc

0, o.w.

6 Sample z from Sd(τc) with p
7 Replace c with z in y
8 Update sampling weights, ∀z,

w(z)← w(z)+

{
1, if Tz = Tc

1
γδc(z)

, o.w.
,

9 end
10 for v ← v1 : vn do
11 Identify relevant columns w.r.t. v and

retrieve a set of possible values for v
from the d

12 Random sample one value from the set
and replace v with the value in y

13 end

d, the fundamental algorithm of SQL synthesis is
described in Algorithm 1.

The intuition behind the schema-weighted col-
umn sampling algorithm is as follows: after we se-
lect the first column for the given template (Line 2),
we want to choose other columns in the database
that are more relevant to the first column, so as
to boost the chance of synthesizing more realis-
tic SQL queries. We do so by sampling columns,
for the remaining column placeholders in the tem-
plate, according to a particular sampling probabil-
ity (Line 5-6), which is a monotonically decreas-

1330

Template SELECT col1_numberkey WHERE col2_name = VALUE

Random

SELECT T1.Club_ID FROM club AS T1 JOIN coach as T2
ON T1.Club_ID = T2.Club_ID JOIN player_coach AS T3
ON T2.Coach_ID = T3.Coach_ID JOIN player AS T4
on T3.Player_ID = T4.Player_ID where T4.Rank = "3rd"

Ours SELECT Club_ID FROM club WHERE Club_Name="AIK"

Table 2: Random sampling vs our schema-distance-
weighted column sampling for a given template. The
former produced a query with three joins while ours
have both columns from the same table.

ing function of the edge value in the table graph
for type-qualified column candidates (Line 3, 8),
and 0 for non-qualified column candidate. Such
implementation is motivated from the observation
that over-lengthy SQLs resulted from multiple ta-
bles joins are rare in real world scenarios under
the only-join-on-primary-key-foreign-key assump-
tion. Table 2 shows an example of how adopting
the schema-weighted sampling can help reduce the
unrealistic SQLs in the random case.

Value of γ in Algorithm 1. γ is a hyperparam-
eter that controls the decay rate in the sampling
probability for columns that are farther away from
the columns that have already been selected. Under
the restricted join condition, we look at the number
of tables in a query as a proxy to the table distance.
To determine the value of γ, we randomly sample
7000 synthetic SQL queries with replacement and
calculate the average number of tables from the
samples. We repeat this process for 1000 times and
plot the distribution. Then we perform the same
steps for the real Spider training data. We choose
γ so that the distribution of the average number
of tables in the synthetic data is close to the real
data. This helps prevent generating over-simplified
or over-complicated SQL queries.

Based on this experiment, we chose γ to be 5 for
the Spider benchmark. Figure 3 displays the distri-

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Number of tables

0

50

100

150

200

250

300

350
Spider train
Synthetic w/ weight
Synthetic w/o weight

Figure 3: Histogram of the average table count (i.e.
umber of joins) for three types of datasets with γ =
5. Our schema-distance-weighted column sampling re-
duces the table number of synthetic SQLs and better
matches the training distribution.

bution for three types of datasets: Spider training,
synthetic dataset with schema-distance-weighted
column sampling, and synthetic dataset with ran-
dom column sampling. The figure demonstrates
that the weighted sampling process, which provides
an interface to tune the value of γ, can generate
synthetic SQL queries that better match the real
training data.

3.2 NLQ Synthesis

Intermediate representation (IR) has been em-
ployed to simplify the SQL query with minimum
information loss (Gan et al., 2021a; Guo et al.,
2019b; Gan et al., 2021b; Guo et al., 2019a; Yu
et al., 2018a; Shi et al., 2021). Common operations
include removing FROM/JOIN clauses and GROUP
BY clauses, and merging WHERE clauses and HAVING
clauses. Previous work found the use of IR often
improves text-to-SQL performance.

In this section, we explore whether the SQL-to-
text generation could also benefit from an IR. Ac-
cording to a prior research by Wu et al. (2021), al-
tering the query’s linearization order could already
affect the synthetic text quality. The objective of an
IR here is to convert SQL to a representation that
more closely resembles the NLQ. This conversion
involves both simplifications (such as removal of
redundant information) and specification (such as
introducing information using heuristics).

