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Abstract
Information extraction (IE) has been studied ex-
tensively. The existing methods always follow
a fixed extraction order for complex IE tasks
with multiple elements to be extracted in one
instance such as event extraction. However,
we conduct experiments on several complex
IE datasets and observe that different extrac-
tion orders can significantly affect the extrac-
tion results for a great portion of instances, and
the ratio of sentences that are sensitive to ex-
traction orders increases dramatically with the
complexity of the IE task. Therefore, this paper
proposes a novel adaptive ordered IE paradigm
to find the optimal element extraction order for
different instances, so as to achieve the best
extraction results. We also propose an rein-
forcement learning (RL) based framework to
generate optimal extraction order for each in-
stance dynamically. Additionally, we propose
a co-training framework adapted to RL to miti-
gate the exposure bias during the extractor train-
ing phase. Extensive experiments conducted
on several public datasets demonstrate that our
proposed method can beat previous methods
and effectively improve the performance of var-
ious IE tasks, especially for complex ones. 1

1 Introduction

Information Extraction (IE) has been studied exten-
sively over the past few decades (Grishman, 2019).
With the rapid development of pre-trained language
models, simple IE tasks such as named entity recog-
nition (Nadeau and Sekine, 2007; Li et al., 2020a)
have been well solved. However, complex IE tasks
with multiple elements to be extracted such as re-
lation extraction (Pawara et al., 2017) and event
extraction (Hogenboom et al., 2011) still need fur-
ther exploration.

Traditional IE methods always follow a static
extraction manner, i.e. with a pre-defined fixed

†Corresponding authors.
1Resources of this paper can be found at https://

github.com/EZ-hwh/AutoExtraction
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Shape of my heart is a song composed by  

Sting and Dominic Miller.

The Bassoon Concerto in B-flat major, is a  

bassoon concerto written in 1774 by Mozart.

Figure 1: An example of complicated information ex-
traction with different extraction order.

Dataset #Ins. #Sens ins. Ratio

SKE21(Xie et al., 2021) 1150 100 8.70%
NYT(Riedel et al., 2010) 5000 476 9.52%
NYT10-HRL(Takanobu et al., 2019) 4006 525 13.11%
DuIE(Li et al., 2019) 15000 3618 24.12%
DuEE(Li et al., 2020b) 1492 605 40.55%
HacRED(Cheng et al., 2021) 1500 971 64.73%

Table 1: The statistic of sensitive instances on different
datasets, where an instance is sensitive if different ex-
traction orders produces different extraction results with
the same model.

element order. For instance, in relation extraction
task, (Xie et al., 2021) recognizes the relation and
then extract the subject and object independently.
(Luan et al., 2019) extracts all entity together and
recognize the relation between them pair-wisely.
(Wang et al., 2020) formulates joint extraction as a
token pair linking problem, which follows implicit
predefined order. (Lu et al., 2022) designs a unified
structured extraction language to encode different
IE structures, where the generation order defines
the extraction order. These extraction-based IE
methods assume that multiple elements of the same
instance are independent of each other and thus
will not affect each other’s extraction results.

However, we find that different extraction orders
highly affect the extraction results. For example,
in the A instance in Fig. 1, if we first extract the
Bassoon Concerto in B-flat major, it will be diffi-
cult for succeeding element extraction because the
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entity is long-tail. Instead, if we extract Mozart
first, it would be much easier to extract the con-
certo because Mozart appears frequently in the cor-
pus and he composed lots of concerto. According
to our observation experiments conducted on sev-
eral popular relation extraction and event extraction
datasets as listed in Table 1, a significant proportion
of sentences are sensitive to the extraction order,
i.e., different extraction order produces different
extraction results. The ratio of sensitive sentences
increases dramatically with the complexity of the
task on different datasets.

What’s worse, the optimal extraction order may
not be the same for different instances of the same
relation or event type. For example, for the com-
poser relation, we should extract the composer
Mozart first in A instance, but extract the song
Shape of my heart first in B instance in Fig 1 be-
cause of its frequent appearance in corpus.

Based on the observations above, the static ex-
traction paradigm following a pre-defined extrac-
tion order is insufficient to achieve reliable extrac-
tion. This motivates us to propose a dynamic ex-
traction paradigm, which aims to assign an optimal
element extraction order for each instance adap-
tively. It is nontrivial to dynamically find optimal
extraction order for every instance in a dataset. On
one hand, the optimal extraction order of an in-
stance depends on not only its schema (relation or
event type), but also the context of the sentence.
On the other hand, multiple rounds of decisions are
required to generate the optimal extraction order,
where the decision of each step depends on not
only the schema and sentence context, but also the
extraction results of previous steps.

In this paper, we propose to adopt value-based
reinforcement learning (Mnih et al., 2015) in deter-
mining the optimal extraction order for elements
of an instance. Particularly, in deciding the next
extraction element for an instance, every of its un-
extracted elements will be evaluated with a po-
tential benefit score, which is calculated with a
BERT-based model. Then, the one with the high-
est potential benefit score will be selected as the
next extraction object. In addition, to mitigate the
exposure bias that emerges during the RL-based
extractor training phase, a co-training framework is
adopted which can simulate the inference environ-
ment of the extraction order decision agent to help
enhance its performance. It is worth mentioning
that our method focuses on generating the optimal

extraction order, which is model agnostic and can
be applied to various extraction paradigms.

