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Abstract
Multimodal Sentiment Analysis leverages mul-
timodal signals to detect the sentiment of a
speaker. Previous approaches concentrate on
performing multimodal fusion and representa-
tion learning based on general knowledge ob-
tained from pretrained models, which neglects
the effect of domain-specific knowledge. In
this paper, we propose Contrastive Knowledge
Injection (ConKI) for multimodal sentiment
analysis, where specific-knowledge represen-
tations for each modality can be learned to-
gether with general knowledge representations
via knowledge injection based on an adapter ar-
chitecture. In addition, ConKI uses a hierarchi-
cal contrastive learning procedure performed
between knowledge types within every single
modality, across modalities within each sam-
ple, and across samples to facilitate the effec-
tive learning of the proposed representations,
hence improving multimodal sentiment predic-
tions. The experiments on three popular mul-
timodal sentiment analysis benchmarks show
that ConKI outperforms all prior methods on a
variety of performance metrics.

1 Introduction

Multimodal sentiment analysis (MSA) is the task
of mining and comprehending the sentiments of
online videos, which has many downstream appli-
cations, e.g., analyzing the overall opinion from
customers about a product, gauging polling inten-
tions from voters (Han et al., 2021; Melville et al.,
2009), etc. Most existing MSA methods focus on
developing fusion techniques between modalities.
The easiest way is to simply concatenate text, video,
and audio features as a fused vector for subsequent
classification or regression. An alternative is to use
outer-product, Recurrent Neural Networks (RNNs)
or attention-based models to model multimodal in-
teractions (Chen et al., 2017; Williams et al., 2018;
Zadeh et al., 2017; Liu and Shen, 2018). More
recently, MSA methods for learning effective mul-
timodal representations have emerged constantly

(Hazarika et al., 2020; Mai et al., 2021; Yu et al.,
2021), ranging from decomposing the represen-
tation of each modality to introducing extra con-
straints in the learning objective.

Although the above methods have led to im-
provements in MSA performance, they focus on uti-
lizing general knowledge obtained from pretrained
models to encode modalities, which is inadequate
to identify specific sentiments across modalities.
One possibility to solve this issue is through knowl-
edge injection which can generate specific knowl-
edge to aid the general knowledge for further im-
proving predictions. Many researchers have discov-
ered that injecting knowledge from other sources
such as linguistic knowledge, encyclopedia knowl-
edge, and domain-specific knowledge can help en-
hance existing pretrained language models in terms
of knowledge awareness and lead to improved per-
formance on various downstream tasks (Wei et al.,
2021; Lauscher et al., 2020; Wang et al., 2021a).

In this paper, we propose ConKI, a Contrastive
Knowledge Injection framework, to learn both pan-
knowledge representations and knowledge-specific
representations to boost MSA performance. We
argue that a unimodal representation can consist
of a pan-knowledge representation (given by a pre-
trained model like BERT (Devlin et al., 2019)) and
a knowledge-specific representation (injected from
relevant external sources). Specifically, ConKI
uses a pretrained BERT model to extract textual
pan-knowledge representations and uses two ran-
domly initialized transformer encoders to generate
acoustic and visual pan-knowledge representations,
respectively. In the meantime, it applies a knowl-
edge injection model named adapter, onto each
modality to yield knowledge-specific representa-
tions. Both pan- and specific-knowledge represen-
tations are fused first within each modality and
then across modalities, before the fused features
are used for sentiment prediction. We further pro-
pose a hierarchical contrastive learning procedure
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performed between knowledge types within every
single modality, across modalities within each sam-
ple, and across samples, to facilitate the learning of
these representations in ConKI.

The main contributions of this work can be sum-
marized as follows:

• We propose ConKI, a Contrastive Knowledge
Injection framework for multimodal sentiment
analysis. ConKI aims to boost model per-
formance through external knowledge injec-
tion from other datasets and hierarchical con-
trastive learning, which is proved better than
simply fine-tuning with external datasets.

• We propose hierarchical contrastive learning
that uses a unified contrastive loss to disentan-
gle the pan-knowledge representations from
the specific-knowledge representations since
they belong to different knowledge domains
and should complement each other.

• We conduct extensive experiments on three
popular benchmark MSA datasets and at-
tain results that are superior to the existing
state-of-the-art MSA baselines on all metrics,
demonstrating the effectiveness of the pro-
posed methods in ConKI.

2 Related Work

In this section, we discuss related research in mul-
timodal sentiment analysis, knowledge injection,
and contrastive learning.