We outline the main new rules to transform SQLs
into IRs and explain the rationale (examples in
Table 3):

EX1

SQL SELECT T1.name FROM student AS T1 JOIN has_pet AS T2
ON T1.student_id = T2.has_pet.student_id

IR SELECT name of student FROM has_pet

NLQ Find the name of students who have pets.

EX2

SQL SELECT T2.name, count(*) FROM concert AS T1 JOIN stadium AS
T2 ON T1.stadium_id = T2.stadium_id GROUP BY T1.stadium_id

IR SELECT name of stadium, Count (record of concert)
GROUP BY (stadium_id of concert)

NLQ Show the stadium name and the number of concerts in each stadium.

EX3

SQL SELECT T1.neighbourhood_name neighbourhood AS T1 JOIN
business AS T2 ON T1.business_id = T2.business_id
WHERE T2.city = "Madison" GROUP BY T1.neighbourhood_name
ORDER BY COUNT (DISTINCE T2.name) DESC LIMIT 1

IR SELECT neighbourhood_name of neighbourhood
WITH most Count (DISTINCT name of business)
WHERE city of business = "Madison"

NLQ Which neighbourhood has the most number of businesses in Madison?

EX6

SQL SELECT T2.name FROM USER AS T2 JOIN review AS T1
ON T2.user_id = T1.user_id GROUP BY T2.name
HAVING AVG (T1.rating) < 3

IR SELECT EACH (name of user) WITH Avg
(rating of review) < 3

NLQ Find users whose average review rating is below 3.

Table 3: IR examples that illustrate the examples
of removing tables, enriching * columns, specifying
most/least intent, removing redundant GROUP BY. Un-
wanted intents are in grey, redundant intents are in
green. Texts related to IR operations are highlighted
with yellow.

1331

• Only drop tables in the FROM/JOIN phrase
if they appear in other SQL elements (EX2-
EX4). Removal of tables can simplify queries
but tables in JOIN can also behave as filters
and need to be preserved to avoid information
loss (EX1).

• Replace * in count(*) with the table whose
columns in JOIN act as foreign key to provide
explicit context for counting. This is because,
in multi-table join queries, foreign key repre-
sents the many of the one-to-many relations
and thus the rows from the table is more mean-
ingful to be aggregated (see EX2 replaces *
with concert rather than stadium).

• When SQL contains ORDER BY COUNT (...)
LIMIT ... , rewrite the query to explicitly
express the most or least intent for better intent
alignment (EX3).

• Drop GROUP BY phrase if the column grouped
by appears in SELECT and attach EACH to the
specific column if the query does not express
the most/least intent (see GROUP dropped in
EX3 - EX4 but not EX2). This aims to dis-
tinguish SQLs with GROUP BY and SELECT on
the same column from those without SELECT.

Similar to previous IR designs, we also removed re-
peated text in EXCEPT/INTERSECT/UNION queries
and made lexical adjustments.

4 Experiments

We conduct experiments on the Spider benchmark
and demonstrate the effectiveness of our synthesis
framework for the text-to-SQL task.

4.1 Experiment Setup

Spider Benchmark Spider (Yu et al., 2018b)
is a large-scale text-to-SQL dataset. It has
10,181 annotated questions, 5693 unique com-
plex SQLs, and 200 databases with multiple ta-
bles. The train/train-others/dev/test sets contain
7000/1659/1034/2147 examples and 140/6/20/40
databases, respectively. Spider has a challenging
and realistic evaluation setting, where SQL queries
and databases do not appear across different splits,
posing a generalization challenge for text-to-SQL
semantic parser. Since Spider test set is not pub-
licly available, we use dev set for evaluation and
train-others for checkpoint selection.

SQL-to-text Generator We finetune T5-large
models on Spider training set for NLQ synthesis
using both SQL and IR as input, named SQL2NLQ
and IR2NLQ respectively. The best checkpoints
are selected with the highest BLEU score on train-
others.

Text-to-SQL Parser We test our synthetic data
with several top-performing text-to-SQL parsers,
including T5-3B, RASAT, and T5-3B + PICARD.
We use T5-3B (Raffel et al., 2020) as our base
parser, since previous work (Shaw et al., 2021) has
shown that T5-3B can achieve competitive perfor-
mance for Text-to-SQL semantic parsing. RASAT
leverages the advantage of T5 and integrates rela-
tional structures into the pretrained model. Re-
cently, PICARD (Scholak et al., 2021) demon-
strates that constraint decoding on top of T5-3B can
produce state-of-the-art performance on Spider.

