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Abstract

Exploring the generalizability of a text-to-SQL
parser is essential for a system to automatically
adapt the real-world databases. Previous inves-
tigation works mostly focus on lexical diversity,
including the influence of the synonym and per-
turbations in both natural language questions
and databases. However, the structural vari-
ability of database schema (DS), as a widely
seen real-world scenario, is yet underexplored.
Specifically, confronted with the same input
question, the target SQL may be represented
in different ways when the DS comes to a dif-
ferent structure. In this work, we provide in-
depth discussions about the schema general-
izability challenge of text-to-SQL tasks. We
observe that current datasets are too templated
to study schema generalization. To collect suit-
able test data, we propose a framework to gen-
erate novel text-to-SQL data via automatic and
synchronous (DS, SQL) pair altering. When
evaluating state-of-the-art text-to-SQL models
on the synthetic samples, performance is sig-
nificantly degraded, which demonstrates the
limitation of current research regarding schema
generalization.

1 Introduction

Given the corresponding database, text-to-SQL (Yu
et al., 2018) aims to convert a natural language (NL)
utterance into a structured SQL program. Recently,
many advanced text-to-SQL models, such as RAT-
SQL (Wang et al., 2019) and LGESQL (Cao et al.,
2021), have been proposed to tackle this task.

Although significant progress has been achieved
considering the ultimate accuracy, many re-
searchers point out that actual performances of cur-
rent text-to-SQL systems are over-estimated. Suhr
et al. (2020) observed a dramatic performance de-
cline when evaluating a state-of-the-art model on
unseen datasets. Gan et al. (2021a) discovered that
current parsers are vulnerable to the adversarial

∗The corresponding authors are Lu Chen and Kai Yu.

Question: How many singers are there?

singer
id name age
0 Taylor Swift 32

SQL: SELECT count(*) FROM singer

song
id name singer
0 Love Story Taylor Swift

SQL: SELECT count(distinct singer) FROM song

people
id name identity
0 Taylor Swift singer

SQL: SELECT count(*) FROM people WHERE identity = ‘singer’

Table
Column

Cell Value

Table
Column

Cell Value

Table
Column

Cell Value

Figure 1: Given the same question, the target SQL re-
sponds in different ways when the database schema is
different.

attack from synonyms of words in user questions.
To explore the generalizablity, previous literature
mainly focused on the semantically diversity of
natural language. However, the topological feature
of database schema is also important but is less
investigated while studying the generalizablity in
text-to-SQL tasks.

We named the ability to automatically adapt dif-
ferent schema the schema generalizablity. Dif-
ferent databases will lead to completely divergent
SQL queries even given the same user question.
For example, in Figure 1, the SQL queries become
different when the query entity “singer" functions
as a column, a table, or a specific cell value, de-
pending on the ontology of the corresponding DS.
Furthermore, although the current cross-domain
text-to-SQL datasets use different databases dur-
ing training and evaluation, they are insufficient
for evaluating the schema generalizablity of text-
to-SQL systems. In Section 3.1, we observe that
models can predict the structure of SQL queries
even without the corresponding database, which
may result from the limited database structures of
current datasets.
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In this work, we focus on studying the schema
generalizablity of current STOA text-to-SQL sys-
tems and provide in-deep analysis. To avoid the
aforementioned problems in existing datasets, we
propose a data- and structure-driven framework
to automatically synthesize new (DS, SQL) pairs
given the same input question. The framework
modifies the DS with a modest annotation cost
and updates the SQL synchronously by altering the
abstract syntax tree (AST). Inspired by the entity-
relationships diagram (E-R Diagram) (Ling, 1985;
Li and Chen, 2009), all the transformations follow
the entity relationships of the database to guaran-
tee that the modifications are reasonable. We also
compared the execution results between new and
original (DS, SQL) pairs to ensure the correctness
of SQL updating.

Our experiments demonstrate that all four strong
text-to-SQL models (RATSQL (Wang et al., 2019),
LGESQL (Cao et al., 2021), T5 (Raffel et al., 2020),
and T5-PICARD (Scholak et al., 2021)) suffer from
poor schema generalizability. After generating the
adversarial set from the Spider (Yu et al., 2018) dev
set, adding perturbations to the database schema
reduces the EM accuracy from an average of 67%
to 35%. Even the performance on the adversarial
set from the Spider training set drops dramatically
(-46 points on EM). Furthermore, we observe that
the adversarial examples that both DS and SQL
changed are much more challenging for text-to-
SQL models than those examples that only DS
changed. Finally, we discuss the efficiency of ad-
ditional training on adversarial examples (Jia and
Liang, 2017). Experiment results show that the
performance improvement mostly stems from the
additional question-DS patterns by more training
examples.

The main contributions are as follows:

• We propose a data- and structure-driven
framework which can automatically syn-
thesize samples containing unseen (DS,
SQL) patterns with minimal human la-
bor. This framework and correspond-
ing synthesis data will be publicly avail-
able at https://github.com/Auracion/
schema_generation_framework.