Our main contributions are summarized below:

• First, we propose the extraction order assign-
ment problem in complicated IE task, which
can effectively affect the extractor and the ex-
traction result.

• Second, we propose an RL based framework
that dynamically generates an optimal extrac-
tion order for each sentence, which is model
agnostic and can effectively guide the model
towards better extraction performance.

• Third, we adopt a co-training framework for
RL to alleviate the exposure bias from the
extractor, which can simulate the inference
environment of the extraction order decision
agent to help enhance its performance.

• Fourth, the experiments conducted on several
public datasets show that our method outper-
forms the state-of-the-art extraction models.

2 Related Work

Pipeline Information Extraction (IE) methods split
the extraction process into several sub-tasks and
optimize each of them. They rely on the task defini-
tion so the framework varies for different IE tasks.
For relation extraction task, (Wei et al., 2020; Xie
et al., 2021; Li et al., 2021) gradually extract sub-
ject, relation and object from the sentence in dif-
ferent order. For event extraction task, (Yang et al.,
2018; Sheng et al., 2021; Yang et al., 2019) first
recognize the event type and trigger and then ex-
tract the arguments with sequence tagging model
or machine comprehension model.

Joint IE methods combine two or more extrac-
tion processes into one stage. Graph-based meth-
ods are the mainstream joint IE framework. They
recognize the entity or text span and build a graph
with co-reference, relation (Wadden et al., 2019;
Luan et al., 2019), entity similarity (Xu et al., 2021)
or sentence (co-occurrence) (Zhu et al., 2021).
Through information propagation on the graph,
they better encode the sentence and document and
then decode the edge to build the final sub-graph.
Generation-based IE methods are another paradigm
for joint extraction, (Cabot and Navigli, 2021; Ye
et al., 2021) for relation extraction task, (Zheng
et al., 2019; Hsu et al., 2022; Du et al., 2021) for
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Figure 2: An example of Complicated Information Ex-
traction

event extraction, (Lu et al., 2022) for unified infor-
mation extraction, they all serialize the structured
extraction results into sentence or pre-defined tem-
plate in a fixed order. Apart from works above,
(Wang et al., 2020; Shang et al., 2022) propose
one-stage joint extraction framework that decode
the subject and object simultaneously.

Recently, reinforcement learning (RL) has been
applied to IE task. Information extraction was aug-
mented by using RL to acquire and incorporate ex-
ternal evidence in (Narasimhan et al., 2016). (Feng
et al., 2018; Wang, 2020) both train a RL agent
for instance selecting to denoise training data ob-
tained via distant supervision for relation extrac-
tion. (Takanobu et al., 2019) utilizes a hierarchical
reinforcement learning framework to improve the
connection between entity mentions and relation
types. (Zeng et al., 2019) first considers extrac-
tion order of relational facts in a sentence and then
trains a sequence-to-sequence model with RL.

3 Overview

3.1 Task Definition

Fig. 2 gives an example of complicated informa-
tion extraction process, which first recognizes the
schema and then extracts the argument argi for the
corresponding role rolei. Generally speaking, the
task can be split into two sub-tasks: relation (event)
detection and entity (argument) extraction. And we
formulate the second task as multi argument extrac-
tion task. Given an instance s, the relation/event
type rel and the corresponding pre-defined schema
< rel, role1, role2, ..., rolen >, our goal is to
find all the arguments in s and fill them in their
corresponding roles in schema.

3.2 Solution Framework

In this work, we model the complicated informa-
tion extraction as a multi-step argument extraction
task. It this setting, only a role in the schema will
be extracted from instance once. With the help of

extractor that can extract the arguments given the
additional information and role name, we extract
all arguments and fill the roles step by step.

Though there are various roles in complicated
IE task, the difficulty of extracting them are com-
pletely different. For example, the role Refer-
ence_point_time in Fig 2 indicates the time in the
context and it can be extracted without further in-
formation. Other roles like Supplier_Consumer,
however, can not be identified with a single role
name, so they should be scheduled for extraction
later. We hope that the extractor can first extract
the simplest role, then the next simplest one and
etc. By incrementally adding the previously ex-
tracted information, the extractor can keep a good
performance on extracting the difficult ones.

To achieve the goal, we need to arrange a reason-
able extraction order for the extractor. However, it
is hard to specify the whole extraction order once
because it depends on not only the schema and con-
text, but also the previous extracted arguments. So
we regard the extraction order decision as a Markov
decision process, where we can dynamically decide
the extraction order in multi-round. Clearly, rein-
forcement learning is a natural way to handle this
modeling. We adopt the double deep Q-network
(DQN) with prioritized replay buffer as RL agent.

4 Framework

4.1 Extractor

To handle the extraction tasks with different ex-
traction order, we have to use a powerful extractor.
GlobalPointer, proposed by (Su et al., 2022), is an
ideal choice as it can identify both nested and non-
nested entities, and even output the scores of the
entities.

