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Abstract
Concurrent with the rapid progress in neural
network-based models in NLP, the need for cre-
ating explanations for the predictions of these
black-box models has risen steadily. Yet, espe-
cially for complex inputs like texts or images,
existing interpretability methods still struggle
with deriving easily interpretable explanations
that also accurately represent the basis for the
model’s decision. To this end, we propose a
new, model-agnostic method to generate extrac-
tive explanations for predictions made by neu-
ral networks, that is based on masking parts of
the input which the model does not consider to
be indicative of the respective class. The mask-
ing is done using gradient-based optimization
combined with a new regularization scheme
that enforces sufficiency, comprehensiveness,
and compactness of the generated explanation.
Our method achieves state-of-the-art results in
a challenging paragraph-level rationale extrac-
tion task, showing that this task can be per-
formed without training a specialized model.
We further apply our method to image inputs
and obtain high-quality explanations for image
classifications, which indicates that the objec-
tives for optimizing explanation masks in text
generalize to inputs of other modalities.

1 Introduction

Black-box machine-learning models like transform-
ers (Vaswani et al., 2017) or convolutional neural
networks (Tan and Le, 2019) are state-of-the-art
in natural language processing and computer vi-
sion. Their complexity enables them to perform
well on a variety of tasks, but this comes at the
cost of a lack of interpretability: The question of
why a model made a specific prediction cannot be
answered reliably. Especially if such black-box
models are used in critical real-world applications
(e.g., in the medical domain), this creates a demand
for methods that explain network predictions while
fulfilling a variety of requirements, like being easy
to implement, model and task agnostic, faithful to

the inner workings of the network, and producing
results that are easily interpretable for humans.

To this end, a variety of interpretability methods
have been proposed (Guidotti et al., 2018; Zhang
et al., 2021), but as the aforementioned require-
ments are often at odds, at least one of them often
remains unfulfilled. Reasons for this include the
reliance on complex message passing schemes that
require laborious implementations (e.g., Montavon
et al., 2017, Shrikumar et al., 2017), the applicabil-
ity only to specific model architectures (e.g., Yuan
et al., 2021, Abnar and Zuidema, 2020), or the fact
that explanations often highlight individual, discon-
nected input features (e.g., standard gradient-based
saliency), which contradicts human intuition of a
sensible explanation (compare Section 2.1 for de-
tails).

As an example, in a text classification setting,
interpretability methods often highlight individual
words that explain the prediction, but do not in-
clude their context (Remmer, 2022), even though
the context of a word is crucial in determining its
meaning: The word "good" influences the predic-
tion in a completely different way if it is preceded
by the word "not", meaning that this context has an
impact on the classification and should therefore be
part of the rationale. Notably, this holds true even
in the absence of such modifiers, since the context
must be available to confirm this absence.

In this work, we propose a new method for
model explainability that is able to identify parts of
the input that are, on the one hand, most indicative
of a class and, on the other hand, perceived as a
sensible rationale by humans. Our method is appli-
cable to all input types that define a spatial structure
between individual features (e.g., texts, images)
and builds on the assumption that interpretable ex-
planations correspond to smooth and connected
regions of features with respect to this spatial struc-
ture. It uses numerical optimization to mask out
parts of the input that the model does not consider
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indicative of the class of interest, thus leaving only
the parts of the input that are indicative of this class.
The masking is done using gradient-based optimiza-
tion combined with a new regularization scheme
that enforces sufficiency, comprehensiveness, and
compactness of the generated explanation (Yu et al.,
2019), three criteria that have been established in
the domain of rationale extraction but are less com-
mon in network interpretability methods. In this
way, our method bridges the gap between model
interpretability and rationale extraction, thereby
showing that the latter of which can be performed
without training a specialized model, only on the
basis of a trained classifier.

2 Background

Methods that explain the predictions made by
black-box models to users can be broadly catego-
rized into (i) interpretability methods that aim at
creating explanations for existing classifiers after
they have been trained (Section 2.1) and (ii) ra-
tionale extraction approaches that are designed to
create a rationale as a model output in addition to
the usual label prediction (Section 2.2). Our inter-
pretability method relies on gradient-based input
optimization, discussed in detail in Section 2.3.

2.1 Neural Network Interpretability

Interpretability methods usually assign importance
scores to features or parts of a given input, in-
dicating how relevant the respective feature is
for making the prediction. Many early meth-
ods focus on convolutional neural networks and
use backpropagation-like procedures to compute
saliency scores for each input feature. Simonyan
et al. (2013) use the network’s gradient at the in-
put image as saliency scores, while Sundararajan
et al. (2017)’s integrated gradients method sums
over gradients at different inputs that are created by
gradually transforming a neutral input into the in-
put of interest. The DeconvNet architecture (Zeiler
and Fergus, 2014) and the guided backpropagation
algorithm (Springenberg et al., 2015) again rely on
a single evaluation but change the standard gradient
computation to produce visually improved impor-
tance maps. Attribution methods like layer-wise rel-
evance propagation Bach et al. (2015) extend this
idea by defining a backward pass that redistributes
the total function value layer-wise backwards using
a propagation rule that makes the total relevancy
within each layer add up to the function value that is

to be explained. Deep Taylor Decomposition (Mon-
tavon et al., 2017) and DeepLIFT (Shrikumar et al.,
2017) then introduced different rules for redistribut-
ing the relevance between layers. For transformer
models, methods like (Abnar and Zuidema, 2020)
track the attention flow through the network. This
has been extended to incorporate information from
attribution methods like the Deep Taylor Decompo-
sition to more accurately identify neurons that have
a strong influence on the final prediction (Chefer
et al., 2021b,a).