• By utilizing the plug-and-play framework,
we synthesize a test suite and demonstrate
the poor performance of existing text-to-SQL
models regarding schema generalization.

• We analyze the reasons leading to modest
generalization towards perturbations of syn-
chronous changes in (DS, SQL) pairs and
demonstrate that adversarial training is a pos-
sible way to inhibit the overfitting problem.

2 Background and Related Work

Structural Features in Text-to-SQL Tasks
Modeling the structural information in a database
and designing an efficient algorithm to decode
structured output sequences are crucial in text-to-
SQL. Several studies achieved remarkable progress
using GNN (Scarselli et al., 2008) to encode the
schema linking, which enhanced the graph struc-
ture of DS and the relationships between DS and
question tokens (Bogin et al., 2019; Lin et al.,
2020; Chen et al., 2021; Hui et al., 2022; Wang
et al., 2019; Cao et al., 2021). Another line of re-
search focuses on the grammar structure of SQL.
Corresponding works proposed novel algorithms
to precisely decode according to the syntax (Guo
et al., 2019; Rubin and Berant, 2021; Gan et al.,
2021b). Recent works attempted to utilize the de-
veloped generative pre-trained language models
(Raffel et al., 2020; Lewis et al., 2020) to generate
SQL. Based on T5 (Raffel et al., 2020), Scholak
et al. (2021) proposed a rule-based post-processor
to prune syntax-illegal SQL subsequence in beam
search, and they achieved stable improvement in
the end-to-end text-to-SQL system.

Synthetic Data Lexical Structure
Question Schema Schema SQL

Spider-Syn(Gan et al., 2021a) ✓ % % %

MR-UT(Ma and Wang, 2021) ✓ % % %

MR-ST(Ma and Wang, 2021) % % ✓ %

ADVETA-RPL (Pi et al., 2022) % ✓ % %

ADVETA-ADD (Pi et al., 2022) % ✓ ✓ %

Unaffected % % ✓ %

Affected % % ✓ ✓

Table 1: Setups of previous evaluation datasets and our
synthetic samples. The synthetic evaluation data was
modified from Spider. Unaffected and Affected are two
types of data we synthesize in this work. We intro-
duce them in Section 6 The mark ✓represents that the
corresponding attribute is different from that in Spider.
Oppositely, we use%to note in this table.

Robustness of text-to-SQL models Early
datasets (Dahl et al., 1994; Hemphill et al., 1990;
Zelle and Mooney, 1996; Tang and Mooney,
2000; Li and Jagadish, 2014; Yaghmazadeh et al.,
2017; Iyer et al., 2017; Finegan-Dollak et al.,
2018) only considered the text-to-SQL tasks on
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a single database. To build a robust text-to-SQL
model that can automatically adapt unseen domain
data, Recent works (Yu et al., 2018; Zhong et al.,
2017) collected cross-domain text-to-SQL datasets.
Based on the cross-domain setup, researchers
further considered some different real-world scenes
and proposed corresponding datasets (Yu et al.,
2019b,a; Wang et al., 2020). However, Suhr et al.
(2020) observed that the execution (EX.) accuracy
of a well-trained model on Spider (Yu et al., 2018)
always decreases remarkably on the unseen domain
data from other datasets1. Although Suhr et al.
(2020) depicted the reasons leading to performance
decline, in-deep discussions are necessary. To this
end, recent studies generated synthetic data under
different setups to further assess the practical
model generalization in different environments.
We summarize the characteristic of the synthetic
evaluation set in Table 1. In respect of text,
Gan et al. (2021a) generated evaluation samples
by replacing the schema-related words in NL
questions with synonyms. Ma and Wang (2021)
substituted the aggregation-related words and
prefix phrases with synonym representations. Pi
et al. (2022) modified the column names in DS.
In respect of structure, Ma and Wang (2021)
created different DS structures by imposing
perturbations. Pi et al. (2022) added adversarial
columns in DS. However, the golden SQLs in both
of their synthetic datasets remain unchanged when
applying perturbations. In this work, we consider
both changed and unchanged golden SQLs to
provide a comprehensive appraisal regarding
schema generalization.

Dataset RATSQL LGESQL
Spider (Yu et al., 2018) 69.57 70.11
SParC (Yu et al., 2019b) 42.20 43.59

Spider-Syn (Gan et al., 2021a) 49.81 50.93
Academic (Li and Jagadish, 2014) 6.26 7.36

GeoQuery (Zelle and Mooney, 1996) 7.51 7.86
IMDB (Yaghmazadeh et al., 2017) 18.96 18.74

Restaurant (Tang and Mooney, 2000) 0.00 0.53
Scholar (Iyer et al., 2017) 0.18 0.24

Yelp (Yaghmazadeh et al., 2017) 6.01 7.51

Table 2: Models are trained on Spider, while evaluated
on other datasets. The databases of SParC and Spider-
Syn are similar to Spider.