We first construct the sequence consisting of the
extracted elements, role name and the sentence. For
an input sequence with N tokens, the BERT based
encoder outputs a vector sequence [h1,h2, ...,hN ].
Following the computation of attention matrix, we
use a one-head self-attention to compute the matrix
as the output of the decoder. More specifically, we
first convert the vectors hi to vectors qi and ki with
two linear layers.

qi = Wqhi + bq,

ki = Wkhi + bk,
(1)

where W and b are parameters of the linear layers.
Then we compute the scores of each spans with
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Text: On September 7, Apple officially released products including iPhone 14
Series and Apple Watch Series 8. 
Schema: Publisher, Time, Product 

Time

Sept. 7
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Apple Watch
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Product

Publisher, Time,
Product

Publisher, Time,
Product

Agent Environment

Reward

Role Text

Argument

Extractor

BERT

Output:  
Time:               September 7 
Publisher:                    Apple 
Product:      iPhone 14 Series 

Time:                 September 7 
Publisher:                     Apple 
Product: Apple Watch Series 8 

Decision Model

BERT

Figure 3: Reinforcement learning framework of adaptive ordered decision for IE.

the with relative position embeddings (RoPE) pro-
posed by Reformer (Kitaev et al., 2020). The trans-
formation matrix Ri, which compose of sine and
cosine function, satisfy the property that R⊤

i Rj =
Rj−i. By introducing relative positions embed-
dings, GlobalPointer is more sensitive to the length
and span of entities, so it can better distinguish real
entities.

sα(i, j) = (Riqi)
⊤ (Rjkj)

= q⊤
i R⊤

i Rjki

= q⊤
i Rj−ikj

(2)

To better solve the label imbalance problem, we
use the following loss to train our extraction model.

L = log


1 +

∑

(i,j)∈Pα

e−sα(i,j)


+

log


1 +

∑

(i,j)∈Qα

esα(i,j)




(3)

where Pα is the head-tail set of all spans of query
α, and Qα is the head-tail set of the rest valid spans
in text. In the decoding phase, all spans t[i:j] for
which sα(i, j) > 0 are considered as entities that
match the conditions.

For better fitting into the setting of extraction
tasks that extract entities under the conditions of

the schema and role name, we enumerate all the
extraction orders and match the corresponding con-
ditions with the extraction results to construct a
training instance.

4.2 MDP for extraction order
We regard the multi-role extraction order deci-
sion process as a Markov decision process (MDP).
Fig. 3 shows the whole extraction process of an
instance. In each step, the agent takes the instances
and extracted arguments as input, and chooses a
role unselected before as the action. The environ-
ment would take the selected role, and construct
the input sequence for extractor. After collecting
the extraction results to fill the role and extraction
scores to assign the reward, the environment would
transit to new state(s). After selecting all roles to
be extracted in multiple rounds, we exchange the
whole extraction history into structural output.

State We use st to denote the state of sentence
x in extracting time step t. The state st consists
of the extraction schema S, the already extracted
arguments ŷ<t and the sentence x.

st = (S, ŷ<t, x) (4)

The state describes the extracted element in the
past step. In each step, the environment would
take a role selected by the agent and extracts the
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corresponding arguments in the sentence with the
help of extractor described in Section 4.1.

Action The action of the RL model is the next
role to extract in an instance. Unlike the traditional
RL environment, the action space in our model
is continuously reduced at every time step. We
restrict the initial action spaceA0 to the set of roles
in the schema S. After selecting role a0 in time
step 0, the extractor in environment will extract
the argument and its confident score in s with the
help of extractor. The action a0 will be removed
from the A0 and derive the next action space A1.
The derivation of action space can be formalized
as below.

At =

{
S, t = 0

At−1 − {at−1}, 0 < t < |S|
(5)

Reward The reward is a vital important compo-
nent of RL training, which is an incentive mecha-
nism that encourages agent to better plan for the
episode. For our task definition, there is a simple re-
ward assignment. We can extract all the arguments
in the sentences, and then assign a reward in termi-
nated state to indicate whether the extracted tuple
matches the golden label. But there is a transparent
issue that it will majorly depends on the extractor
we use. If the extractor is too strong, the results
extracted following any extraction order are correct.
If the extractor is too weak, the results extracted
following any extraction order are incorrect. In the
cases described above, different extraction order
can not affect the final reward. Therefore, to better
distinguish the impact of different extraction orders
on the extractor, we define the reward as the score
of the extraction results by the extractor. Though
the extracted results recognized by the extractor for
a single step is the same, the score is different given
the different condition according to the Section 4.1.
We regard the score as the difficulty of extracting
the argument from the sentence. An extracted argu-
ment with high score indicates that it is easy to be
extracted. The reward of our RL environment can
be described as below.

R(s, a) = Extractorscore(a|s) (6)

where s stands for the state and a stands for the
role that will be extracted chosen by the agent.