Other well-known explainability methods rely
on input perturbations. LIME (Ribeiro et al., 2016)
identifies important input features by perturbing
the input, observing the change in the model pre-
dictions, and fitting an interpretable model to the
observed data, while other methods occlude parts
of the input to detect features that are important for
the classification (Zeiler and Fergus, 2014; Bazzani
et al., 2016; Zhou et al., 2014; Petsiuk et al., 2018).

A further approach to model interpretability is to
generate an input that maximally activates specific
neurons, thereby yielding insights about the respon-
sibilities of these neurons, as was done for CNNs by
Simonyan et al. (2013). Fong and Vedaldi (2017)
then used a similar idea to remove class-indicative
information from input images to detect the parts
of the image responsible for the classification.

The method we propose in this paper differs
from standard gradient-based techniques by not re-
lying on evaluations at a single point or at fixed
perturbations, but at points that are determined by
a dynamic optimization process. This control via
optimization is also a key difference from meth-
ods that rely on random permutations or masking
of input features. Compared to message-passing
schemes and model-specific methods (like methods
for transformer interpretability), relying only on the
gradient makes our method applicable to models
with a variety of architectures and layer types with-
out requiring additional implementational effort.

2.2 Rationale Extraction

The task of rationale extraction, also commonly re-
ferred to as selective rationalization, is concerned
with designing models that can produce human-
interpretable rationales in addition to the usual
model output (Lei et al., 2016), with the domain
usually being textual inputs and the rationales be-
ing a subset of the input text that is determined
to be responsible for the prediction. Lei et al.
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(2016) approached this task by developing a two-
step procedure in which a proposal network ex-
tracts a rationale from the input text and a subse-
quent classification network only has access to the
rationale to make the final prediction. By training
this model end-to-end, the proposal network learns
to extract the most useful text fragments from the
input, which thus corresponds to an explanation for
the classification. Later, Yu et al. (2019) proposed
three criteria that rationales should satisfy to be
perceived as sensible:

Sufficiency: The rationale should be sufficient to
correctly classify the sample only by its ratio-
nale.

Comprehensiveness: All relevant information
should be contained in the rationale, mean-
ing that the correct label can not be inferred
by just considering the words not included in
the rationale.

Compactness: The rationale should be sparse but
should nevertheless consist of consecutive text
fragments instead of single words.

Yu et al. (2019)’s methods enforce these criteria
through regularizers and by using a complement
predictor that predicts the correct label based on
all words that are not part of the rationale. Train-
ing the proposal network to fool the complement
predictor then enforces the comprehensiveness con-
straint. Other approaches extend this and extract
class-dependent rationales (Chang et al., 2019) or
select complete paragraphs as rationales (Chalkidis
et al., 2021).

The two main differentiators of rationale extrac-
tion models to the interpretability methods dis-
cussed in Section 2.1 are that, one the one hand,
models are explicitly trained to produce rationales
instead of creating them post hoc, and, on the other
hand, the focus is on creating human interpretable
rationales while the focus for interpretability meth-
ods often is on mathematical faithfulness measures.

Our method combines the focus on faithfulness
with the desire for human interpretability to create
rationales that faithfully explain model predictions
post hoc and correspond to human rationales, as
these properties substantially enhance the useful-
ness of explanations for many applications.

2.3 Input Optimization
As mentioned in Section 2.2, optimization of input
images for CNNs has been used to explain the re-

sponsibilities of specific neurons, but notably, the
resulting images do not resemble naturally occur-
ring images. This is caused by the huge complexity
and highly nonlinear behavior of neural networks,
leading to the property of having unpredictable be-
havior on out-of-domain inputs that quickly arise
during the optimization. In different experiments,
this has led to behaviors like making highly con-
fident class predictions for images that resemble
random noise (Nguyen et al., 2015) or predicting a
completely different class after adding almost im-
perceivable noise to a given image (Szegedy et al.,
2014). Unconstrained optimization of the input
to a neural network to optimize the activation of
specific neurons will therefore inevitably result in
inputs that are out-of-domain, do not resemble nat-
ural images, or seem downright counter-intuitive.
Different strategies for mitigating this problem in
the context of input optimization exist (e.g., the use
of GANs, Nguyen et al., 2016), with the most com-
mon being extensive regularization to prevent high-
frequency information in images from influencing
the prediction (Yosinski et al., 2015; Mahendran
and Vedaldi, 2015) or using lower-resolution inputs
and blurring to limit the degrees of freedom within
the optimization (Fong and Vedaldi, 2017).