1Considered most related studies report the EM. accuracy
as the results, we additionally reproduce the experiments and
use the EM. accuracy as the metric and illustrate the results in
Table 2.

3 Suitable Evaluation Data

To evaluate the schema generalizability of text-to-
SQL models, a test dataset with novel databases
is crucial. However, current text-to-SQL datasets
are not suitable because of the over-templated fea-
tures (Section 3.1). Therefore, we propose a data-
and structure-driven generation framework to syn-
thesize relevant data to assess the generalization
capability (Section 3.2).

Question How many dogs have not gone through
any treatment?

SQL SELECT count(*) FROM Dogs
WHERE Dogs.dog_id NOT IN
(SELECT Treatments.dog_id FROM
Treatment)

Syntax Roles
Select Aggregation
WHERE Condition
Nested SQL in Condition

Table 3: The structure of SQL can be represented with
the syntax roles.

3.1 Current Datasets are Undesirable
To verify that current text-to-SQL datasets are over-
templated, we conduct a syntax role prediction ex-
periment. As the example shown in Table 3, the
structure feature of SQL can be represented using
the syntax roles. We show the details of all used
syntax role labels in Appendix D
Syntax Role Prediction aims to predict which
SQL syntax roles are mentioned in the query, in-
cluding the SQL keywords, nested structure, and
aggregation clause. For the user question Q =
(q0, q1, ..., q|Q|), the given database schema D, and
the corresponding SQL S = (s0, s1, ..., s|S|). Set
R = {r0, r1, ..., r|R|} contains all the predefined
syntax roles involved in S. We formulate the syntax
role prediction task as

R = F(X) (1)

, where X = Q if using database schema informa-
tion otherwise X = (Q,D). The metric used in
this experiment is joint accuracy, which means the
case is treated as correct if and only if all the syntax
roles are correctly predicted.

In this experiment, we compare the perfor-
mances of whether it contains database schema in
the inputs. For the model only uses user questions,
we encode the inputs as

h = Bert(Q). (2)
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Train. Test. Test. Setup w/o. DB Schema w. DB Schema
Spider Train. Spider Dev. Spider-like Cross-Domain 86.08 87.34 ↑1.26
Spider Train. Spider-Syn Dev.

Spider-like Cross-Domain
85.59 84.72 ↓0.87

Spider-Syn Train. Spider-Syn Dev. 85.69 85.40 ↓0.29
Spider Train. SParC Dev.

Spider-like Cross-Domain
74.31 74.48 ↑0.17

SParC Train. SParC Dev. 66.92 66.50 ↓0.42

Spider Train.

Academic

Single-Domain

92.27 89.50 ↓2.77
GeoQuery 51.42 45.57 ↓5.85

IMDB 90.83 93.58 ↑2.75
Restaurants 75.20 89.60 ↑12.40

Scholar 67.66 71.00 ↑3.34
Yelp 96.40 93.69 ↓2.71

Average Joint Accuracy 79.31 80.13 ↑0.82

Table 4: Experiment results of syntax role prediction. w/o. DB Schema represents a vanila model using BERT-base
to encode user questions. W. DB Schema represents the model using RAT encoder to process the user questions
and database schema.

For the model uses both user questions and
database schema information, we encode the in-
put as

h = RAT-Encoder(Q,D), (3)

where RAT-Encoder is the encoder of RAT-
SQL (Wang et al., 2019). We calculate the proba-
bility of using the role ri as

P (ŷi|X) = Sigmoid(v⊤
i h), (4)

where vi is learnable parameters corresponding to
syntax role ri.

As the results in Table 4 shown, the perfor-
mances of the models without using DS informa-
tion (column 4) achieve 79.31 on average. The
model can directly predict the approximate struc-
ture of the target SQL only with the user ques-
tion most of the time, even though the databases
for training and for testing are not overlapping.
Meanwhile, the performances of the models using
database schema information (column 5) achieve
80.13 on average. The experiment results illus-
trate that using DS information can only improve
0.82 on average. The performance differences be-
tween using and without using DS demonstrate
that the DS information is helpless for predicting
the SQL structure. Additionally, we find that the
phenomena not only happen when evaluating on
Spider-like datasets but also exist in other text-to-
SQL datasets. Therefore, we suspect that current
datasets are too templated to evaluate the gener-
alizability using them. To this end, we need to
synthesize suitable evaluation data.

3.2 Evaluation Data Generation
To assess the structural generation capability, we
propose a data- and structure-driven generation
framework to synthesize relevant data. The syn-
thetic data in this paper are modified from Spi-
der (Yu et al., 2018) 2 which is the most popular
cross-domain text-to-SQL dataset. It contains 8659
training examples and 1034 validation examples
across 146 databases. The test dataset is unseen
and contains 2147 samples with 40 databases.