4.3 Double DQN
For traditional DQN(Mnih et al., 2013), the learn-
ing object follows the Bellman equation as below.

Q(s, a) = R(s, a) + γ ·max
a′∈A

Q(s′, a′) (7)

Algorithm 1: The full details of our train-
ing phase for the Double DQN agent with
ϵ−greedy exploration

Input :D-empty replay buffer; θ-initial
network parameters; θ−-copy of θ

Input :Nb-training batch size; N−-target
network replacement frequency

1 for epoch = 1, ..., E do
2 Sample instances s,S from the dataset.
3 Nstep = #number of roles in the S
4 for t = 1, ..., Nstep do
5 p← Random(0, 1)
6 if p < 1− ϵ then
7 at ← argmaxaQ(st, a; θ)
8 else
9 at ← Random-Sample(At)

10 end
11 st+1, rt ← Transition(st, at)
12 Store transition (st, at, rt, st+1) in D
13 Sample random mini batch of Nb

transitions (st, at, rt, st+1) from D
14 if st+1 = done then
15 yt = rt
16 else
17 yt = rt + γmaxa′ Q(st+1, a

′; θ−)
18 end
19 Update parameter θ on the loss

L(θ) = (yt −Q(st, at; θ))
2

20 Replace target parameters θ− ← θ
every N− steps

21 end
22 end

In our task setting, the agent would choose a un-
extracted role and the environment would return the
extracted argument with the corresponding score.
Since the extractor will extract all the correspond-
ing entities that meet the conditions at once, it is
possible to extract zero to multiple answers at one
time, and each extracted result will form a sepa-
rated state. Due to the splitting of the state, we need
to make corresponding adjustments to the original
Learning object. Inspired by (Tavakoli et al., 2018),
we introduce a new learning object adapted to the
branching reinforcement learning environment by
replacing the Q values of the next state with the
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average value of the next state’s list.

Q(s, a) = R(s, a)+γ
1

|S(s,a)|
∑

s′∈S(s,a)

max
a′∈A

Q(s′, a′)

(8)
where S(s,a) is the set of the following states de-
rived from the state s with action a, and γ is the
discount factor.

To avoid suffering from the overestimation of the
action values, we adopt the Double DQN (DDQN)
algorithm (Van Hasselt et al., 2016) that uses the
current Q-network to select the next greedy action,
but evaluates it using the target. At the same time,
to enable more efficient learning from the experi-
ence transitions, we adopt the prioritized experi-
ence replay buffer (Schaul et al., 2015) to replay
important experience transitions.

We define the loss to be the expected value of
the mean squared TD error.

L = E(s,a,r,s′)∼D [y −Q(s, a)]2 (9)

where D denotes the prioritized experience replay
buffer and y denotes the estimated valued by the
target network.

To evaluate the value of (state, action) pair, we
use Transformer based model as encoder that can
take the state and action as input and encode the
pair of every (state, action) pair. Specifically, we
use BERT(Devlin et al., 2018) for English and
RoBERTa(Liu et al., 2019) for Chinese. Formally,
for an input state st = [t1, t2, ..., tN ] and action
at = [a1, ..., aM ], where the action is the candi-
date extraction role name, we form the sequence
x = [[CLS], at,[SEP], st,[SEP]]. The BERT
encoder converts these tokens into hidden vector
[h1,h2, ...,hM+N ], where hi is a d-dimension vec-
tor and d = 768 in the Transformer based structure.

To evaluate the Q(s, a) value for the correspond-
ing state and action, we take h0, which is the en-
coded vector of the first token [CLS] as the repre-
sentation of the state-action pair. The final output
of the value evaluation module ŷ is define in Eq.

ŷ = Wh0 + b (10)

where W and b are trainable model parameters,
representing weights and bias of the linear transfor-
mation.

4.4 Co-training framework
Beside the extraction order our agent decide would
affect the final extraction order, the extractor in the

Sub 
Dataset 1

Sub 
Dataset 2

Testing 
Dataset

Training
Dataset

Sub
Extractor 1

Sub
Extractor 2

Agent 1

Agent 2

Extractor Agent 2
Agent 1

Figure 4: Framework of co-training. Blue arrow repre-
sents the training data division process. Yellow arrow
represents the extractor training process. Green arrow
represents the RL agent training process.

environment also matters. The argument extracted
in one step not only affect the extracted tuple, but
also affect the decision of the agent. However,
there is a big different between the training phase
and inference phase. In the training phase, the
agent explores in the environment that the extractor
has a good performance, which will extract the
argument with high score. In the inference phase,
however, the capacity of the extractor would be
reduced because of the migration of the dataset
from training to testing. To confirm that the agent
would works in inference phase, we need to ensure
similarity between the training environment and
the inference environment.