Training Configurations We adopt a two-stage
text-to-SQL training mechanism (Wang et al.,
2021) in our experiment. In Stage 1, we use syn-
thetic data only for model pre-finetuning. In Stage
2, we initialize the model weights with the first
stage checkpoint, and then finetune it on the real
data only. Both stages share the same hyperparam-
eters. We train T5 with Adafactor and learning rate
of 1e-4, and use gradient accumulation batch size
2050 for T5-3B model.

4.2 Spider Results and Analysis

The overall results3 are shown in Table 4. We can
see our synthetic data can further improve all three
text-to-SQL parsing model, and achieve the best
results with T5-3B + PICARD on Spider devel-
opment set. Specifically, we have 4.4 points of
EM score improvement on top of T5-3B model,
while previous work (Wu et al., 2021; Wang et al.,
2021) has marginal gain or even hurts the perfor-
mance, demonstrating the effectiveness of our pro-
posed method. More importantly, T5-3B has shown
SOTA or near SOTA performance on 21 knowledge
grounding tasks (Xie et al., 2022), our success of
improving T5-3B with synthetic data for text-to-
SQL can potentially generalize to other semantic
parsing tasks with different logical forms. PICARD
is an incremental parsing method for constraint de-
coding, which can reduce the syntax errors of lan-
guage models for SQL generation. From Table 4,

3Some models do not predict cell values or access to
database content, we leave ‘-’ for EX.

1332

Model EM EX

DT-Fixup SQL-SP (Xu et al., 2021) 75.0 -
LGESQL + ELECTRA (Cao et al., 2021) 75.1 -
S2SQL + ELECTRA (Hui et al., 2022) 76.4 -
DT-Fixup + Syn (Yang et al., 2021) 76.4 -
T5-3B (Shaw et al., 2021) 70.0 -
T5-3B + Syn data (Wu et al., 2021) 69.1 -
T5-3B + Syn data (Wang et al., 2021) 70.3 -
T5-3B + Syn data (ours) 74.4 -
T5-3B + PICARD (Scholak et al., 2021) 74.1 -
T5-3B + PICARD + Syn data (ours) 76.9 -

SmBoP + GraPPa (Rubin and Berant, 2021) 69.5 71.1
GAP + NatSQL (Gan et al., 2021a) 73.7 75.0
RASAT (Qi et al., 2022) 72.6 76.6
RASAT + Syn data (ours) 74.4 78.8
T5-3B† (Scholak et al., 2021) 71.5 74.4
T5-3B† + Syn data (ours) 74.5 78.6
T5-3B† + PICARD (Scholak et al., 2021) 75.5 79.3
T5-3B† + PICARD + Syn data (ours) 76.1 81.4

Table 4: Comparison of the top-performing text-to-
SQL models in Spider leaderboard, as well as models
trained with synthetic data (where synthetic are gen-
erated by training schema only). We report exact set
match (EM) and execution accuracy (EX) for Spider
dev set. † means T5-3B is trained with database con-
tent. For each of the parsing model (RASAT, T5-3B,
T5-3B + PICARD), we observe performance improve-
ments when trained with our synthetic data.

we see that T5-3B combined with PICARD and
our synthetic data performs the best, implying the
orthogonality of synthetic data augmentation and
constraint decoding.

We also submitted our model to the official Spi-
der website for evaluation on the hidden test set
and received 76.6 for EX and 73.1 for EM. Without
developing new model architectures for the text-to-
SQL task, we achieved best performance by only
augmenting synthetic data on top of the training
set, compared to all other non-anonymous evalu-
ation submission. Since our approach is generic
for the text-to-SQL task and model-independent,
we can easily apply our framework to other model
submissions for additional improvements.