In this study, we use input optimization to per-
form model interpretability by optimizing a mask
to suppress all parts of a given input that a given
model does not consider indicative of the given
class. Compared to (Fong and Vedaldi, 2017), we
propose a new optimization objective as well as
a new regularization scheme that allows for the
creation of more detailed masks. Additionally, we
expand the scope of input optimization methods
from the domain of images to text processing.

3 MaRC

In this section, we introduce MaRC, our frame-
work for Mask-based Rationale Creation. Section
3.1 develops the general framework. Sections 3.2
and 3.3 address the specificities of applying MaRC
to texts and images, respectively.

3.1 Method

We design an interpretability method that detects
parts of an input x that a model M considers most
indicative of a specific class c. We assume an input
x with n input features, each of which could be
high-dimensional, e.g., token embeddings or pixels
with color channels. The main idea of the approach
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is to detect input features that are highly indicative
of class c by replacing as much of the input as pos-
sible with an uninformative input b, i.e., an input
that the model does not consider indicative of any
class, while having the model assign a high score
for class c to the altered input. We define a mask
λ ∈ Rn, λi ∈ [0, 1] to obtain a masked input x̃ in
the following way:

x̃ = λ · x+ (1− λ) · b (1)

When λi is close to 1, feature i is mostly retained
in x̃‚ while λi values close to 0 replace feature i
almost completely with the uninformative b.

MaRC tackles this masking as an optimization
problem: it optimizes λ to obtain rationales that
fulfill the properties of sufficiency, comprehensive-
ness, and compactness (compare Section 2.2). It
models these properties via dedicated regularizers,
which we will develop step by step in the following.

Sufficiency We want to find a mask λ such that
the probability that model M assigns to x̃ for class
c is close to 1. We optimize this criterion as fol-
lows:

arg min
λ∈[0,1]n

− L(x̃, c) + αλ

[
1

n

n∑

i=1

λi

]2

︸ ︷︷ ︸
Ωλ

(2)

Here, L(x̃, c) is a scoring function for c under M
and Ωλ is a sparsity regularizer that enforces the
detection of the smallest set of input features that
still induces a high score for c. An obvious choice
for L(x̃, c) is the log-likelihood of c, maximiz-
ing the probability of c under M and leading λ
to highlight class-discriminative information, i.e.,
input features that indicate only class c. A different
choice would be the logarithm of the sigmoid of the
logit for c, which does not suppress other classes
and therefore leads λ to highlight class-indicative
information, i.e., all input features relevant for c,
even if they are indicative of other classes as well.
In both cases, M considers x̃ to be highly indica-
tive of class c, thereby fulfilling the sufficiency
criterion.

Comprehensiveness Optimizing Equation 2
leads to sufficiency but not comprehensiveness, as
the smallest set of highly indicative input features
is detected. To detect all information relevant for
c, we introduce the complement of rationale (Yu

et al., 2019):

x̃c = (1− λ) · x+ λ · b (3)

which leaves features unmasked that were masked
for x̃. Minimizing the score of x̃c for c enforces all
parts that indicate class c to be masked in x̃c (mean-
ing that they will be unmasked in x̃), resulting in
the following optimization:

arg min
λ∈[0,1]n

− L(x̃, c) + L(x̃c, c) + Ωλ (4)

This formulation combines the "deletion game"
and "preservation game" that were introduced by
Fong and Vedaldi (2017) but treated as separate
objectives. Optimizing the mask with respect to
both objectives greatly supports the detection of
precise boundaries of the relevant features.

Compactness The original compactness crite-
rion states that a rationale shall consist of longer
but fewer meaningful spans of text. Here, we gen-
eralize this to all input types that possess a spatial
structure that defines neighborhoods around input
variables. The underlying assumption is, that for
these types of inputs, a feature is only meaningful
in the context of its neighborhood, as, for example,
is the case for single words in text or individual
pixels in images, so that a sensible rationale must
include larger groups of closely located features.

Thus, we now assume a general spatial structure
on the input x that defines distances d(i, j) between
the features i and j, with features that are closer
together having a higher chance of belonging to the
same meaningful entity. We enforce the selection
of larger groups of features by reparameterizing
our mask, i.e., we introduce two new parameters,
w ∈ Rn and σ ∈ Rn

>0 from which the mask values
λ can subsequently be calculated. The optimization
is then performed with respect to w and σ.

The mask values λ are mainly determined by
w, in a way that wi largely determines the final
value of λi. Crucially, wi now also influences the
values of λ around i, so that, for example, λi−1

and λi+1 are also strongly influenced by wi. σi
then determines the strength and extent of wi’s
influence on its neighbors, as it parameterizes an
unnormalized Gaussian placed at position i, so that
the influence wi→j of a weight wi onto λj is then
given by:

wi→j = wi · exp
(
− d(i, j)2

σi

)
(5)
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Figure 1: An exemplary rationale created by MaRC for the prediction of the positive sentiment label.