We proposed a Co-training framework as shown
in Fig 4 to simulate the environment in the testing
phase. We first split the training set into two piece,
which are used to train two sub extractor. Then
we crossover the sub dataset and sub extractor and
build two training environments. In each environ-
ment, the extractor is trained on the other piece of
sub training set and extracts arguments from the
sentence that it never meets. We train two agent
with two environment separately. By introducing
the co-training framework, we confirm the same
setting on the training and inference environment.
In the inference phase, we can build the environ-
ment with the test set and the extractor trained on
the whole training set. Through combining the de-
cision that two agent make, the argument in the
sentences can be extracted step by step.
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NYT NYT10-HRL HacRED SKE21

Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1

NovelTagging # (Zheng et al.,
2017)

62.4 31.7 42.0 59.3 38.1 46.4 30.51 2.91 5.31 - - -

CoType # (Ren et al., 2017) 42.3 51.1 46.3 48.6 38.6 43.0 - - - - - -
CopyR # (Zeng et al., 2018) 61.0 56.6 58.7 56.9 45.2 50.4 13.11 9.64 11.12 - - -
HRL # (Takanobu et al., 2019) - - - 71.4 58.6 64.4 - - - - - -
CasRel # (Wei et al., 2020) 89.7 89.5 89.6 77.7 68.8 73.0 55.24 43.78 48.85 - - -
TPLinker # (Wang et al., 2020) 91.3 92.5 91.9 81.19 65.41 72.45 - - - - - -
RERE# (Xie et al., 2021) - - - 75.45 72.50 73.95 - - - - - -

CasRel(Wei et al., 2020) * 87.77 90.79 89.25 76.59 68.90 72.54 57.19 44.99 50.36 87.21 75.23 80.78
TPLinker(Wang et al., 2020) * 88.61 92.29 90.41 80.37 65.11 71.94 58.96 55.78 57.33 83.86 84.77 84.32
RERE(Xie et al., 2021) * 85.68 92.45 88.93 74.43 68.46 71.32 46.42 61.37 52.86 85.65 86.37 86.01
Adaptive Order 88.92 92.83 90.84 77.21 69.81 73.32 58.36 72.43 64.64 87.99 86.87 87.42

Table 2: The main evaluation results of different models on NYT, NYT10-HRL, HacRED and SKE21. The results
with only one decimal are quoted from (Wei et al., 2020). The methods with * are based on our re-implementation.
The methods with # denote that the metrics are partially matched. Best exact (partial) match F1 scores are marked
bold (underlined).

NYT NYT10-HRL HacRED DuIE DuEE

Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1 Prec. Reca. F1

Sequence order 92.83 96.19 94.48 84.66 85.42 85.04 58.18 79.76 67.28 52.14 62.07 56.68 72.70 70.47 71.57
Random order 93.05 95.97 94.49 84.42 85.08 84.75 57.82 80.02 67.13 52.53 62.11 56.92 72.86 71.10 71.97
Adaptive order 93.15 96.14 94.62 84.59 85.66 85.13 57.88 81.92 67.62 53.33 62.87 57.71 73.86 72.14 72.99

Table 3: Extraction Result on different dataset with different extraction order decision.

SKE21 HacRED

Prec. Reca. F1 Prec. Reca. F1

Sequence order 94.74 81.08 87.38 66.62 78.67 72.15
Random order 92.75 80.63 86.27 65.94 79.41 72.05
Adaptive order 93.37 82.43 87.56 66.31 80.56 72.74

Table 4: Extraction Result on complicated extraction
case with different extraction order decision. HacRED
and SKE21 are both tested on at least 5 triples of the
same relation.

DuIE DuEE

Prec. Reca. F1 Prec. Reca. F1

Sequence order 44.88 48.67 46.70 72.41 69.30 70.82
Random order 44.25 47.91 46.01 72.73 70.89 71.80
Adaptive order 46.60 50.76 48.59 73.88 71.69 72.76

Table 5: Extraction Result on complicated extraction
case with different extraction order decision. DuIE is
restricted in at least 3 roles and DuEE is restricted in at
least 5 roles.

5 Experiments

5.1 Datasets

We evaluate our methods on several public and
accessible complicated information extraction
datasets, including NYT, NYT10-HRL, SKE21,
HacRED, DuIE, DuEE, which are challenging for
many novel extraction methods. We give brief in-
troduction to these dataset in appendix.

5.2 Comparing methods and Metrics

We compare our methods with several mod-
els on the same dataset, including NovelTag-
ging(Zheng et al., 2017), CoType(Ren et al.,
2017), HRL(Takanobu et al., 2019), and re-
cent PLM-based model CasRel(Wei et al., 2020),
TPlinker(Wang et al., 2020) and RERE(Xie et al.,

2021).
We choose the exact match that an extracted re-

lational triple (subject, relation, object) is regarded
as correct only if the relation and the spans of both
subject and object are correct. We report the stan-
dard micro precision (Prec.), recall (Reca.) and
F1 scores for the relation extraction experiments.
And for the event extraction task (only DuEE in
our experiment), we report the word-level metrics,
which considers the correctness of the arguments
in word level. We give the detail of this metric in
appendix.

5.3 Main Results

Because we only consider the extraction order as-
signment in every instance, we add a classification
module to first recognize the relation in sentence,
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Instance Extraction Process Extraction Result

Instance #1
On October 14, Redmi
officially released two
new entry-level smart-
phones, Redmi 8
and Redmi 8A.

Time Publisher Product

Redmi 8A

Redmi 8

RedmiOctober
14

Time: October,
Publisher: Redmi,
Product: Redmi 8A;
Time: October,
Publisher: Redmi,
Product: Redmi 8A

Instance #2
Huami Technology re-
leases Midong Health
Watch and AMAZFIT
Smart Watch 2.