For a given sample, we synthesize a new sample
by altering the DS while keeping the question con-
stant. In order to obtain a reasonable DS, we con-
struct the entity-relationship graph of the given DS
and apply graph-based transformations. Moreover,
we synchronously update the SQL by modifying
the abstract syntax tree. We show more details in
Appendix A

In this work, we use four different transforma-
tions in DS. Figure 2 illustrates the examples of
each transformation, and we show a brief introduc-
tion below:

• Entity to Attribute (E2A) merges two tables
into one.

• Concept to Attribute (C2A) converts the con-
cept3 of an entity, which represents via table
name in DS, to its attribute.

• Named to Unnamed (N2U) replaces the table
corresponding to a relationship with foreign

2https://yale-lily.github.io//spider.
3It refers to the definition of concept node in the knowledge

graph.
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Entity ➔Attribute

Concept ➔Attribute

Named ➔ Unnamed

Unnamed ➔ Named

Original

Figure 2: Examples of the DS synthesized via different transformations. The dotted lines denote foreign keys (from
foreign key to primary key)

keys.

• Unnamed to Named (U2N) replaces a for-
eign key with a relationship table.

Table 5 shows the total number of each kind of
synthetic data synthesized via different E-R trans-
formations. We evaluate the synthetic quality by
comparing the execution results of the original and
synthetic (DS, SQL) pairs. Over 90.43% generated
samples kept consistent execution results on aver-
age. In this work, we only consider 1-step trans-
formation regard of the problem of textual noise
accumulation in automatic multi-step transforma-
tion.

Trans. Train. Dev.
Affected Unaffected Affected Unaffected

E2A 3035 9466 493 1477
C2A 2659 4271 379 445
U2N 2969 12910 114 376
N2U 2605 48507 303 4484

Table 5: Statistics of generated data for four transfor-
mations. Affected represents the samples containing
different SQL. Unaffected represents the samples that
the SQL query does not change when applying DS trans-
formations.

4 Generalization Evaluation

In this section, we conduct experiments to evaluate
the practical generalization of current text-to-SQL
models:

4.1 Experiment Setup

In this work, we experiment with two grammar-
based SOTA text-to-SQL parsers, RATSQL (Wang

et al., 2019) and LGESQL (Cao et al., 2021). Be-
sides, we also experiment with the T5-based end-to-
end text-to-SQL parser, including the methods of
decoding with and without PICARD(Scholak et al.,
2021). The evaluation metric we use to report the
results is exact set match accuracy (EM). Results
are averaged over three trials to reduce variance.

Equivalent Test Set (ETS) To precisely evaluate
the model robustness, we construct an equivalent
test set for the given dataset, which contains the
same number of samples. We restrict that each
sample in the original dataset matches exactly one
synthetic variant in the ETS. If a sample can not
generate a variant, we will add the duplication in
the ETS. In this work, the percentages of these sam-
ples in ETS are 34.3% and 14.7% for affected and
unaffected respectively. Furthermore, to reduce the
influence of hardness4, we utilize a heuristic algo-
rithm to modulate the ETS so that its distribution is
close to the original dataset. We show more details
of the algorithm in Appendix E

4.2 Practical Schema Generalization

We construct the equivalent test set (ETS) for both
of the training set and the development set of Spider.
The training data in this experiment is the Spider
training set. We compare the performances on the
Spider training set, Spider development set, and
their corresponding ETSs.

Experiment results (Spider Train. vs Spider
Train. ETS) illustrated in Table 6 indicate that
the perturbation applied to the database schema
will disturb the parsing process. The models can
not precisely infer the representation of the SQL

4The hardness rate is used to represent the complexity of a
SQL. In this work, we follow the calculation method proposed
in Spider(Yu et al., 2018)
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Model Spider Train. Spider Train. ETS Spider Dev. Spider Dev. ETS
RATSQL 98.19 60.81↓37.82 69.83 44.68↓25.15
LGESQL 98.94 62.73↓36.21 70.57 45.10↓25.47

T5 81.20 26.62↓54.58 59.09 49.23↓34.33
T5-Picard 81.28 26.75↓54.53 67.60 26.98↓40.62

Table 6: Models are trained on the Spider training set. The backbones of RATSQL and LGESQL are Bert-
base (Devlin et al., 2019). The size of T5 is also base.

query when confronting novel DS structures de-
spite the questions and the other parts of the DS
being the same as they appeared in the training
phrase. When it comes to the development set, as
well as the corresponding ETS, databases are com-
pletely novel because they do not overlap with the
databases in the training set. However, experiment
results (Spider Dev. vs Spider Dev. ETS) in Table 6
illustrate a dramatical performance decline. These
phenomena demonstrate that the practical schema
generalization capability is also modest, which is
similar to the structural robustness. Therefore, we
suspect that current text-to-SQL parsers can not
automatically infer the SQL pattern according to
the DS. We will discuss the true reason that caused
this issue in the next section.