2.1 Multimodal Sentiment Analysis

Research on MSA mainly focuses on multimodal
fusion and representation learning. For multimodal
fusion, existing methods are typically divided into
early fusion and late fusion techniques. Early fu-
sion refers to joining multimodal inputs into a sin-
gle feature before single-model encoding. For ex-
ample, Williams et al. (2018) concatenate initial
input features and then use LSTM to capture the
temporal dependencies in the sequence. On the con-
trary, late fusion learns unimodal representations
via separate models and fuses them in a later stage
for inference. Zadeh et al. (2017) introduce a ten-
sor fusion network that first encodes each modality
with corresponding sub-networks and then mod-
els the unimodal, bimodal, and trimodal interac-
tions by a three-fold Cartesian product. For repre-
sentation learning methods, Hazarika et al. (2020)

propose to project each modality into a modality-
invariant and modality-specific representation. Dif-
ferent from the above work, we propose to decom-
pose each modality into two representations based
on knowledge types. Both representations can com-
plement each other, leading to a richer unimodal
representation.

2.2 Knowledge Injection

Injecting knowledge into pretrained language mod-
els (PLMs) has been proven to outperform vanilla
pretrained models on various NLP tasks (Wei
et al., 2021; Wang et al., 2021a; Tian et al., 2020;
Ke et al., 2020; Lin et al., 2019; Wang et al.,
2021b). Adapters are commonly used as a knowl-
edge injection model plugged outside or inside of
PLMs. For instance, Wang et al. (2021a) infuse
factual knowledge from Wikidata (Vrandečić and
Krötzsch, 2014) and linguistic knowledge from
web text to RoBERTa (Liu et al., 2019) via two
kinds of adapters. In this work, we build different
adapters for different modalities, not limited to text,
to learn specific multimodal knowledge from an
external dataset for the downstream task. To the
best of our knowledge, we are the first to explore
knowledge injection in the multimodal domain.

2.3 Contrastive Learning

Contrastive learning (CL) aims to learn effective
representations such that positive pairs of samples
are close while negative pairs of samples are far
apart (Liu et al., 2021; Li et al., 2020; Chen et al.,
2020a; Khosla et al., 2020; He et al., 2020). Ex-
isting works can be divided into two categories:
self-supervised CL (Akbari et al., 2021; Chen et al.,
2020a,b; He et al., 2020; You et al., 2020; Tao
et al., 2020) and supervised CL (Khosla et al., 2020;
Mai et al., 2021). The difference between them
is whether the label information is used to form
positive/negative pairs. For example, Khosla et al.
(2020) propose supervised CL to pull samples of
the same class together and push samples from
different classes away. In our work, we design
contrastive pairs in finer granularity. That is, we
consider contrasts between knowledge types, be-
tween modalities, and across samples.

3 Method

In this section, we explain the Contrastive Knowl-
edge Injection framework (ConKI) in detail. The
goal of ConKI is to generate pan- and specific-
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Figure 1: The overall architecture of ConKI. The solid and dashed arrows represent the procedure of the main MSA
task and the hierarchical contrastive learning subtask, respectively. Inside the contrastive learning procedure, cyan
and pink boxes illustrate samples that fall in different sentiment score intervals.

knowledge modality representations via knowl-
edge injection and hierarchical contrastive learning.
Knowledge injection intends to obtain knowledge-
specific representations that could complement
the pan-knowledge representations offered by pre-
trained models. Hierarchical contrastive learning
further optimizes these knowledge-specific and
pan-knowledge representations by considering con-
trasts between knowledge types, modalities, and
samples.

3.1 Problem Definition

The task of multimodal sentiment analysis (MSA)
is to detect sentiments in videos based on multi-
modal signals, including text (t), vision (v), and
audio (a) modalities. These signals are represented
as sequences of low-level features, i.e., It ∈ Rlt×dt ,
Iv ∈ Rlv×dv , and Ia ∈ Rla×da , respectively. Here
lm∈{t,v,a} denotes the length of the sequence for
each modality, while dm∈{t,v,a} denotes the corre-
sponding feature vector dimension. The detail for
acquiring these features is described in Appendix
B. Given these sequences Im∈{t,v,a}, the primary
task is to make accurate predictions on the senti-
ment intensity by extracting and fusing higher-level
multimodal information.

3.2 Overall Architecture

Figure 1 shows the overall architecture of ConKI.
We first process raw multimodal input to low-level
features Im∈{t,v,a} with their corresponding feature
extractors and tokenizers. Then we encode Im into
knowledge-specific representations (i.e., Am) gen-
erated by some adapters and pan-knowledge rep-
resentations (i.e., Om) generated by pretrained en-
coders. The text encoder is from publicly-available
pretrained backbones like BERT (Devlin et al.,
2019), and the vision/audio encoder is a designed
model with random initialization since there is
no suitable backbone that is pretrained by the
above low-level features. After generating the
knowledge-specific and pan-knowledge represen-
tations, ConKI is trained simultaneously with two
different tasks on the downstream target dataset
– the primary MSA regression task and the con-
trastive learning subtask.