TimePublisher Product

[None]

[None]Midong Health
Watch

Huami
Technology

AMAZFIT
Smart Watch 2

Time: [None],
Publisher: Huami Technology,
Product: Midong Health Watch;
Time: [None],
Publisher: Midong Health Watch,
Product: AMAZFIT Smart Watch 2

Table 6: Instance of extracting complicated schema through dynamically assigning extraction order.

and then extract the subject and object with the ex-
traction order RL agents assign. According to the
result in Table 2, compared to the main stream rela-
tion extraction methods, ours method achieves im-
provement on both precision, recall and F1 score.

5.4 Extraction order

To demonstrate the effectiveness of our methods,
we also conduct an experiment on different extrac-
tion order decision strategy on more challenging
event argument extraction task. In this experiment,
we mainly focus on the performance of extraction
result in different extraction order, so ground-truth
schema (relation) for every instance would be of-
fered beforehand, we only test the correctness on
the roles. We also provide the result of extracting
arguments in a pre-defined order and random order,
as baselines. Table 3 shows the result of differ-
ent extraction order in different dataset, and our
method achieve the best in every dataset. Compare
to the standard relation extraction task, our method
perform better on complex information extraction
task (DuIE and DuEE).

5.5 Complicated Extraction settings

To further demonstrate the advantage of dynami-
cally order extraction decision by RL, we conduct
experiment with more complex extraction tasks,
which contains more tuples or more arguments. For
the former, we limit the minimum number of ex-
traction tuples, and we limit the minimum number
of extraction roles for the latter.

Table 4 and 5 show that compared to fixed or-

der extraction or random order extraction method,
our framework has a more significant improvement
over the original metrics. This is intuitive and rea-
sonable, the extractor is more sensitive to the ex-
traction order in more complex sentence. Besides,
compare to the Table 4 and 5, we can find that
our method improves the latter settings more sig-
nificantly. It is because increasing the number of
tuples does not increase the length of the extracted
path, but only increase the difficulty of single-step
extraction by the extractor. In contrast, the increase
of the role number leads to an increase in the length
of the extraction path, which makes the decision
of extraction order more difficult. The results once
again prove that the extraction order matters in
complicated extraction.

5.6 Case Study

With taking RL agent into consideration, we can
easily observe the extraction order in different in-
stance. Table 6 show the instances that the extrac-
tion process in different sentence. Though two
instances share the same event schema Product re-
lease, the RL agent assign different extraction order
dynamically. The first sentence contains an obvi-
ous element of time, while the second does not, so
our methods put the extraction order of time from
the first to the last. The case strongly demonstrates
the effectiveness of our method.

6 Conclusion

In this paper, we propose a novel adaptive order
IE paradigm to find the optimal element extraction
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order for different instances. We propose a RL-
based framework to generate optimal extraction
for each instance dynamically and a co-training
framework adapted to RL to alleviate the exposure
from the extrator. Extensive experiments show that
our proposed method can beat previous methods
and effectively improve the performance of various
IE tasks, especially for complex ones.

Acknowledgements

This research is funded by National Key
Research and Development Project (No.
2020AAA0109302), National Natural Science
Foundation of China (No. 62102095, 62072323),
Shanghai Science and Technology Innovation
Action Plan (No. 22511104700, 22511105902),
Shanghai Municipal Science and Technology
Major Project (No.2021SHZDZX0103), and
Science and Technology Commission of Shanghai
Municipality Grant (No. 22511105902).

Limitations

Despite the remarkable improvement on compli-
cated information extraction, there are still some
limits of our method.
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scope of this paper.

Ethics statement

We hereby declare that all authors of this article are
aware of and adhere to the provided ACL Code of
Ethics and honor the code of conduct.

Use of Human Annotations Human annotations
are only utilized in the early stages of methodologi-
cal research to assess the feasibility of the proposed
solution. All annotators have provided consent for

the use of their data for research purposes. We
guarantee the security of all annotators throughout
the annotation process, and they are justly remuner-
ated according to local standards. Human annota-
tions are not employed during the evaluation of our
method.

Risks The datasets used in this paper have been
obtained from public sources and anonymized to
protect against any offensive information. Though
we have taken measures to do so, we cannot guar-
antee that the datasets do not contain any socially
harmful or toxic language.

13672



References
Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.

Rebel: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381.

Qiao Cheng, Juntao Liu, Xiaoye Qu, Jin Zhao, Jiaqing
Liang, Zhefeng Wang, Baoxing Huai, Nicholas Jing
Yuan, and Yanghua Xiao. 2021. Hacred: A large-
scale relation extraction dataset toward hard cases in
practical applications. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2819–2831.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xinya Du, Alexander M Rush, and Claire Cardie. 2021.
Template filling with generative transformers. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 909–914.

Jun Feng, Minlie Huang, Li Zhao, Yang Yang, and
Xiaoyan Zhu. 2018. Reinforcement learning for re-
lation classification from noisy data. In Proceedings
of the aaai conference on artificial intelligence, vol-
ume 32.