5 Discussion about Schema
Generalizability

In this section, we discuss the schema generaliz-
ability of text-to-SQL by answering the following
questions:

• Q1: What is the actual function of database
schema input? (Section 5.1)

• Q2: What is the actual reason causing the
modest generalizability? (Section 5.2)

5.1 Function of Database Schema Input
To answer Q1, we first verify that the database
schema (DS) information is independent of the
process of constructing SQL patterns. Reviewing
the experiments in Section 4, models always make
mistakes when facing out-of-dataset (OOD) DS. To
estimate whether the OOD structure confuses the
parsers, we consider the evaluation data containing
OOD DS while keeping the SQL query unchanged.
Setup: Different from the evaluation data used in
Section 4, we generate the data with different DS
but the same SQL. For each piece of data, the DS
transformations are applied to untapped parts so
that the SQL will not be influenced. Similarly, we

Model Test Data EM. Acc.

RATSQL
Spider Dev. 69.83
Spider Dev. ETS 67.67↓2.16

LGESQL
Spider Dev. 70.57
Spider Dev. ETS 67.41↓3.16

T5
Spider Dev. 59.09
Spider Dev. ETS 49.23 ↓9.86

T5+Picard
Spider Dev. 67.60
Spider Dev. ETS 56.38 ↓11.22

Table 7: EM. accuracy on the evaluation data synthe-
sized from the Spider training set. The SQL in synthetic
data is consistent with the original.

also construct the equivalent test set (ETS) for the
Spider development set with this kind of synthetic
data. The training data in this experiment is the
training set of Spider.

Results of using a grammar-based decoder (line
1-4) shown in Table 7 demonstrate that the OOD
structure does not influence the inference process.
Reviewing the syntax role prediction experiments
discussed in Section 3.1, we suggest that current
text-to-SQL models construct SQL query via sen-
tence pattern of the user question rather than the
actual structure of DS. We suspect that the function
of DS input is providing the correct presentation of
the SQL non-keywords (table name, column name,
and value). The efficiency of using schema link-
ing provides a strong signal on the target database
item. Once the explicit relationships between these
SQL non-keywords and the presentations in ques-
tion are destroyed, models will make mistakes in
selecting the correct schema item. However, the
SQL structure is always predicted in the correct
ways(Gan et al., 2021a). Results of using a token-
based decoder (line 5-8) in Table 7 illustrate the
remarkable performance decline, which seems in
contrast to the previous conclusion. We analyze the
error cases and suggest that this issue is caused by
the unnatural schema item names, which we report
in Limitations.
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Question: How many people whose identity is singer ?

SQL: SELECT count(*) FROM people WHERE identity = ‘singer’

target

Table

condition condition

Column Cell Value

Question: How many people whose identity is singer ?

target condition condition

Table

SQL: SELECT count(*) FROM singer

Padding Padding

Figure 3: Different combinations of NL role and DS
role determine different SQL sketches.

5.2 (NL, DS) Pattern

To answer Q2, we first introduce the concept of
(NL, DS) pattern. The (NL, DS) pattern represents
the combination of a natural language (NL) role
and a database schema (DS) role. Then we will
illustrate how the (NL, DS) pattern influences the
generalizability.
NL Role: As the examples in Figure 3 shown, we
assume that some words (except stop words) in the
NL question describe the key information of the
query. In this section, we simply split these key-
words into two categories5, target and condition,
which we call them the NL role of these words. tar-
get represents the querying entity we focus on. For
instance, in the first example, we attempt to obtain
the number of “people", and “people" is a target
in this case. condition represents the constraint of
the target. For example, the specific “people" we
querying is restricted with the condition “whose
identity is singer". Therefore, the condition key-
words are “identity" and “people". The NL roles
are DS-independent, in other words, they only de-
pend on the semantics of the NL question.
DS Role: For a DS, some elements link the key-
words in the given question, such as the word
“singer" in the first case, and all of them play a
unique role in the given DS. We define the DS role
as table, column, cell value and a padding role to
link the non-schema-related keywords, for instance,
the word “people" in the second case.
(NL, DS) Pattern: For each of these elements, we
named the combination of an NL role and a DS role
as an (NL, DS) pattern, which determines the syn-
tax role in SQL. For example, the element “singer"
in the first case functions the NL role condition

5Notice that we only introduce a kind of simple splitting
way in this section. It is more complicated in the real world.

Figure 4: Training without extra data, evaluating on
different synthetic samples.

DS Role Train. C2A.
Target Condition Target Condition

Table 9.09% 42.62% 5.00% 15.18%
Column 81.82% 24.04% 83.33% 21.43%

Cell Value 0.00% 25.68% 11.67% 58.04%
Padding 9.09% 7.65% 0.00% 5.36%

Table 8: Distribution of (NL, DS) pattern in the training
set and C2A samples.

and the DS role cell value, in this case, it locates
in the WHERE clause. However, when the DS role
comes to table, as shown in the second case, the
element “singer" will locate in the FROM clause. For
the given NL question and DS, the structure of the
SQL query depends on the containing (NL, DS)
patterns.