The final value for λj is then calculated as follows:

λj = sigmoid(
∑

i

wi→j) (6)

This parameterization of λ enforces neighboring
inputs to have similar values if the corresponding
σ values are large, which also plays a key role in
regularizing the optimization to avoid the issues dis-
cussed in Section 2.3. Large values for σ are softly
enforced by introducing an additional regularizer:

Ωσ = −ασ · 1
n

n∑

i=1

log(σi) (7)

The logarithm was chosen to enforce positive val-
ues of σi while gradually discounting the effect that
increases in σi have on the loss function. Notably,
this regularizer does not enforce large values of
σ by means of hard constraints, meaning that low
values and therefore sharper boundaries between
mask values for neighboring features can be opti-
mal if the other parts of the optimization objective
support this behavior. This is in contrast to (Fong
and Vedaldi, 2017), who used a lower resolution
mask in combination with upsampling and Gaus-
sian blur to detect smooth masks, which does not
allow for sharp masks even if they were optimal.

In summary, the final optimization objective
looks as follows:

arg min
w,σ∈Rn

− L(x̃, c) + L(x̃c, c) + Ωλ +Ωσ (8)

This objective can be optimized using stochastic
gradient descent, but in practice, we found using an
optimizer that incorporates momentum (e.g., Adam,
Kingma and Ba, 2015) to be key for avoiding local
optima and obtaining optimal results.

3.2 Textual Inputs
As MaRC only requires the gradient of a model
prediction at the input, it can be applied to all com-
mon text processing models. In the following, we

discuss specific aspects of using MaRC with state-
of-the-art transformer architectures like BERT (De-
vlin et al., 2019).

As uninformative input b, we choose a sequence
of PAD-tokens of the same length as x. During
training, the model learns to treat these tokens as
uninformative since they are added to inputs irre-
spective of their content or the desired output.

As we want importance scores for each individ-
ual word, we define n to be the number of words in
the input sequence. Notably, this is different from
the actual input dimension, as it is common to use
WordPiece embeddings (Wu et al., 2016) which
could split words into multiple input tokens. In
this case, we use parameter tying to only have a
single parameter for all pieces of a word represen-
tation. The distance function is then simply defined
as d(i, j) = |i−j|, with i and j being the positions
of the words in the text.

Finally, we found that introducing noise into the
optimization process is beneficial for regularization
(see Section 2.3 for discussion of regularization in
input optimization). Thus, for text inputs, we add
Gaussian noise to x̃ and x̃c and randomly set mask
values to 0 or to 1 in each optimization step.

3.3 Image Inputs

Image inputs also fulfill the requirements on the
presence of a spatial structure that is needed for our
method. They also provide natural choices for unin-
formative inputs, as uniformly colored images can
generally be assumed to be uninformative in most
prediction settings. Therefore, obvious choices for
b would, for example, be a white image, a black
image, or an image of the mean color within the
given dataset. A different option is to remove us-
able information from the input image by blurring
it and using this blurred image as uninformative in-
put (Fong and Vedaldi, 2017). As parts of the input
image could have the same color as the uninforma-
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Method Token F1 mAP IoU F1 Suff.↓ Comp.↑
MaRC .473 .469 .163 .028 .518
Occlusion .432 .448 .125 .022 .415
Saliencyn .435 .392 .04 .132 .287
Saliencys .425 .340 .076 .260 .246
InXGradn .436 .396 .040 .136 .292
InXGrads .425 .340 .084 .239 .248
Int. Gradsn .428 .369 .036 .122 .274
Int. Gradss .431 .381 .071 .048 .528
LIME .436 .380 .076 .047 .496
Shapley .428 .439 .079 -.015 .728

Noise .454 .450 .139 .034 .487
Ωλ .349 .350 .046 .120 .266
Ωσ .447 .425 .091 .036 .535
L(x̃c, c) .396 .436 .123 .052 .304

Table 1: Results on rationale extraction on the movie
reviews dataset (DeYoung et al., 2020), including faith-
fulness evaluation. See Section A for an overview of
the methods tested and for experimental details.

tive input (which renders the corresponding mask
values meaningless) and even uniformly colored
patches could be seen as informative by neural net-
works, we chose to alter the optimization objective
to be the average over different choices for b, with
B being the set of all uninformative inputs:

arg min
w,σ∈Rw×h

1

|B|
∑

b∈B
L(x̃(b, τ), c)− L(x̃c(b, τ), c)

+Ωλ +Ωσ +ΩNB (9)

As images generally have more variables and there-
fore more degrees of freedom in the optimization,
further regularization is needed to obtain sensible
optimization results. To this end, this formulation
includes an additional regularizer ΩNB, which de-
notes the average squared difference between mask
values that are neighboring with respect to the 8-
connected grid structure of the image, weighted by
a corresponding parameter αNB.

To complete the specification of the optimiza-
tion problem, we define the distance function d
between two pixels to be the euclidean distance
between their two-dimensional position vectors in
the image grid. In contrast to the textual inputs, the
introduction of noise to the optimization process
did not prove to be beneficial.