In Figure 1, we plot the training curves with
different synthetic datasets. Compared with previ-
ous work (Wu et al., 2021; Wang et al., 2021), our
synthetic data demonstrates significant improve-
ment in Stage 1, with NLQ synthesized from both
SQL2NLQ and IR2NLQ generator models, prov-
ing the high-quality of our synthesized SQLs. We
also compare the generated NLQs with different
automatic measurements in Table 5, where we can
see IR benefits the NLQ generation process and
produces the text closer to groundtruth NLQs.

Settings BLEU R-1 R-2 P-BERT R-BERT

SQL→ NLQ 27.7 59.6 35.3 93.6 93.2
SQL→ IR→ NLQ 29.3 60.5 36.8 93.9 93.3

Table 5: Generated NLQ quality evaluations on the Spi-
der dev set between SQL→ NLQ and SQL→ IR→
NLQ. The BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and P-BERT/R-BERT (Zhang et al., 2020)
scores show that IR helps generate NLQs that are closer
to the groundtruth.

4.3 Ablation Study

We conduct ablation study to understand the effi-
cacy from each of the techniques we propose. In
particular, we remove each technique and regener-
ate the synthetic data during Stage 1 training (using
T5-3B) and evaluate on the Spider dev set. Results
are summarized in Table 6.

Setting EM EX

All techniques included 74.5 78.6
w/o strong typing 72.3 (-2.2) 76.7 (-1.9)
w/o template key relation preserv 71.5 (-3.0) 77.2 (-1.4)
w/o schema-dist-weighted col sample 73.7 (-0.8) 76.6 (-2.0)

Table 6: Ablation study on the three proposed synthesis
techniques. We generate the same amount of synthetic
data with each of the proposed technique removed and
repeat the same training and evaluation process. Both
EX and EM are worse on the dev set.

We can see that removing any technique will
result in a decrease in the final evaluation for the
Spider dev set, indicating that each of the proposed
three synthesis strategies contributes to a good qual-
ity synthetic data. In addition, Figure 1 shows that
IR generated NLQ in general yields better results
compared to SQL generated NLQ, which demon-
strate the effectiveness of the proposed IR tech-
nique during NLQ synthesis.

4.4 Discussions

Few-shot setting: How much real data do we
need before achieving acceptable performance?
Annotating text-to-SQL dataset takes extremely
high human effort. In practice, it is hard to create a
large-scale corpus with a limited annotation budget.
Table 7 presents the text-to-SQL semantic parsing
results with a limited number of training examples.
We also generate our synthetic data on top of the
corresponding subset. Interestingly, as training size
decreases from 7K to 128, our synthetic data be-
comes more essential, and the performance gain
increases from 4.4 points to 27.2 points. Even with
only 512 training examples, our synthetic data can
assist the T5-3B model to achieve ∼60% accuracy

1333

Model
f -shot: 128 256 512 1024 full (7k)
tmpl 68 116 205 318 746
syn 7839 10775 14457 17002 21851

T5-3B real only 19.1 32.3 43.6 53.2 70.0
real + syn 46.3 54.4 59.9 62.2 74.4

Table 7: Text-to-SQL experiment with the few-shot set-
ting, where we sampled a subset from the original Spi-
der training set with size varying from 128 to 1024,
then created synthetic data with templates only from
the subset. # tmpl and # syn represent the number of
templates and synthesized NLQ-SQL pairs for the cor-
responding training subset. We report exact set match
on the Spider dev set.

level. These few-shot setting results are encourag-
ing, as we can annotate a small-scale training set
and still achieve acceptable performance with the
help of synthetic data.

Generator size: How big of the generator
model do we need to produce high-quality
NLQs? Since our proposed IR is to reduce the gap
between NLQs and SQLs, we hypothesize that the
NLQ generation process should have less reliance
on model size. As shown in Figure 4, our synthetic
data (with IR2NLQ) still presents comparable per-
formance even with a small size T5-base generator,
implying the effectiveness and robustness of our
proposed IR. As comparison, SQL2NLQ has larger
divergence between T5-Large and T5-Base, indi-
cating some difficulty of translating SQL to NLQ.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Training step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
id

er
 d

ev
 [e

xa
ct

 m
at

ch
]

Stage 1 Stage 2

baseline
IR2NLQ (T5-Base)
IR2NLQ (T5-Large)
SQL2NLQ (T5-Base)
SQL2NLQ (T5-Large)

Figure 4: Comparison of different T5 model sizes for
NLQ generations. On top of T5-Base (220M param-
eters) and T5-Large (770M parameters), we finetune
generators for both SQL-to-text and IR-to-text, then
evaluate the effectiveness with text-to-SQL semantic
parsing in Spider.