We assume that the modest generalization ca-
pability is because of the over-fitting of (NL, DS)
patterns. Unseen (NL, DS) patterns in the eval-
uation stage lead to failed parsing. To verify it,
we first evaluate the performance on the samples
synthesized via different E-R transformations. The
experiment results are illustrated in Table 4. We
notice that models make mistakes on almost all the
samples generated using C2A E-R transformation.
Actually, C2A is a special transformation that must
create an (NL, DS) pattern, (target, cell value). In
general, this pattern represents a condition in the
WHERE clause. On the other hand, we randomly
sample 100 pieces of data from the training set and
the synthetic C2A data to evaluate whether (tar-
get, cell value) is not in the original dataset but
appears in the synthesis dataset. Table 8 shows the
statistic results of manually calculating the distri-
bution of (NL, SQL) patterns. The combination
(target, cell value) is not contained in the training
set but exists as unseen patterns when it comes to
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Test Data Training Data RATSQL LGESQL T5 T5+PICARD

Spider Dev.
Spider Train. 69.83 70.57 59.09 67.60

Spider Train. + Affected 70.12 ↑0.29 69.89 ↓0.68 58.22 ↓0.87 67.70 ↑0.81
Spider Train. + Unaffected 70.38 ↑0.55 70.05 ↓0.52 58.99 ↓0.16 66.73 ↓0.04

Spider Dev. ETS
Spider Train. 44.68 45.10 24.76 26.98

Spider Train. + Affected 67.21 ↑22.53 67.57 ↑22.47 51.64 ↑26.01 58.68 ↑31.70
Spider Train. + Unaffected 45.23 ↑0.55 45.17 ↑0.07 23.98 ↓0.78 26.40 ↓0.58

Table 9: Results of using extra synthetic samples in the training stage.

C2A samples. We additionally enumerate some
typical error cases in Appendix C. The examples
demonstrate that models tend to parse according to
experiences so that they make mistakes on novel
patterns. In this case, we suggest that the actual
reason causing the modest generalization capability
is the (NL, DS)-pattern-wise over-fitting.

6 Pattern-Specific Adversarial Training

In this section, we study whether adversarial train-
ing can improve structural generalization by evalu-
ating the efficiency of training with extra synthetic
data.
Setup: We conduct experiments to on both original
and synthetic evaluation data. As the adversarial
training, we train models with the original training
set of Spider and additional synthetic data with a
1:0.2 ratio. We consider two kinds of extra syn-
thetic training data in these experiments. The one
is the data containing novel database schema (DS)
and different SQL queries (compared with the orig-
inal data). They are similar to the evaluation data
we used to build the ETS in Section 4. We named
these data Affected. The other are the data contain-
ing novel DS while the same SQL queries, which
is similar to the data from the Dev. ETS in Section
5.1. We named them Unaffected. The synthetic
evaluation data we used in this section is Affected.

We report our results in Table 9. Experiment
results in the upper block (line 1-3) illustrate that
neither affected nor unaffected extra training data
can improve the performance on the original de-
velopment set. The reason is that extra training
data do not provide the (NL, DS) patterns which
are rare in the original training set but appear in
the original development set. Actually, the prob-
lem of over-templated demonstrates that it is hard
to find the aforementioned patterns. Unlikely, the
transformations applied in this work either do not
guarantee these patterns are created.

Experiment results in the lower block (line 4-6)
of Table 9 show that the affected extra training data

is helpful to improve the performance on the syn-
thetic evaluation data. However, the usage of unaf-
fected data can not. The reason is that the former
provides the (NL, DS) patterns which are rare in the
original training set while are contained in the ETS.
On the other hand, the latter do not provide any of
these patterns because the perturbations are applied
on untapped parts of DS in unaffected data. There-
fore, we suggest that specific adversarial training
can enhance the model despite it can not be verified
on current datasets. This experiment amplifies the
improvement of adversarial training by increasing
the overlap of (NL, DS) patterns between the ex-
tra training data and the synthetic evaluation data.
Therefore, we suggest that adversarial training is
a possible way to improve structure generalization
capability, and it needs more investigation in future
works.

6.1 Not Only in Cross-Domain

Actually, the problem of (NL, DS)-pattern-wise
overfitting is not the specific problem that only ex-
ists in cross-domain text-to-SQL. Modest structural
generalization is just one of the phenomena under
a cross-domain setup. Single-domain text-to-SQL
also has the same problem.