ResNet-101 ViT-B/16

Method Suff. ↓ Comp.↑ Suff. ↓ Comp.↑
MaRC .196 .612 .139 .596
M-Perturb .260 .605 .174 .572
Grad-CAM .197 .600 .161 .640
Exc-BP .302 .600 - -
Saliency .442 .599 .355 .528
InputXGrad .430 .586 .366 .506
Guided BP .343 .630 - -
Intgr. Grads .344 .641 .261 .641
Occlusion .324 .606 .194 .486
Attention - - .241 .562
Attribution - - .176 .608
Rollout - - .205 .580
TAM - - .146 .658

Table 2: Results for the faithfulness evaluation of dif-
ferent explainability methods for ResNet-101 and ViT-
B/16. Compare Section A for an overview of the meth-
ods tested and for experimental details.

4 Experiments on Rationale Extraction

We evaluate MaRC on rationale extraction, a task
that is concerned with predicting the correct label
for a given textual input while also providing a
subset of the input as a rationale for the prediction.

4.1 Data

We use the movie review data set (Zaidan et al.,
2007) with 2000 movie reviews annotated with
sentiment labels (positive or negative) as well as
span-level rationales. We test on the additional ra-
tionales created by DeYoung et al. (2020), which
are more comprehensive and thus, on average, com-
prise a much larger fraction of words (7.2% vs.
31.4%). As our approach is designed for extracting
span-level rationales and most other datasets for
rationale extraction are not annotated on span-level
(DeYoung et al., 2020), this is the only dataset suit-
able for an evaluation of MaRC. We use a standard
BERTbase model (Devlin et al., 2019) and train it
as a standard binary classification model on the
training data, therefore only using the class labels
and not the annotated rationales.

4.2 Evaluation

There are two common ways of evaluating the ra-
tionales produced by different models (DeYoung
et al., 2020; Atanasova et al., 2020):
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(a) Input (b) MaRC (c) M-Perturb (d) Occlusion (e) Integr. Grads (f) Grad-CAM

Figure 2: Comparison of masks created for ResNet-101 by different explainability methods.

1. Agreement with human annotator ratio-
nales: A strong overlap between rationales
given by human annotators and rationales pro-
duced by an explainability model is a good
indicator that sensible rationales have been
selected. Additionally, similarity to human ra-
tionales could be considered a desirable prop-
erty (depending on the use case), even if it is
not perfectly in line with the actual reasoning
process of the neural network.

2. Faithfulness: Ideally, the rationales produced
by a model fulfill the conditions of sufficiency
and comprehensiveness, meaning that they ac-
tually reveal the information that the model
considered indicative for the predicted label.

Different metrics exist to evaluate the performance
of approaches that produce "soft" scores (i.e., con-
tinuous values) or binary values as the output of the
rationale generation. As we see use cases for both
outputs, we evaluate our approach with respect to
both. To create a binary mask from the continuous
mask values that MaRC produces, we train a kernel
regression model to predict the optimal percentage
of words that need to be included in the rationale
(described in Appendix A), which we do in the
same way for all methods tested in this study.

To evaluate the agreement with human ratio-
nales, we calculate the token F1 score for the bi-
nary masks by using precision and recall of the
"positive" class of words belonging to the ratio-
nale, while the soft-scoring models are evaluated
using the mean average precision (mAP). To evalu-
ate the agreement of larger detected spans with the
spans present in the human rationales, we evaluate
the IoU F1 score that counts a ground-truth span
as correctly detected if there is a predicted span
with an IoU of over 0.5, which again allows for the
calculation of an F1 score for the "positive" class
of detecting the spans. These three metrics were
used in the ERASER benchmark (DeYoung et al.,
2020), which also proposed metrics to evaluate suf-
ficiency and comprehensiveness. For these metrics,
we slightly deviate from their evaluation metrics

by evaluating these scores for a given sample x and
rationale r in the following way:

comp(x, r) =
1

19

19∑

i=1

M(x)−M(x\ri) (10)

sufficiency(x, r) =
1

19

19∑

i=1

M(x)−M(ri) (11)

Here, M(x) denotes the class probability predic-
tion (for the ground-truth class) of our model, ri de-
notes the top (i ·5)% of words according to the soft
rationale scores (all other words are removed), and
x\ri denotes sample x with all words that belong
to ri removed, where we "remove" words by re-
placing the corresponding tokens with PAD-tokens.
Therefore, the comprehensiveness score evaluates,
how much removing the rationale decreases the
model performance (higher scores are better) while
the sufficiency score evaluates how well the cor-
rect label can be predicted from the rationale alone
(lower scores are better).

4.3 Results
The evaluation results are displayed in the upper
part of Table 1 (see Appendix A for more details
on the setup). We compare MaRC against other
interpretability methods that are commonly used
in the context of NLP but omit specialized ratio-
nale extraction models as they (i) usually produce
binary masks, making it impossible to perform the
soft-scoring evaluation, and (ii) do not produce ex-
planations for existing models, which makes the
faithfulness evaluation inapplicable.