For the MSA task, we concatenate the
knowledge-specific representation and pan-
knowledge representation of each modality before
feeding them into a fully-connected (FC) layer for
inner-modality fusion. We then design a fusion
network that consists of a concatenation layer and
a fusion module for multi-modality fusion, as
shown in Figure 2. The fused representations are
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Figure 2: The Fusion Network. The fusion module
marked in the dashed box is used to get the weighted
fused embedding.

⊗
means element-wise multiplica-

tion.

passed into a multilayer perceptron (MLP) network
to produce the sentiment predictions, ŷ.

For the subtask of hierarchical contrastive learn-
ing, we carefully construct the negative and posi-
tive sample pairs at the knowledge level, modality
level, and sample level. The intuition of our pair-
ing policy is as follows. We expect Am and Om

to capture different knowledge, so we disentangle
them and make them complement each other to
get richer modality representations by knowledge-
level contrasts. Since a video’s sentiment is deter-
mined by all modalities, we learn the commonal-
ities among the six representations by modality-
level contrasts. Besides, videos that express close
sentiments should share some correlations. We cap-
ture the correlations by sample-level contrasts to
help further learn the commonalities among sam-
ples under close sentiments. By integrating these
hierarchical contrasts, ConKI is able to catch full
dynamics among representations which can signifi-
cantly benefit the main MSA task.

3.3 Encoding with Knowledge Injection

We encode each modality into a pan-knowledge
representation via the pretrained encoders and a
knowledge-specific representation via the adapters.

Pan-knowledge representations. We use the
pretrained BERT (Devlin et al., 2019) to encode the
input sentence for the text modality. The pooled
output vector in the last layer is extracted as the
whole sentence representation Ot:

Ot, Ht = Bert(It; θBert
t ) , (1)

where Ht denotes the hidden states of all layers.
For audio and vision modalities, we employ en-
coders of stacked transformer layers (Vaswani et al.,
2017) to capture the temporal features Om:

Om, Hm = Encoder(Im; θencoder
m ), m ∈ {v, a} .

(2)

Figure 3: Adapter and its connection with the backbone
encoder.

Here, Ot, Oa, and Ov are regarded as three pan-
knowledge representations since they mainly con-
tain general knowledge such as the generic facts
encoded by BERT (Devlin et al., 2019) pretrained
on big text data.

Knowledge-specific representations. We in-
fuse specific domain knowledge from external mul-
timodal sources through knowledge injection mod-
els (adapters). The adapter is commonly used
in natural language processing (NLP) to enhance
existing pretrained language models’ knowledge
awareness (Wei et al., 2021). The outputs of
adapters are taken as knowledge-specific represen-
tations. Specifically, the adapter for each modal-
ity is plugged outside of the respective pretrained
encoder, as shown in Figure 3. It consists of mul-
tiple modules with the same sandwich structure:
two FC layers with two transformer layers in be-
tween. Each module can be inserted before any
transformer layers of the backbone models (en-
coders), e.g., the second and fourth transformer lay-
ers in Figure 3. Therefore, each module takes the
intermediate layers’ hidden states of the pretrained
encoder and the output of the previous adapter mod-
ule as input. The output of the adapter is denoted
as Am, where

Am = Adapter(Hm; θadapter
m ), m ∈ {t, v, a} .

(3)
With the objective of learning specific mul-

timodal sentiment knowledge, we pretrain one
adapter for each modality, i.e., Adaptert, Adaptera
and Adapterv, concurrently using an external
dataset while keeping the pretrained encoders
frozen. Since the external dataset we select is also
from the multimodal sentiment domain, the pre-
training task remains the MSA task. That is, we
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Algorithm 1: Learning Procedure of
ConKI
Stage 1: Adapter Pretraining
Input: External dataset E , its corresponding

features Im and labels y,
Output: Pretrained adapters
{θadapter

m | m ∈ {t, v, a}}
for each training epoch do

for batch {(Iit , Iiv, Iia)}|B|
i=1 from E do

1 Encode Iim to Oi
m and Ai

m via Eq.
(1-3)

2 Inner-modality fusion:
F i
m = FC([Oi

m;Ai
m]), where [·; ·]

denotes the concatenation of two
vectors

3 Multi-modality fusion:
F i = FN(F i

t , F
i
v, F

i
a), where FN

is the fusion network
4 Compute the predictions using

ŷi = MLP (F i)
5 Compute Ltask via Eq. (4)
6 Update parameters except

{θBert
t , θencoder

m | m ∈ {v, a}}
end
Save {θadapter

m | m ∈ {t, v, a}} when
reaching the best validation result

end
Stage 2: Downstream Fine-tuning
Input: Target dataset D, its corresponding

features Im, its labels y, and the pretrained
adapters

Output: Predictions ŷ
for each training epoch do

for batch {(Iit , Iiv, Iia)}|B|
i=1 from D do

Perform Steps 1− 4 in Stage 1
Compute L via Eq. (5)
Update parameters except
{θadapter

m | m ∈ {t, v, a}}
end

end

pretrain adapter parts in Figure 1 with only the
MSA task on the external dataset, then utilize the
pretrained adapters to produce knowledge-specific
representations Am for the downstream target task
that includes both the MSA task and the hierar-
chical contrastive learning subtask. Algorithm 1
summarizes this pretraining procedure of adapters.