From the view of (NL, DS) patterns, the defi-
ciency of patterns in the training stage leads to the
appearance of unseen patterns in the test stage and
further causes performance decline. However, leav-
ing out patterns is inevitable during the data collec-
tion process. Annotators can neither ensure to ask
questions in all possible sentence patterns nor guar-
antee that all combinations of schema items are
considered. For instance, as the example illustrated
in Figure 1, confronting the third DS, annotators
may not come up with the question about “singer",
or they may ask in the way of How many people
whose identity is a singer?. In this case, automati-
cally addressing unseen patterns is also essential in
single-domain text-to-SQL.
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7 Conclusion

In this work, we first report that current text-to-SQL
datasets are too templated to investigate general-
ization capability. To this end, we constructed a
generation framework to synthesize text-to-SQL
data for evaluation in this work. Experiment results
illustrate that the model generalization is poor. Fur-
thermore, the analysis illustrates that the problem
is caused by the overfitting of (NL, DS) patterns.
Finally, we demonstrate that when adding extra
training data to bring more unseen patterns in the
evaluation stage, the performance will improve.
Adversarial training is a possible way to enhance
the text-to-SQL parser.
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Limitations

The main limitation is the lexical noise in the auto-
matic synthesizing process. We rename the related
tables and columns by a series of rules. Therefore,
naturalness is not always sufficient. For example,
we create and rename a table by combining two ta-
ble names in some cases. It will lead to a long table
name with too much redundant noise. Therefore,
we only considered the one-step transformations in
this work to inhibit the influence of lexical noise
accumulation.
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A Generation Framework

The overview of the generation framework is
shown in Figure 5. For a given sample, we synthe-
size a new sample via altering the DS while keeping
the question constant. In order to obtain a reason-
able DS, we construct the entity-relationship graph
of the given DS and apply graph-based transforma-
tions, which we introduce in Section A.1 and Sec-
tion A.2 respectively. Moreover, we synchronously
update the SQL by modifying the abstract syntax
tree, and we show more details in Section A.3.

A.1 Entity-Relationship Graph

A relational database organizes data in predefined
relationships, which are represented as the struc-
tural relationships among tables and columns. To
clearly describe reasonable relationships, develop-
ers always utilize Entity-Relationship Diagram (E-
R Diagram) (Ling, 1985; Li and Chen, 2009) to
define the relationships among the raw data, which
is helpful to design the database structure. Inspired
by ER Diagram, we attempt to modify the DS fol-
lowing the entity relationships so that the rationality
of the altered DS can be ensured. To this end, we
introduce the definition of Entity-Relationship (E-
R) Graph in this paper, which evolves from E-R
Diagram while leaving out the attributes vertexes

to emphasize the topology feature 6. The vertex in
E-R Graph represents an entity, and the edge repre-
sents the relationship between the entities that its
terminal vertexes correspond. Both the vertex and
the edge function as a table in DS. For example,
as shown in Figure 5, each of the table people, the
table author, and the table novel corresponds to
a vertex in E-R Graph, and the table write corre-
sponds to an edge.

Thus, to construct the E-R Graph, we manually
annotate a binary tag for each table in DS to dis-
tinguish between entity and relationship. We label
relationship following two principles and label the
others as entity:

Bridge Structure: The given table should con-
tain exactly two foreign keys.

Semantic Convention: The table name should
be the combination of two entities such as the rela-
tionship Customer_Addresses combining Customer
and Address. Apart from that, the phrase obeys hu-
man language conventions is also considered. For
instance, the relationship visit linking visitor and
museum.

A.2 E-R Transformation
E-R transformation is the graph transformation in
the E-R graph. There are ten kinds of E-R trans-
formation, containing five operations applied on
vertexes or edges. We assume the databases that
store the same data in the different schema can
transform between each other via a sequence of
E-R transformations. We illustrate all kinds of E-R
transformations and the corresponding transforma-
tions in DS in Appendix. However, some trans-
formations are insecure. For example, the usage
of delete edge transformation will lead to informa-
tion loss. Besides, some transformations rely on
strict annotation criteria and costly manual labeling.
For instance, whether a table can be split into two
need rigorous judgment according to the semantic
environment. In this work, we use three E-R trans-
formations with no need for additional annotations,
and they totally correspond to four different trans-
formations in DS. Figure 2 illustrates the examples
of each transformation, and we show more details
below.

Entity to Attribute (E2A) corresponds to a kind
of merge vertexes E-R transformation. For a pair
of vertexes in the E-R graph, we split them as a

6The attributes node in E-R Diagram refers to a column in
the database. To emphasize the topology feature, we replace
Diagram with Graph.
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FROM
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write

novel

FROM

author novel

write
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novel

aid
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name

nid

id

name

people
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id

author
novel

age

name

aid

name

people

pid

id

id

E-R Transformation

people

novel

author

people

novel

author

AST Updating

Sample( X, D, Y ):
Question( X ): Who is the author of Harry Potter ?
Database( D )
SQL( Y ): SELECT people.name FROM people 
JOIN author ON people.id = author.pid JOIN write 
ON author.id = write.aid JOIN novel ON write.nid = 
novel.id WHERE novel.name = ‘Harry Potter’