Ralph Grishman. 2019. Twenty-five years of infor-
mation extraction. Natural Language Engineering,
25(6):677–692.

Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak,
and Franciska De Jong. 2011. An overview of event
extraction from text. DeRiVE@ ISWC, pages 48–57.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. Degree: A data-efficient
generation-based event extraction model. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1890–1908.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020a. A survey on deep learning for named entity
recognition. IEEE Transactions on Knowledge and
Data Engineering, 34(1):50–70.

Shuangjie Li, Wei He, Yabing Shi, Wenbin Jiang, Haijin
Liang, Ye Jiang, Yang Zhang, Yajuan Lyu, and Yong
Zhu. 2019. Duie: A large-scale chinese dataset for
information extraction. In CCF International Confer-
ence on Natural Language Processing and Chinese
Computing, pages 791–800. Springer.

Xianming Li, Xiaotian Luo, Chenghao Dong, Daichuan
Yang, Beidi Luan, and Zhen He. 2021. Tdeer: An
efficient translating decoding schema for joint extrac-
tion of entities and relations. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8055–8064.

Xinyu Li, Fayuan Li, Lu Pan, Yuguang Chen, Weihua
Peng, Quan Wang, Yajuan Lyu, and Yong Zhu. 2020b.
Duee: a large-scale dataset for chinese event extrac-
tion in real-world scenarios. In CCF International
Conference on Natural Language Processing and
Chinese Computing, pages 534–545. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A general
framework for information extraction using dynamic
span graphs. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3036–3046.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. nature,
518(7540):529–533.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvis-
ticae Investigationes, 30(1):3–26.

Karthik Narasimhan, Adam Yala, and Regina Barzilay.
2016. Improving information extraction by acquir-
ing external evidence with reinforcement learning.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2355–2365.

Sachin Pawara, Girish K Palshikara, and Pushpak Bhat-
tacharyyab. 2017. Relation extraction: A survey.
arXiv preprint arXiv:1712.05191.

13673



Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R
Voss, Heng Ji, Tarek F Abdelzaher, and Jiawei Han.
2017. Cotype: Joint extraction of typed entities and
relations with knowledge bases. In Proceedings of
the 26th International Conference on World Wide
Web, pages 1015–1024.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 148–163. Springer.

Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. 2015. Prioritized experience replay. arXiv
preprint arXiv:1511.05952.

Yu-Ming Shang, Heyan Huang, and Xianling Mao. 2022.
Onerel: Joint entity and relation extraction with one
module in one step. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11285–11293.

Jiawei Sheng, Shu Guo, Bowen Yu, Qian Li, Yiming
Hei, Lihong Wang, Tingwen Liu, and Hongbo Xu.
2021. Casee: A joint learning framework with cas-
cade decoding for overlapping event extraction. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 164–174.

Jianlin Su, Ahmed Murtadha, Shengfeng Pan, Jing Hou,
Jun Sun, Wanwei Huang, Bo Wen, and Yunfeng Liu.
2022. Global pointer: Novel efficient span-based ap-
proach for named entity recognition. arXiv preprint
arXiv:2208.03054.

Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Min-
lie Huang. 2019. A hierarchical framework for rela-
tion extraction with reinforcement learning. In Pro-
ceedings of the AAAI conference on artificial intelli-
gence, volume 33, pages 7072–7079.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev.
2018. Action branching architectures for deep re-
inforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016.
Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5784–5789.

Jianing Wang. 2020. Rh-net: Improving neural re-
lation extraction via reinforcement learning and
hierarchical relational searching. arXiv preprint
arXiv:2010.14255.

Yucheng Wang, Bowen Yu, Yueyang Zhang, Tingwen
Liu, Hongsong Zhu, and Limin Sun. 2020. Tplinker:
Single-stage joint extraction of entities and relations
through token pair linking. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 1572–1582.

Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and
Yi Chang. 2020. A novel cascade binary tagging
framework for relational triple extraction. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1476–
1488.

Chenhao Xie, Jiaqing Liang, Jingping Liu, Chengsong
Huang, Wenhao Huang, and Yanghua Xiao. 2021.
Revisiting the negative data of distantly supervised
relation extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3572–3581.

Runxin Xu, Tianyu Liu, Lei Li, and Baobao Chang.
2021. Document-level event extraction via heteroge-
neous graph-based interaction model with a tracker.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3533–3546.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and Jun
Zhao. 2018. Dcfee: A document-level chinese finan-
cial event extraction system based on automatically
labeled training data. In Proceedings of ACL 2018,
System Demonstrations, pages 50–55.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5284–
5294.

Hongbin Ye, Ningyu Zhang, Shumin Deng, Mosha
Chen, Chuanqi Tan, Fei Huang, and Huajun Chen.
2021. Contrastive triple extraction with generative
transformer. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pages 14257–
14265.

Xiangrong Zeng, Shizhu He, Daojian Zeng, Kang Liu,
Shengping Liu, and Jun Zhao. 2019. Learning the
extraction order of multiple relational facts in a sen-
tence with reinforcement learning. In Proceedings of
the 2019 conference on empirical methods in natural
language processing and the 9th international joint
conference on natural language processing (EMNLP-
IJCNLP), pages 367–377.

Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu,
and Jun Zhao. 2018. Extracting relational facts by
an end-to-end neural model with copy mechanism.
In Proceedings of the 56th Annual Meeting of the

13674



Association for Computational Linguistics (Volume
1: Long Papers), pages 506–514.

Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. 2019.
Doc2edag: An end-to-end document-level frame-
work for chinese financial event extraction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 337–346.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging
scheme. arXiv preprint arXiv:1706.05075.

Tong Zhu, Xiaoye Qu, Wenliang Chen, Zhefeng Wang,
Baoxing Huai, Nicholas Jing Yuan, and Min Zhang.
2021. Efficient document-level event extraction via
pseudo-trigger-aware pruned complete graph. arXiv
preprint arXiv:2112.06013.

A Dataset Introduction

NYT NYT (Riedel et al., 2010) is the very early
version of NYT series dataset. It is based on the
articles in New York Times, contains 66, 194 text
and 24 types of relation.

NYT10-HRL NYT10-HRL is an improved ver-
sion of the origin NYT dataset. After preprocessed
by HRL (Takanobu et al., 2019) that removed train-
ing relation not occurring in the testing test and
"NA" sentence, NYT10-HRL contains 70, 339 sen-
tences for training and 4, 006 sentences for test.

DuIE DuIE(Li et al., 2019) is a Chinese infor-
mation extraction dataset. It contains more than
210, 000 sentences and 48 pre-defined schema
gathered from Baidu Encyclopedia, Baidu Tieba
and Baidu Information Stream. Compared to the
previous version, it contains 5 Multiple-O-values
schema (Schema with multiple object slots and val-
ues), which greatly increase the difficulty of the
task.

HacRED HacRED (Cheng et al., 2021)2 is a
novel challenging extraction dataset, which con-
sists of 65, 225 relational facts annotated from
9, 231 wiki documents with sufficient and diverse
hard cases

DuEE DuEE (Li et al., 2020b) is a Chinese
document-level event extraction dataset. It con-
tains 11, 224 documents categorized into 65 event
types, along with 41, 520 event arguments mapped
to 121 argument roles, which is the largest Chinese
EE dataset.

SKE21 SKE2019 is the largest Chinese dataset
available for relation extraction publish by Baidu,
which contains 194, 747 sentences for training.
(Xie et al., 2021) manually labeled 1, 150 sentences
from test set with 2, 765 annotated triples.

B Experiment details

Our experiments are conducted on single RTX3090
GPUs. All deep models, including the extraction
model and decision model, are implemented using
the PyTorch framework. We initialized the model
with the bert-base-cased and chinese-roberta-wwm-
ext respectively, training 10 epochs for both the
extractor and classifier. As for the reinforcement
learning module, we set the buffer size to 100,000
and target network update step at 200. We trained 5

2https://github.com/qiaojiim/hacred
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Hyper-parameters Extractor Decision Model

Batch size 48 32
Learning rate 1e-5 1e-5
Max length 512 512

Table 7: Hyper-parameters for training extractor and
agent model respectively.

epochs on the standard relation extraction task and
10 epochs for DuIE and DuEE. Additionally, the
exploration parameter ϵ was initialized at 0.9 and
the discount factor γ was set to 0.5 within the DQN
framework. To encourage continuous exploration,
the exploration rate became 0.9 times of its own in
a certain steps until it reached 0.05. We calculated
the necessary updating steps using the following
formula.

#Total_Steps = #Epoch×#Datasets

#Update_steps = ⌊#Total_Steps ∗ log 0.95
log 0.05− log 0.9

⌋
(11)

We employed AdamW optimizer as the optimizer,
with using linear scheduling with warming up pro-
portion 10%. More details are listed in Table 7.

C Word-level Metric

We offer the word-level precision, recall and F1
score calculation formula. First we calculate the F1
score of a single arguments.

Seta = Setp ∩ Setg, (12)

TextP =
|Seta|
|Setp|

, T extR =
|Seta|
|Setg|

(13)

TextF1 =
2 · TextP · TextR
TextP + TextR

(14)

where Setp denotes the set of words in predict
argument, and Setg denotes the set of words in
ground truth argument. We set TextF1 = 1 if
both Seta and Setb are empty set.

For every predict event Ep and ground truth
event Eg, we calculate their match score through
calculate their mean TextF1 score.

Score(Ep, Eg) =
1

N

∑

N

TextF1(argp, argg)

(15)
where N denotes the number of the roles that event
schema contains.

We separately calculate the precision for predic-
tion event and recall for ground truth event.

PrecE(Ep) = max
e∈Eg

Score(Ep, e)

RecaE(Eg) = max
e∈Eg

Score(e, Eg)
(16)

where Ep and Eg are the predict and golden event
set of the same instance.

Finally, we regard the mean precision and recall
of every prediction and golden annotations in the
whole test set as our Prec. and Reca.

Prec =
1

Np

∑

Ep

Prec(Ep)

Reca =
1

Ng

∑

Eg

Reca(Eg)

F1 =
2 · Prec ·Reca

Prec+Reca

(17)
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