3.4 Hierarchical Contrastive Learning
In our framework, we propose a hierarchical con-
trastive learning method to enhance the learned
representations by considering the following four
aspects in a batch B:

• For a single video sample i, all the modal-
ities share common motives of the speaker
that determine the overall sentiment. The pan-
knowledge representations of different modal-
ities are expected to represent similar mean-
ings and thus need to be pulled closer to each
other. And the same applies for knowledge-
specific representations. This intuition leads
to the construction of intra-sample positive
pairs:

P i
1 = {(Oi

m, Oi
n), (A

i
m, Ai

n) |
m,n ∈ {t, v, a} & m ̸= n & i ∈ B} ;

• The pan-knowledge representations and the
knowledge-specific representations should be
disentangled from each other since they be-
long to different knowledge domains and are
designed to complement each other. This ex-
ists inside each sample (i and j represent the
same sample) as well as across samples in the
batch (i and j represent two different samples).
Therefore, we can build the inter-knowledge
negative pairs within a batch:

N i
1 = {(Oi

m, Aj
n) |

m,n ∈ {t, v, a} & i, j ∈ B} ;

• For two arbitrary samples i and j having close
sentiments, i.e., their sentiment scores can be
rounded to the same integer, six representa-
tions of sample i (i.e., Oi

m and Ai
m) should

be close to the corresponding representations
of sample j (i.e., Oj

n and Aj
n). Note that the

subscripts m and n represent the modality for
sample i and j, respectively. We then form
the inter-sample positive pairs as

P i
2 = {(Oi

m, Oj
n), (A

i
m, Aj

n)|m,n ∈ {t, v, a}
& r(yi) = r(yj) & i, j ∈ B & i ̸= j} ,

where yi denotes the ground-truth of sample
i, and r(·) stands for the round function;

• Except for the pairs derived from the above
three aspects, the remaining pairs with sample
i in the same batch are set as negative pairs
N i

2. Please refer to Appendix A.1 for a more
detailed pairing policy.
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Specifically, our hierarchical contrastive loss
Lcon is computed by

Lcon =
∑

i∈B

−1

|P i
1 ∪ P i

2|
×

∑

(p,q)∈Pi
1∪Pi

2

log
f((p, q))∑

(p′,q′)∈All Pairs f((p
′, q′))

,

where,

f((p, q)) = exp(
p

∥p∥2
· q

∥q∥2
· 1
τ
) ,

All Pairs = P i
1 ∪ P i

2 ∪N i
1 ∪N i

2 .

In the above equation, |P i
1 ∪ P i

2| means the num-
ber of positive pairs with sample i in a batch B,
(·, ·) denotes a pair in the corresponding set, e.g.,
(Oi

t, O
i
v), and τ is a scalar temperature parameter.

The rationale behind this hierarchical contrastive
learning subtask is as follows. First, we capture the
commonalities across the three modalities within
each knowledge type of each sample to reduce the
modality gaps under a shared motive. Second, we
model the commonalities across samples of close
sentiments within each knowledge type to reduce
the sample gaps. Third, we capture the differences
between the pan-knowledge representations and the
knowledge-specific representations in each sample
which results in a complementary effect of the two
knowledge types of representations. Last but not
least, we capture the differences across samples of
different sentiments within each knowledge type in
order to learn the dynamics of different sentiment
intervals.

3.5 Training Procedure

Given the ground truth y and the predictions ŷ, we
can calculate the main MSA task loss by the mean
squared error:

Ltask =
1

|B|

|B|∑

i

(ŷi − yi)2 , (4)

where |B| is the number of samples in a batch.
ConKI adopts the learning regime of pretrain-

ing followed by fine-tuning. We first pretrain the
adapters in ConKI with Ltask using an external
dataset while fixing the model parameters of the
pretrained backbones, considering ConKI only en-
codes specific knowledge in adapters which have

Dataset #Train #Valid #Test #Total

CMU-MOSI 1284 229 686 2199
CMU-MOSEI 16326 1871 4659 22856

SIMS 1368 456 457 2281

Table 1: The statistics of CMU-MOSI, CMU-MOSEI
and SIMS.

much fewer trainable parameters compared to back-
bones. Then we fine-tune ConKI with the down-
stream target dataset by optimizing the overall loss
L:

L = Ltask + λLcon , (5)

where λ is a hyperparameter that balances the MSA
task loss and the hierarchical contrastive loss. Algo-
rithm 1 shows the full training procedure of ConKI.