We see that MaRC achieves state-of-the-art re-
sults on all measures that evaluate agreement with
human rationales, i.e. Token F1, mAP, and IoU
F1, showing that MaRC is the best method for
obtaining rationales that match human intuition.
Especially with respect to the IoU F1 score, MaRC
outperforms all other methods by a large margin,
even though the hyperparameters for other meth-
ods were set to explicitly support high scores in this
measure (e.g., masking larger spans for occlusion
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(a) Input (b) MaRC Softmax (c) MaRC Sigmoid (d) M-Perturb (e) TAM (f) Grad-CAM

Figure 3: Comparison of masks created for ViT-B/16 by different explainability methods.

and LIME). This highlights that MaRC is suitable
for detecting span-level rationales in a paragraph-
long text that agree with spans that humans anno-
tate, without being trained to do so and without
additional model components as in state-of-the-art
rationale extraction models.

For sufficiency and comprehensiveness, MaRC
also achieves impressive results, being outper-
formed in both metrics only by Shapley value sam-
pling. The excellent performance of this method
with regard to these evaluation metrics is not sur-
prising, though, as it is based on choosing a random
permutation of input features, adding them succes-
sively to the input, and using the change in the
model’s output as the resulting score. This method
is very closely connected to the sufficiency and
comprehensiveness calculations, thereby rendering
the great results of this method unsurprising. It
should be noted, that multiple methods, including
MaRC, achieve close to optimal results for suffi-
ciency, as scores close to 0 indicate that the removal
of very few high-scoring tokens is enough to com-
pletely throw off the classifier. Notably, MaRC
can produce good results while aiming to create
human-like rationales, showing that this kind of
rationale to some extent corresponds to the inner
workings of the neural network.

We also conduct an ablation study that tests the
importance of the different parts of the optimization
objective by leaving these parts out in turn and
reporting the results with the altered objective. The
results are displayed in the lower part of Table 1,
with the "Method" column specifying with part
of the objective is omitted. The full optimization
objective is almost uniformly the best-performing
variant, proving that all parts a essential to achieve
optimal performance.

5 Experiments on Image Classification

We evaluate MaRC on the task of creating ratio-
nales for classifications of ImageNet (Russakovsky
et al., 2015) images. A visual comparison of
masks created by MaRC and other interpretabil-
ity approaches for ResNet-101 (He et al., 2016)

and the vision transformer ViT-B/16 (Kolesnikov
et al., 2021) is displayed in Figures 2 and 3, re-
spectively (see Appendix C for with more visual-
izations). We see that MaRC is able to produce
sharp masks that often cover the complete object
of interest in the image. For ViT-B/16, we include
a visualization highlighting the distinction between
class-discriminative vs. class-indicative informa-
tion (compare Section 3.1): Figure 3b) used the
softmax of the model output as scoring function,
which leads MaRC to highlight only the head and
tail of the animal, the two parts that the model
uses to differentiate the correct class from the other
classes. For Figure 3c), on the other hand, a mix-
ture of the sigmoid of the class logit and the soft-
max of the model output was used with a ratio of
9:1, making the model highlight all parts in the im-
age that indicate the ground-truth class, as long as
they are not significant indicators of other classes.

We also evaluate the faithfulness of the expla-
nation created by MaRC and a variety of other
interpretability methods using the same metrics as
for textual inputs. For this experiment, we use
pretrained ResNet-101 and ViT-B/16 models on
a random sample of 500 ImageNet validation im-
ages, with further implementational details being
described in Appendix A. As shown in Table 2,
MaRC is the best-performing model with respect
to sufficiency for both ResNet-101 and ViT-B/16,
showing that the areas that MaRC highlights are
indeed the areas that allow the model to predict the
correct class based solely on these regions. With re-
spect to comprehensiveness, MaRC achieves com-
petitive results, only falling behind model-specific
architectures that heavily use the knowledge about
the inner workings of the model and the informa-
tion flow inside it (e.g., transition attention maps
(TAM), Yuan et al., 2021), as well as two other
methods in the form of Guided Backpropagation
(Springenberg et al., 2015) and Integrated Gradi-
ents Sundararajan et al. (2017). The latter two
methods often predict individual pixels that are
spread over many areas of the image as the most in-
dicative input features, indicating that the removal
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of key pixels at different positions of the image is
a good strategy to quickly decrease the classifier
performance, an approach that MaRC is actively
discouraged to pursuit.

6 Conclusion

We propose a new method for creating explanations
for neural network predictions that are faithful to
the model’s reasoning process as well as being sen-
sible with respect to human judgment. We achieve
state-of-the-art results on the task of rationale ex-
traction, achieve competitive or state-of-the-art re-
sults with respect to faithfulness, and provide vi-
sually sensible explanations for classifications of
images. As MaRC is model-agnostic, we believe
it to be a useful tool in many areas of machine
learning that include textual or image inputs. We
further believe that other domains can make use of
MaRC, including multimodal tasks that, for exam-
ple, combine textual and image inputs, as well as
other domains that fulfill the requirements on the
spatial structure of the input, like auditory data.