Seen schema: How good of the synthetic data
if we consider a broader coverage of database
schema? Since the cross-database evaluation set-
ting presents generalization challenge for text-to-
SQL parsers, our synthetic framework can po-
tentially overcome this by utilizing more public
database schemas, or even ones that can implic-
itly cover the evaluation set. In addition to using
schema from training set, we can take advantage

of more public schemas for data synthesis, for ex-
ample, WikiTables (Bhagavatula et al., 2015), Git-
Tables (Hulsebos et al., 2021), WikiSQL (Zhong
et al., 2017) and SQL tutorial websites. Some of
them are even schema source for Spider benchmark.
We simply added 20 databases from dev set into
our synthetic data generation, then trained text-to-
SQL parser on top of T5-Large. With this setting,
we observed ∼2 points of performance improve-
ment compared to that with training schema only.
This pilot study implies the potential helpfulness of
synthesizing data with targeting database schemas
to further improve the downstream performance.
While this setting breaks the cross-schema setting,
we believe it still has practical values.

Single-table: How effective is our method on
the single-table text-to-SQL parsing? Although
our SQL synthesis is mainly designed for multi-
table operations, it should also be compatible with
the single table, but with foreign key preservation
ineffective. WikiSQL (Zhong et al., 2017) and
SQUALL (Shi et al., 2020) are two popular datasets
for single-table text-to-SQL parsing. Compared to
multi-table case, the single-table is much easier,
for example, most text-to-SQL parsers are above
90% accuracy level in WikiSQL4. We took a rela-
tively challenging SQUALL dataset for experiment.
From 9K training examples, we created 30K syn-
thetic NLQ-SQL pairs. We observe a smaller per-
formance gain and hypothesize several reasons: 1)
foreign key relationship is not applicable in single
table, but critical to our data synthesis framework
(as shown in the ablation study); 2) 9k examples are
sufficient for model training, especially for SQLs
without JOIN clause. Therefore, the effect of syn-
thetic data is further diluted.

5 Conclusion

In this work, we proposed a data synthesis frame-
work for text-to-SQL semantic parsing. Af-
ter incorporating key relationships from schema,
imposing strong typing, conducting schema-
distance-weighted column sampling, and bridging
SQL→ NLQ generation with an intermediate rep-
resentation, we synthesized high-quality dataset
that can further improve the state-of-the-art parser
on Spider benchmark. We also revealed the ef-
ficiency of the synthetic data and pointed out the
potential usefulness of reducing human annotations
for text-to-SQL parsing.

4https://github.com/salesforce/WikiSQL

1334

https://github.com/salesforce/WikiSQL

Limitations

The proposed synthesis framework has been tar-
geted at text-to-SQL task, which may not gener-
alize to other tasks that require large amount of
synthetic data without major modification. For in-
stance, other popular tasks involving converting
natural language questions to some sort of logic
forms are in natural very similar to text-to-SQL,
yet all techniques relying on the "key" property in
the database might no longer be applicable. On the
other hand, the template based synthesis method
currently relies on templates extracted from the real
data. By incorporating some carefully designed
grammar (e.g. PCFG), we may be able to further
enrich the template set.

Ethics Statement

The training and evaluation of our experiments
rely on many compute resources, which may not
be environment-friendly. For example, each pars-
ing model requires training using NVIDIA A100-
SXM4-40GB GPUs for many hours, which can
inevitably cause more CO2 emission.

References
Chandra Bhagavatula, Thanapon Noraset, and Doug

Downey. 2015. Tabel: Entity linking in web tables.
In SEMWEB.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. LGESQL: Line graph en-
hanced text-to-SQL model with mixed local and non-
local relations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2541–2555, Online. Association for
Computational Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John Drake, and Qiaofu Zhang.
2021a. Natural SQL: Making SQL easier to infer
from natural language specifications. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 2030–2042, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R. Woodward, John H. Drake, and Qiaofu
Zhang. 2021b. Natural SQL: making SQL easier to
infer from natural language specifications. CoRR,
abs/2109.05153.

Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin,
Hong Chi, James Cao, Peng Chen, and Ming Zhou.

2018. Question generation from SQL queries im-
proves neural semantic parsing. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1597–1607, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019a. Towards complex text-to-sql in cross-
domain database with intermediate representation.
In Proceedings of the 57th Conference of the As-
sociation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 4524–4535. Association for
Computational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019b. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4524–4535, Florence, Italy. Association for Compu-
tational Linguistics.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li.
2022. S2SQL: Injecting syntax to question-schema
interaction graph encoder for text-to-SQL parsers.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 1254–1262, Dublin,
Ireland. Association for Computational Linguistics.

Madelon Hulsebos, Çağatay Demiralp, and Paul Groth.
2021. Gittables: A large-scale corpus of relational
tables. arXiv preprint arXiv:2106.07258.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Chenghu Zhou, Xinbing Wang, Quanshi Zhang, and
Zhouhan Lin. 2022. Rasat: Integrating relational
structures into pretrained seq2seq model for text-to-
sql.

1335

https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
http://arxiv.org/abs/2109.05153
http://arxiv.org/abs/2109.05153
https://doi.org/10.18653/v1/D18-1188
https://doi.org/10.18653/v1/D18-1188
https://doi.org/10.18653/v1/p19-1444
https://doi.org/10.18653/v1/p19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/2022.findings-acl.99
https://doi.org/10.18653/v1/2022.findings-acl.99
https://arxiv.org/abs/2106.07258
https://arxiv.org/abs/2106.07258
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/ARXIV.2205.06983
https://doi.org/10.48550/ARXIV.2205.06983
https://doi.org/10.48550/ARXIV.2205.06983

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Ohad Rubin and Jonathan Berant. 2021. SmBoP:
Semi-autoregressive bottom-up semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 311–324, Online. Association for Computa-
tional Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both? In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 922–938,
Online. Association for Computational Linguistics.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2021. Learning con-
textual representations for semantic parsing with
generation-augmented pre-training. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13806–13814.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic pars-
ing to SQL queries. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1849–1864, Online. Association for Computational
Linguistics.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760–2766, Online. As-
sociation for Computational Linguistics.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang.
2021. Data augmentation with hierarchical SQL-
to-question generation for cross-domain text-to-SQL
parsing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 8974–8983, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. arXiv
preprint arXiv:2201.05966.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J.D. Prince, and Yanshuai Cao. 2021. Optimiz-
ing deeper transformers on small datasets. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2089–
2102, Online. Association for Computational Lin-
guistics.

Wei Yang, Peng Xu, and Yanshuai Cao. 2021. Hier-
archical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In International Conference on Learning
Representations.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir R. Radev.
2018a. Syntaxsqlnet: Syntax tree networks for com-
plex and cross-domain text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 1653–1663.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018b. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5338–5349,
Hong Kong, China. Association for Computational
Linguistics.

1336

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.naacl-main.220
https://doi.org/10.18653/v1/2021.emnlp-main.707
https://doi.org/10.18653/v1/2021.emnlp-main.707
https://doi.org/10.18653/v1/2021.emnlp-main.707
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/d18-1193
https://doi.org/10.18653/v1/d18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

1337

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

A Existing Synthesis Frameworks

Inspired by prior work by Jia and Liang (2016) in semantic parsing, Yu et al. (2021) extended a synchronous
context-free grammar (SCFG) approach to the text-to-SQL task where they manually crafted about 90
high-quality SQL-NLQ aligned patterns to generate new SQL-NLQ pairs. They found pretraining on the
synthetic dataset leads to a significant improvement even tested with a very strong text-to-SQL parser
RAT-SQL on the Spider benchmark.

While SCFG usually creates high-quality data because patterns are carefully designed and aligned,
the coverage of the patterns is limited, and expert knowledge is required to design such patterns. Thus,
more efforts are devoted to automating the procedure. Guo et al. (2018) utilized a two-stage approach by
first sampling SQL queries from a simple pattern and then generating questions using a copy-based RNN
encoder-decoder structure find the synthetic data that can improve the existing state-of-the-art model on
the WikiSQL benchmark. Zhong et al. (2020) followed the same two-stage approach but used templates
extracted from training to generate SQL and augmented the NLQ generator with pretrained transformer
BERT and iteratively updated the parser and generator. Only the synthetic dataset that was created using
target schemas filtered with cycle consistency can facilitate the downstream performance.