4 Experiments

In this section, we present some experimental de-
tails, including datasets, evaluation metrics, base-
line models, and experimental results. The imple-
mentation details are shown in Appendix B.

4.1 Datasets and Metrics
We conduct experiments on three publicly available
benchmark datasets in MSA: CMU-MOSI (Zadeh
et al., 2016), CMU-MOSEI (Zadeh et al., 2018)
and SIMS (Yu et al., 2020). Table 1 shows the
statistics of the datasets. Appendix C describes the
details of these datasets.

Following the previous works (Sun et al., 2020;
Rahman et al., 2020; Hazarika et al., 2020; Yu
et al., 2021; Mai et al., 2021; Han et al., 2021; Yu
et al., 2020), we report our experimental results
in two forms: regression and classification. For
regression, we report mean absolute error (MAE)
and Pearson correlation (Corr). For classification,
we report binary classification accuracy (Acc-2)
and F1 score. Specifically, for CMU-MOSI and
CMU-MOSEI datasets, we calculate Acc-2 and F1
scores in negative/positive (zero excluded) and non-
negative/positive (zero included) settings as well as
seven-class classification accuracy (Acc-7) which
shows the percentage of predictions that correctly
classified into the same interval of seven intervals
between −3 and +3. Higher values indicate better
performance for all metrics except for MAE.

4.2 Baselines
We compare ConKI with the following state-of-the-
art baseline models in MSA: TFN (Zadeh et al.,
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Models∗
CMU-MOSI CMU-MOSEI

MAE Corr Acc-7 Acc-2 F1 MAE Corr Acc-7 Acc-2 F1

TFN† 0.901 0.698 34.9 -/80.8 -/80.7 0.593 0.700 50.2 -/82.5 -/82.1
LMF† 0.917 0.695 33.2 -/82.5 -/82.4 0.623 0.677 48.0 -/82.0 -/82.1
MulT† 0.861 0.711 - 81.5/84.1 80.6/83.9 0.580 0.703 - -/82.5 -/82.3
ICCN† 0.862 0.714 39.0 -/83.0 -/83.0 0.565 0.713 51.6 -/84.2 -/84.2
MISA† 0.804 0.764 - 80.79/82.10 80.77/82.03 0.568 0.724 - 82.59/84.23 82.67/83.97
MAG-BERT† 0.727 0.781 43.62 82.37/84.43 82.50/84.61 0.543 0.755 52.67 82.51/84.82 82.77/84.71
Self-MM† 0.712 0.795 45.79 82.54/84.77 82.68/84.91 0.529 0.767 53.46 82.68/84.96 82.95/84.93
HyCon‡ 0.713 0.790 46.6 -/85.2 -/85.1 0.601 0.776 52.8 -/85.4 -/85.6
MMIM† 0.700 0.800 46.65 84.14/86.06 84.00/85.98 0.526 0.772 54.24 82.24/85.97 82.66/85.94

ConKI 0.681 0.816 48.43 84.37/86.13 84.33/86.13 0.529 0.782 54.25 82.73/86.25 83.08/86.15

Table 2: Results on CMU-MOSI and CMU-MOSEI. In Acc-2 and F1, the left of the “/” corresponds to “negative/non-
negative” and the right corresponds to “negative/positive”. ∗: all models use BERT as the text encoder; †:from (Han
et al., 2021); ‡:from (Mai et al., 2021). Best results are marked in bold.

2017), LMF (Liu and Shen, 2018), MulT (Tsai
et al., 2019), ICCN (Sun et al., 2020), MISA (Haz-
arika et al., 2020), MAG-BERT (Rahman et al.,
2020), Self–MM (Yu et al., 2021), HyCon (Mai
et al., 2021), and MMIM (Han et al., 2021). The
details of these baseline models are shown in Ap-
pendix D.

4.3 Results

In accordance with previous work, we run our
model five times under the same hyper-parameter
settings and report the average performance of all
metrics in Table 2 and Table 3. We can observe
from these tables that ConKI yields better or com-
petitive results to a range of baseline models on
CMU-MOSI, CMU-MOSEI, and SIMS. Specifi-
cally, ConKI outperforms all state-of-the-art base-
line models in all metrics on CMU-MOSI and
SIMS as well as in Corr, Acc-7, Acc-2, F1 scores
on CMU-MOSEI. It also achieves closed perfor-
mance to the best baseline model in MAE on CMU-
MOSEI.

Models MAE Corr Acc-2 F1

TFN 0.488 0.496 75.27 75.56
LMF 0.487 0.502 75.36 75.78
MulT 0.485 0.504 75.62 75.84
MISA 0.472 0.542 75.49 75.85

MAG-BERT 0.553 0.242 71.43 63.68
Self-MM 0.458 0.535 77.37 77.54
MMIM 0.607 – 69.37 58.00

ConKI 0.454 0.542 77.94 78.17

Table 3: Results on SIMS. All baseline model codes are
from https://github.com/thuiar/MMSA.