7 Limitations

Compared to other interpretability methods, MaRC
is able to create explanations that more closely
resemble human rationales. Nevertheless, the simi-
larity to human rationales is always limited by the
inner workings of the respective neural network:
If a network’s reasoning does not mirror human
reasoning, the resulting rationales will be incom-
prehensible to humans.

Additionally, rationales created by MaRC are
the result of a complete input optimization process.
Therefore, the rationale creation usually requires
hundreds of forward passes and gradient evalu-
ations for the respective neural network, which
makes the process of creating the rationale time-
consuming and therefore infeasible for many real-
time applications. On modern hardware, creating a
rationale for BERTbase can take two to three min-
utes depending on the length of the input text, while
ResNet-101 and ViT-B/16 are faster at about one
minute.
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A Experimental Details

The implementations of MaRC for the exper-
iments conducted in this study is available
at https://github.com/inas-argumentation/
Explainability.

A.1 Rationale Extraction

We perform rationale detection using BERTbase

(uncased) (Devlin et al., 2019), which we train
as a binary classifier for at most 20 epochs on the
first eight folds of the movie review dataset (Zaidan
et al., 2007), with the ninth and tenth fold being
used for validation and testing, respectively. For
the optimization, we use the Adam optimizer and
achieve a 96.5% test set accuracy.

For rationale creation, the results from Table 1
as well as the example images for MaRC were
created by using the optimization objective given
by Equation 8 with all specifications as described
in Section 3.2, hyperparameters set to αλ = 1,
ασ = 1.2 and w and σ being uniformly initialized
to 1.2 and 2, respectively. We add zero-mean Gaus-
sian noise to x̃ and x̃c (σ = 0.03) and randomly
set 5% of mask values to 0 or 1, respectively, in
each optimization step. We use the log-likelihood
of the respective class as scoring function. All
these choices were made by using the validation
split, with the measure of quality being visual co-
herence of the created explanation, as the data set
does not offer a validation split with the same label
distribution, thus making validation with respect to
scores infeasible. Texts that surpass the limit of 510
input tokens for BERTbase are split into multiple
segments, with consecutive segments overlapping
for 100 tokens, and a separate mask is predicted
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for each segment. The resulting masks are con-
catenated, with the overlapping parts being linearly
blended. We proceed in the same way for all other
interpretability methods.

The following models and parameters were used
in the method comparison:

• Occlusion (Zeiler and Fergus, 2014): We
chose to mask slightly larger spans of 5 to-
kens as this produced smoother masks which
resulted in higher IoU F1 scores. Occluded
parts were replaced by PAD-tokens.

• Saliency (Simonyan et al., 2013): No special
hyperparameter settings required.

• InXGrad (Input times gradient, Shrikumar
et al., 2017): No special hyperparameter set-
tings required.

• Int. Grads (Integrated Gradients, Sundarara-
jan et al., 2017): We use a sequence of PAD-
tokens as background and do 50 gradient eval-
uation steps per sample.

• LIME (Ribeiro et al., 2016): We do 50 func-
tion evaluations per sample. In each evalua-
tion, we randomly select 5 − 13% of tokens
and replace them as well as the next three
tokens with PAD-tokens. We train a linear
classifier and use the resulting weights as ra-
tionale.

• Shapley (Shapley value sampling, Castro et al.,
2009): We evaluate the token contributions for
25 feature permutations per sample. Removed
tokens are replaced by PAD-tokens.

We use the implementations provided by
(Kokhlikyan et al., 2020) for all methods. All
methods have access to the ground truth label and
therefore do not have to rely on a correct classifier
prediction.

For methods that produce scores for each en-
try of the embedding vector, we report results for
two different methods of combining these scores to
single values per token, with one being taking the
vector norm (results are reported for the L1 norm,
but we did not see a significant difference for the
L2 norm), and the other one being summing over
the resulting scores (indicated by subscript n and
s in Table 1, respectively). In the latter case, the
resulting value was negated if the target label is 0.

To evaluate the token F1 score and the IoU F1
score, we need to create a binary mask from the

continuous scores produced by the different inter-
pretability methods. We do this by selecting the
top-scoring words as rationale, with the percent-
age of words that are selected being decided by a
Nadaraya-Watson kernel regression model using
an RBF kernel. The input to the kernel regression
for a given sample is the percentage of words that
have a score greater than a fixed threshold (a hy-
perparameter, here set to 0.1), while the output is
the percentage of words to be selected as rationale.
As we use the rationales from (DeYoung et al.,
2020) (who only annotated 200 samples) for our
experiment, we do not have access to a separate
training set to train the kernel regression, so we
resort to a leave-one-out scheme to use the same
set for training and testing.

For the faithfulness evaluation, we note that we
deviate from the common practice of evaluating
the area under the curve (AUC) (e.g., used by Pet-
siuk et al., 2018) and instead take the average over
the tested range of values. We do this, to accom-
modate for the possibility of negative scores in
the sufficiency calculation, which undermine the
theoretical foundation of the AUC. We also adapt
the comprehensiveness calculation accordingly for
consistency.