Along the same approach, Wang et al. (2021) identified problems with fixed SQL synthesis rules and
employed a full-fledged probabilistic context-free grammar (PCFG) that enabled generating SQLs with
varying structures. They synthesized natural language queries with a BART SQL-NLQ generator. Their
synthesis method has been shown to boost the RAT-SQL parser performance on the Spider benchmark,
though the improvement is not as significant as pretraining using SCFG generated synthetic data (Yu
et al., 2021). The gap might be due to the quality of the synthetic dataset as the independent selection of
generation step in PCFG introduces substantial noise such as illogical SQL queries.

To improve the quality of synthetic data, Wu et al. (2021) introduced a clause-level synthesis framework:
first decomposing a query into sub-clauses and translating sub-SQL clauses into sub-questions, and finally
assembling sub-questions into a whole question. They found clause-based synthesis method is better than
flat synthesis.

Alternatively, Yang et al. (2021) proposed to improve the quality of synthetic data by incorporating
domain information in question generation. Specifically, they learned an entity sampler and synthesized
questions using an entity-to-question generator with entities sampled from the sampler, followed by
generating pairing SQL queries through a baseline parser. For this approach, they also attractively updated
the parser and generator, in a similar fashion as in Zhong et al. (2020). Their synthetic dataset can
significantly improve a DT-Fixup parser on the Spider benchmark.

This work seeks to investigate value of synthetic dataset with current state-of-the-art PICARD model
and refine a synthetic method in an automate and non-iterative manner. Thus, we examine two synthetic
datasets from recent work (Wang et al., 2021; Wu et al., 2021) that demonstrate improvement of down-
stream performance with previous state-of-the-art text-to-SQL parser (RAT-SQL) over Spider benchmark
without iterative training.

1338

Pa
pe
r

M
et
ho
d

SQ
L
Sy
nt
he
sis

N
L
Q
Sy
nt
he
sis

SQ
L
-N
L
Q

B
ri
dg
in
g

M
an
ua
l

E
ffo
rt

A
bs
tr
ac
tio
n

L
im
ita
tio
n

Pr
oc
ed
ur
e

G
en
er
at
or

G
uo

et
al

(2
01

8)
Tw

o
sta

ge
Te

m
pl

at
e

Si
ng

le
 te

m
pl

at
e,

 n
o
JO

IN
SQ

L
à

N
LQ

co
py

-b
as

ed

R
N

N
-

m
in

im
al

G
A

ZP
(Z

ho
ng

et
al

20
20

)

Ite
ra

tiv
e

tw
o

sta
ge

Te
m

pl
at

e
V

io
la

tin
g

fo
re

ig
n

ke
y

re
la

tio
ns

, l
im

it
to

 tr
ai

ni
ng

te

m
pl

at
es

SQ
L
à

N
LQ

B
ER

T
+

po
in

t
de

co
de

r
-

m
in

im
al

W
an

g
et

al
(2

02
1)

Tw
o

sta
ge

PC
FG

O
P/

C
O

L
in

co
m

pa
tib

ili
ty

,
in

va
lid

SQ
L

str
uc

tu
re

SQ
L
à

N
LQ

B
A

RT
-

m
in

im
al

W
u

et
al

(2
02

1)
Tw

o
sta

ge
C

FG
N

o
su

pp
or

t f
or

 IE
U

,
no

 J
OI

N

SQ
L
à

Su
b-

SQ
L

à
N

LQ
 fr

ag
m

en
t

à
N

LQ

co
py

-b
as

ed

R
N

N

SQ
L

cl
au

se

/ N
LQ

fra

gm
en

t

co
m

bi
na

tio
n

ru
le

s

Ya
ng

et
al

(2
02

1)