It is notable that the MAE of ConKI on CMU-
MOSI outperforms the best baseline model MMIM
by around 0.02, which shows ConKI is able to learn
effective representations for the MSA task since
MAE is the most commonly used evaluation metric
in regression tasks. ConKI also presents an excel-
lent performance in the Corr scores on both CMU-
MOSI and CMU-MOSEI datasets. The possible
reasoning behind this excellent performance is that
ConKI uses contrastive learning for recognizing the
samples under different sentiments, which could
lead to effective ranking results among samples and
thus produce a higher Corr score (Swinscow et al.,
2002).

Furthermore, Acc-7 of ConKI on CMU-MOSI
surpasses the best baseline by 1.78. Though per-
forming classification, especially seven-class clas-
sification, is difficult in a regression task, ConKI
successfully leverages the contrasts across samples
that are classified into seven intervals (by the round
function described in Section 3.4) to model the sam-
ple dynamics, which brings a great improvement
to Acc-7 and Acc-2, demonstrating the efficacy
of ConKI in representation learning for MSA. In
addition, ConKI shows excellent F1 scores on all
datasets, which endorse its potential in real-world
applications since F1 is valuable for evaluating im-
balanced datasets.

4.4 Ablation Study

We first conduct an ablation study about modalities,
as shown in Table 4. We can observe that the inclu-
sion of all three modalities significantly improves
the performance of ConKI.

To show the benefits of the proposed knowledge
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Models MAE Corr Acc-7 Acc-2 F1

V+A 1.408 0.248 18.72 55.71/54.33 54.37/53.24
T+A 0.700 0.799 48.22 82.45/84.18 82.38/84.16
T+V 0.718 0.798 45.45 82.97/84.88 82.89/84.86

ConKI 0.681 0.816 48.43 84.37/86.13 84.33/86.13

Table 4: Ablation results when using different modali-
ties.

Models MAE Corr Acc-7 Acc-2 F1

ConKI 0.681 0.816 48.43 84.37/86.13 84.33/86.13
w/o C1 0.734 0.794 43.56 82.39/84.21 82.35/84.22
w/o C2 0.753 0.789 43.50 82.16/83.84 82.15/83.89
w/o C3 0.710 0.811 44.75 83.29/84.82 83.23/84.80

w/o C4 0.683 0.815 48.05 84.23/86.01 84.16/85.99
w/o N1 0.689 0.812 47.90 83.88/85.76 83.8/85.74

Table 5: Ablation results of ConKI’s components on
CMU-MOSI.

injection and hierarchical contrastive learning in
ConKI, we conduct a series of ablation experiments
on CMU-MOSI, as shown in Table 5 and Table 6.
ConKI mainly includes four components: the use
of the external dataset (C1), adapters for knowl-
edge injection (C2), pretrained encoders for pan-
knowledge (C3), and hierarchical contrastive learn-
ing (C4). Table 5 shows that C1 provides advan-
tages by comparing w/o C1 and ConKI. Similarly,
C2 provides benefits by comparing w/o C2 and
ConKI. C3 is beneficial by comparing w/o C3 and
ConKI. C4 is beneficial by comparing w/o C4 and
ConKI.

Since the spotlight in our hierarchical contrastive
learning is the contrasts between knowledge types,
we also compare our model with the model w/o N1

trained with Lcon but without negative pairs N1,
i.e., without disentangling the pan knowledge and
specific knowledge. We can conclude that learn-
ing differentiated pan-knowledge and knowledge-
specific representations is essential in our hierar-
chical contrastive learning. To better understand
the learned pan- and specific-knowledge represen-
tations by our hierarchical contrastive learning, we
visualize and analyze these representations in Ap-
pendix A.2.

To further examine if our performance gain is
from the external dataset instead of the proposed
knowledge injection and contrastive learning tech-
nique, we compare our model with the state-of-the-
art baseline models which are fine-tuned by the
external dataset. The results from Table 6 show
that ConKI still outperforms those baseline mod-

Models MAE Corr Acc-7 Acc-2 F1

MISA 0.711 0.804 44.96 82.04/83.99 81.98/84.0
Self-MM 0.712 0.798 45.51 83.59/85.18 83.47/85.12
MMIM 0.716 0.791 45.42 81.81/83.54 81.67/83.46

ConKI 0.681† 0.816† 48.43† 84.37†/86.13† 84.33†/86.13†

Table 6: Ablation results when introducing CMU-
MOSEI as an external dataset on CMU-MOSI. † means
the corresponding result is significantly better than
SOTA with p-value < 0.05 based on paired t-test.

els even though they are trained with the external
dataset.