A.2 ImageNet Explanations

We use MaRC with the optimization objective
given by Equation 9. We use pretrained ResNet-101
(He et al., 2016) and vision transformer ViT-B/16
(Kolesnikov et al., 2021, input image size=384)
models and use the following hyperparameter set-
ting for MaRC:

• ResNet-101: We set αλ = 0.6, ασ = 1.2,
αNB = 10 and initialize w and σ uniformly
to 0.5 and 1.2 respectively. As ResNet mod-
els seem to treat uniformly colored images as
uninformative, we chose B to be a set con-
taining a black image, a white image, and an
image with the mean color from the dataset.
As the scoring function, we chose the log
of a combination of the softmax output of c
(weighted by 0.9) and the sigmoid of the logit
of c (weighted by 0.1).

• Vit-B/16: We set αλ = 0.25, ασ = 1.2,
αNB = 10 and initialize w and σ uniformly to
0.5 and 1.2 respectively. As the vision trans-
former often seems to interpret the uniformly
colored backgrounds as indicative of specific
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classes, we instead opted to use a blurred ver-
sion of the input image as b. As the scoring
function, we use the log-likelihood of c.

All visualizations and experiments were, if not
stated otherwise, conducted with these hyperparam-
eter settings. We compared MaRC to the following
methods:

• M-Perturb (Fong and Vedaldi, 2017): We used
the original implementation and parameter set-
tings by Fong and Vedaldi (2017) with minor
adaptations to work with pytorch.

• Grad-CAM (Selvaraju et al., 2017): We used
the implementation by Gildenblat and contrib-
utors (2021).

• Exc-BP (Excitation Backpropaga-
tion, Zhang et al., 2016): We used
the implementation available at
https://github.com/greydanus/excitationbp

• Saliency (Simonyan et al., 2013): We used the
implementation by Kokhlikyan et al. (2020).

• InputXGrad (Input times gradient, Shrikumar
et al., 2017): We used the implementation by
Kokhlikyan et al. (2020).

• Guided BP (Springenberg et al., 2015): We
used the implementation by Kokhlikyan et al.
(2020).

• Intgr. Grads (Integrated Gradients, Sundarara-
jan et al., 2017): We used the implementation
by Kokhlikyan et al. (2020). As background,
a blurred version of the input image was used,
as this produced optimal results. For each
sample, 100 gradient evaluation steps were
performed.

• Occlusion (Zeiler and Fergus, 2014): We
used the implementation by Kokhlikyan et al.
(2020). We occluded patches of 1

9 of the input
image size and used a stride of 1

56 of the input
image size. Occluded patches were replaced
by a blurred version of the input image.

• Attention (Yuan et al., 2021): We used the
implementation by Yuan et al. (2021).

• Attribution (Chefer et al., 2021b): We used
the implementation by Yuan et al. (2021).

• Rollout (Abnar and Zuidema, 2020): We used
the implementation by Yuan et al. (2021).

• TAM (Transition attention maps, Yuan et al.,
2021): We used the implementation by Yuan
et al. (2021).

All methods had access to the ground-truth label
to create the explanation. The random sample of
ImageNet validation images that was used in this
experiment can be viewed at the GitHub page given
at the beginning of Appendix A.

To evaluate model faithfulness, we used Equa-
tion 10 and 11, with the difference that the evalua-
tion for each sample and percentage was performed
with respect to four uninformative inputs to prevent
skewed evaluation results for methods that only
work well with respect to one background. The
four backgrounds we used were a white image, a
black image, an image of the mean color of the
dataset, as well as a blurred version of the input
image.
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B Movie Review Rationale Examples

This section includes four additional exemplary ra-
tionales created by MaRC on movie reviews from

(Zaidan et al., 2007).

Figure 4: Rationale for a negative movie review.

Figure 5: Rationale for a positive movie review.

Figure 6: Rationale for a negative movie review.

Figure 7: Rationale for a positive movie review.
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C ImageNet Mask Comparison

This section includes a more extensive comparison
of masks created by different interpretability meth-
ods on the selection of images used by Fong and
Vedaldi (2017). For MaRC, an additional visual-

ization is added to more easily see the unmasked
regions in the image. For an overview of meth-
ods as well as hyperparameter settings, compare
Appendix A.

C.1 ResNet-101

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 8: Komodo dragon

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 9: Pekinese

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 10: Impala
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Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 11: Squirrel monkey

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 12: CD player

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 13: Pickup

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 14: Sunglasses
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Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 15: Unicycle

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 16: Street sign

Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 17: Chocolate sauce
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Input MaRC M-Perturb Grad-CAM Excitation BP Occlusion

MaRC Vis. Saliency InputXGrad Guided BP Integr. Grads

Figure 18: Cliff

C.2 ViT-B/16

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 19: Komodo dragon

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 20: Pekinese

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 21: Impala
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Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 22: Squirrel monkey

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 23: CD player

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 24: Pickup

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 25: Sunglasses
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Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 26: Unicycle

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 27: Unicycle

Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 28: Chocolate sauce
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Input MaRC M-Perturb Raw attention Rollout Attribution TAM

MaRC Vis. Saliency InputXGrad Integr. Grads Occlusion Grad-CAM

Figure 29: Cliff
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