Ite
ra

tiv
e

re
ve

rs
ed

tw
o

sta
ge

-
D

ep
en

de
nt

on
ba

se
pa

rs
er

sc
he

m
a
à

en
tit

y
à

N
LQ

T5
-

m
in

im
al

G
ra

pp
a

(Y
u

et
al

20
21

)
Sy

nc
hr

on
ou

s
Te

m
pl

at
e

Li
m

it
to

 tr
ai

ni
ng

 te
m

pl
at

es
sim

ul
ta

ne
ou

s
in

sta
nt

ia
tio

n
of

SQ

L-
N

LQ
 te

m
pl

at
e

A
lig

ne
d

SQ
L-

N
LQ

te
m

pl
at

e
al

ig
nm

en
t

O
ur

s
Tw

o
sta

ge
Te

m
pl

at
e

Li
m

it
to

 tr
ai

ni
ng

 te
m

pl
at

es
SQ

Là
IR
à

N
LQ

T5
IR

m
in

im
al

Fi
gu

re
5:

C
om

pa
ri

so
n

of
di

ff
er

en
td

at
a

sy
nt

he
si

s
m

et
ho

ds
fo

rt
ex

t-
to

-S
Q

L
ta

sk
.S

yn
ch

ro
no

us
re

fe
rs

to
ge

ne
ra

tin
g

SQ
L

an
d

N
L

Q
to

ge
th

er
,T

w
o-

st
ag

e
fir

st
sy

nt
he

si
ze

s
SQ

L
th

en
ge

ne
ra

te
s

N
L

Q
,r

ev
er

se
d

tw
o-

st
ag

e
fir

st
ge

ne
ra

te
s

N
L

Q
th

en
sy

nt
he

si
ze

s
SQ

L
.S

Q
L

-N
L

Q
B

ri
dg

in
g

re
fe

rs
to

in
te

rm
ed

ia
te

op
er

at
io

ns
or

re
pr

es
en

ta
tio

ns
fo

rm
at

ch
in

g
SQ

L
an

d
N

L
Q

.

1339

B Details on Schema-distance-weighted Column Sampling

B.1 Table Distance.
For a given database d, we first establish an undirected graph for all the tables in d. We can then compute
the distance between any two tables, e(·, ·), defined as the least number of joins necessary to join the
two tables under the restriction that table join can only take place with qualified primary key and foreign
key information. In other words, we disable arbitrary join of two tables if they lack key and foreign key
relationship.

We give some examples using one of the databases (id: college_1) in the Spider benchmark, as shown
in Table 8.

• e(T1,T2) = 1 because the column class code in table class (T1) is a foreign key in table course
(T2). We can also observe from the table graph in Figure 6: there is a direct path between table node
class and table node course.

• e(T2,T7) = 2 since we first need to join table course (T2) with table department (T3), followed by
joining table department with table student (T7). Note that even though we can also join using the
path T2→ T1→ T5→ T7, this is not the least number of joins between the two tables.

Table 8: Example database (id: college_1)

Alias Table Name Primary Key
Foreign Key

Table Column

T1 class class code enroll class code

T2 course course code class class code

T3 department department code

course department code

professor department code

student department code

T4 employee employee number

class professor employee number

department employee number

professor employee number

T5 enroll - - -

T6 professor - - -

T7 student student num enroll student number

1340

course
T2

class
T1

department
T3

employee
T4

enroll
T5

professor
T6

student
T7

Figure 6: Example table graph (id: college_1)

The reason we introduce the concept of table distance is that we want to leverage this value to promote
table joins with appropriate relationships while discouraging illogical joins when two tables are irrelevant.
During the process of column sampling, we will choose columns that have smaller table distance with
the other columns that have already been selected with the objective to create more realistic synthetic
SQL queries. In the example above, assume we have first sampled a column from the table student (T7).
For the next column placeholder, we are more likely to sample a column from table enroll (T5) than
table professor (T6) — it is more natural to ask questions like "how many students enrolled in class X"
compared to asking "how many students enrolled in classes taught by professors who were employed
before year YYYY".

1341

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

See the Limitations section.

�3 A2. Did you discuss any potential risks of your work?
See the Ethics Statement section.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
See Abstract and Section 1 Introduction.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
We used the Spider data (Section 2 and Section 4)

�3 B1. Did you cite the creators of artifacts you used?
Section 2, 4 and References.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Spider is one of the top used datasets for text-to-sql tasks and have been accepted by the community
for scientific research.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
See Section 4.1.

C �3 Did you run computational experiments?
Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Ethics Statement and Section 4.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1342

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

1343