Therefore, our gain from ConKI is not solely
from adding more data, but from knowledge injec-
tion with multi-step transfer learning. Considering
the size of CMU-MOSEI is much larger than CMU-
MOSI, injecting CMU-MOSEI’s knowledge into
CMU-MOSI thus has more effects on the down-
stream task than injecting CMU-MOSI into CMU-
MOSEI, as shown in Table 2.

5 Conclusion

In this paper, we present ConKI, a Contrastive
Knowledge Injection framework for multimodal
sentiment analysis, which learns knowledge-
specific representations along with pan-knowledge
representations via knowledge injection and hier-
archical contrastive learning. ConKI utilizes the
pretrained encoders to obtain pan-knowledge rep-
resentations while generating knowledge-specific
representations based on injected adapters that are
trained on an external knowledge source. With
the specific knowledge, ConKI is able to produce
more accurate sentiment predictions than solely us-
ing the pan-knowledge representations. To further
improve the learning of these representations, we
specifically design a hierarchical contrastive learn-
ing procedure taking into account the contrasts
between knowledge types within each modality,
across modalities within one sample, and across
samples. Experimental results on three benchmark
datasets show that ConKI outperforms all state-of-
the-art methods on a range of performance metrics.

Limitations

Our research presents an initial step toward a
knowledge injection framework for MSA and still
has some limitations to be tackled in the future.
Firstly, we can learn more disentangled represen-
tations by carefully selecting contrastive pairs for
further improvement. Secondly, it will be interest-
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ing if we extend our method with multiple external
sources that come from different knowledge do-
mains.
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A Hierarchical Contrastive Learning

A.1 Pairing Policy
To further elaborate on the pairing policy of
our hierarchical contrastive learning, we show

13619

https://doi.org/10.18653/v1/W18-3302
https://doi.org/10.18653/v1/W18-3302
https://doi.org/10.18653/v1/2020.acl-main.343
https://doi.org/10.18653/v1/2020.acl-main.343
https://doi.org/10.18653/v1/2020.acl-main.343


Figure 4: Pairing example of three samples where sam-
ple 1 and sample 2 are in the same sentiment interval
while sample 3 is in a different sentiment interval. Grey
cells with “1” stand for the positive pairs, and white
cells with “0” represent the negative pairs.

an example batch that consists of three samples
({Oi

t, O
i
v, O

i
a, A

i
t, A

i
v, A

i
a}i=1,2,3 ∈ B) where sam-

ple 1 and sample 2 belong to the same sentiment
interval while sample 3 falls in a different senti-
ment interval in Figure 4. In this figure, the “1”s in
the heatmap represent the positive pairs of the row
vectors and column vectors. The “0”s represent the
negative pairs of each two vectors.

• From this figure, we can get the intra-sample
positive pairs as the “1”s with red borders:
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• We represent the inter-knowledge negative
pairs NB

1 as the “0”s in the blue zone;

• Since sample 1 and sample 2 have close sen-
timent scores, we form the inter-sample posi-
tive pairs as the “1”s without red borders:
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• The remaining white cells with “0” show the
negative pairs in NB

2 which aim to push sam-
ple 3 away from sample 1 and sample 2 be-
cause they have different sentiments.

A.2 Visualization of Modality Representations
The motivation for us to propose hierarchical con-
trastive learning into ConKI is that we think modal-
ities will be closer to each other within one sample
and across samples in the same sentiment interval
and will be far away across samples in different
intervals while two knowledge contained in one
modality will also be different. We use t-SNE
(Van der Maaten and Hinton, 2008) to visualize
the distributions of the six representations learned
by ConKI with and without hierarchical contrastive
learning, as shown in Figure 5.

Though we divide all samples into seven inter-
vals to perform contrastive learning, we take sam-
ples of two intervals from the testing set to show the
learned representations before and after contrastive
learning due to the simplicity of the visualization.
From Figure 5 (a), we can easily observe that some
of the representations such as the pan-knowledge
representations in light blue and the knowledge-
specific representations in dark green of samples in
two different intervals overlap extremely with each
other.

In contrast, these overlapping representations
are pushed further in Figure 5 (b) due to sample-
level contrasts. It is also obvious that the three
knowledge-specific representations of samples in
the same interval, e.g., At, Av, Aa of Interval 2 in
dark colors and star shape become closer because
of both modality-level and sample-level contrasts.
Moreover, the distance between the knowledge-
specific representations and the pan-knowledge rep-
resentations, e.g., Av in dark green and Ov in light
green of Interval 2, becomes larger in Figure 5 (b)
by knowledge-level contrasts. All of these indicate
ConKI is able to perform desired contrastive learn-
ing for learning better representations that help
improve the performance, even in the generalized
scenario, i.e., in the testing set.

B Implementation Details

We use unaligned raw data in all experiments as the
previous works (Yu et al., 2021; Han et al., 2021)
for fair comparisons. For audio and video modali-
ties, two commonly-used toolkits (COVAREP (De-
gottex et al., 2014) and Facial Action Coding Sys-
tem (FACS) (Ekman and Rosenberg, 2005)) act as
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(a) (b)

Figure 5: The visualization of the six decomposed representations of samples in the same sentiment interval and
different intervals in (a) w/o h-CL; (b) ConKI. In each subfigure, light yellow, light blue, and light green represent
pan-knowledge representations of text, audio, and video modalities, respectively, while dark yellow, dark blue, and
dark green represent knowledge-specific representations accordingly. Each point or star stands for a sample in
Interval 1 or Interval 2.

the feature extractors, respectively. We use uncased
12-layers BERT pretrained model1 as the text en-
coder, and two 2-layer transformers as the video
and audio encoders, respectively. Adaptert has
three modules inserted before the first, sixth, and
eleventh layers of BERT sequentially. Adapterv
and Adaptera have one module inserted before the
second layer of the corresponding encoder. We use
CMU-MOSEI as the external dataset for CMU-
MOSI and SIMS while using CMU-MOSI for
CMU-MOSEI. During the pretraining, the learning
rate is set to 5e− 5 and we train for 10 epochs with
one epoch for a linear warm-up scheduler. During
the fine-tuning of CMU-MOSI and SIMS, the learn-
ing rates for encoders and other components are
set to 5e− 6 and 1e− 6 respectively with a weight
decay 0.001. The temperature parameter τ is set
to 0.07 and λ is set to 0.01 after grid-search. We
fine tune for 200 epochs with batch size 32. For the
fine-tuning of CMU-MOSEI, the learning rates for
the text encoder and others are 5e− 6 and 5e− 5,
respectively. λ for CMU-MOSEI is set to 0.001.
The best performance on the validation dataset is
used for testing. We implement our experiments
using PyTorch (Paszke et al., 2019) on an Nvidia
RTX 2080Ti GPU.

C Datasets

CMU-MOSI is a popular benchmark dataset col-
lected from YouTube. It contains 2,199 video clips
sliced from 93 videos where a speaker shares opin-
ions on topics such as movies. Each video is an-

1https://huggingface.co/bert-base-uncased

notated with sentiment scores ranging from −3
(strongly negative) to +3 (strongly positive). CMU-
MOSEI is the largest MSA dataset that has greater
diversity in speakers, topics, and annotations. It
contains 22,856 annotated video segments from
1,000 distinct speakers and 250 topics. Each clip
also has sentiment scores between [−3,+3]. SIMS
is a Chinese MSA dataset that contains 2,281 re-
fined video segments. Each sample has one mul-
timodal label and three unimodal labels, with sen-
timent scores from −1 to +1. We translate the
Chinese text into English2 so that we can inject
knowledge from English MSA datasets into SIMS.
For fair comparisons, all baseline models use the
English version to evaluate the performance.

D Baseline Models

TFN. The Tensor Fusion Network (TFN) (Zadeh
et al., 2017) encodes three modalities with corre-
sponding embedding subnetworks and uses outer-
product to model the unimodal, bimodal, and tri-
modal interactions as the fusion results.

LMF. The Low-rank Multimodal Fusion (LMF)
(Liu and Shen, 2018) utilizes low-rank tensors to
improve efficiency of multimodal fusion.

MulT. The Multimodal Transformer (MulT)
(Tsai et al., 2019) proposes directional pairwise
cross-modal attention that adapts one modality into
another for multimodal fusion.

ICCN. The Interaction Canonical Correlation
Network (ICCN) (Sun et al., 2020) learns text-
based audio and text-based video features by op-

2https://pypi.org/project/googletrans/
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timizing canonical loss. These features are con-
catenated with the text features for downstream
classifiers such as logistic regression.

MISA. The Modality-Invariant and -Specific
Representations (MISA) (Hazarika et al., 2020)
designs a multitask loss including task prediction
loss, reconstruction loss, similarity loss, and differ-
ence loss to learn modality-invariant and modality-
specific representations.

MAG-BERT. The Multimodal Adaptation Gate
for Bert (MAG-BERT) (Rahman et al., 2020) builds
an alignment gate that allows audio and video infor-
mation to leak into the BERT model for multimodal
fusion.

Self–MM. The Self-Supervised Multitask Learn-
ing (Self–MM) (Yu et al., 2021) proposes a label
generation module based on self-supervised learn-
ing to obtain unimodal supervision. Then they joint
train the multimodal and unimodal tasks for better
fusion results.

HyCon. The Hybrid Contrastive Learning
(HyCon) (Mai et al., 2021) performs intra- and
inter-modal contrastive learning as well as semi-
contrastive learning within a modality to explore
cross-modal interactions.

MMIM. MultiModal InfoMax (MMIM) (Han
et al., 2021) maximizes the mutual information
in unimodal input pairs as well as between multi-
modal fusion result and unimodal input to aid the
main MSA task.
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