Database(D)

Database(D’)

Sample( X, D’, Y’ )
Question(X): Who is the author of Harry Potter ?
Database( D’ )
SQL( Y’ ): SELECT people.name FROM people 
JOIN author ON people.id = author.pid JOIN novel 
ON author.id = novel.aid WHERE novel.name = 
‘Harry Potter’

E-R Graph of D AST of Y

AST of Y’E-R Graph of D

Figure 5: Overview of the generation framework we proposed. The upper part illustrates the original sample, and
the lower part illustrates the synthetic sample. The red rectangles and red lines denote the modified parts. For the
E-R graph, the dotted lines denote unnamed relationships, and solid lines denote named relationships.

source entity and a target entity. The target entity
corresponded table is the only one that contains
the foreign keys of the source entity corresponded
table in the DS. Both of the vertexes can be treated
as the source entity as long as the combination
is suitable. As the example shown in Figure 2,
for the attributes in the source entity, we convert
them into the new attributes in the target entity.
To avoid semantic loss, we rename the attributes
following rules. Besides, we utilize a series of rules
to recognize a special column as the agent of the
entity, such as the column name, and it will be used
to replace the foreign key.

Concept to Attribute (C2A) corresponds to a
kind of modify vertex E-R transformation. Different
from the column-wise modification, we focus on
altering the role of the table. We attempt to convert
the concept7 of an entity, which represents via table
name in DS, to its attribute. Firstly, we detect a
high-level category of the entity using a pre-trained
NER model (Qi et al., 2020). In the example shown
in Figure 2, people is the high-level category of
singer. Then, we create an additional attribute
to store the concept by rules. In this case, we use
the new column identity to record the concept
singer.

Named to Unnamed (N2U) corresponds to a
kind of modify edge E-R transformation. We name

7It refers to the definition of concept node in knowledge
graph.

the relationship represented by a table as Named,
and that by foreign keys as Unnamed. For instance,
in the original DS illustrated in Figure 2, the table
sing is a named relationship and the foreign key
aid in the table song represents an unnamed re-
lationship. We change the type of relationship by
creating a foreign key of one table in the other table,
as the example shows.

Unnamed to Named (U2N) also corresponds to
a kind of modify edge E-R transformation, which is
the reversed transformation of Named to Unnamed.
We create a relationship table and name it with
the combination of two target table names to store
the relationship. Then, we build the connection by
transferring the foreign key in the table and creating
another foreign key in it, as the example in Figure
2 shows.

A.3 AST Updating
To update the SQL precisely, we construct the AST
of the given SQL following grammar rules and al-
ter the SQL by modifying the AST. For each E-R
transformation, we detect related subtrees in the
AST and apply the corresponding rule to update the
subtrees. For instance, we add an additional con-
dition subtree in the corresponding WHERE subtrees
while applying concept to attribute transformation.
Finally, we parse the altered SQL with the modified
AST.

In this work, we consider two type of synthetic
data, affected and unaffected. Affected samples
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contain different SQL compared with the original
data, and the unaffected contain the same. We
distinguish these two types according to whether
the SQL involves a DS element that is influenced by
the transformation. And the AST updating module
is only used to synthesize affected data.

B All kinds of E-R Transformations

Table 10 illustrates all kind of E-R transformations
and the corresponding transformation in DS.

Operation Transformation in DS

Vertexes

modify inner modification of a table
merge merge two tables
split split an table in two
add add a table

delete delete a table

Edges

modify conversion between table and foreign keys
merge merge two tables/foreign keys
split split a table in foreign keys
add add a table or a foreign key

delete delete a table or a foreign key

Table 10: All kinds of transformation and the necessity
of labels. Considered the cost of manual annotation, we
only choose three of them in this work.

C Errors Cases in Synthetic Evaluation
Data

Examples in Figure 6, Figure 7, and Figure 8 illus-
trate that models tend to predict following familiar
sketch.

D Syntax Roles

Table 11 illustrates all the syntax role labels in the
syntax role prediction experiment.

E Hardness-Oriented Sampling
Algorithm

Algorithm 1 Hardness-Oriented Sampling Algo-
rithm
Require: original examples x1, x2, ..., xn
Ensure: synthesis samples y1, y2, ..., yn

1: Dx ← get_hardness_distribution(x1, x2, ..., xn)
2: initialize the hardness distribution of synthesis

samples: Dy ← ϕ
3: R← ϕ
4: for i = 1 to n do
5: Xi ← generate_all_variants(xi)
6: if |Xi| = 0 then
7: yi ← xi
8: update(Dy, yi)
9: else

10: Ci ← find_same_hardness(Xi, xi)
11: if |Ci| > 0 then
12: yi ← random_sampling(Xi)
13: update(Dy, yi)
14: else
15: R.append(Xi)
16: end if
17: end if
18: end for
19: while |R| > 0 do
20: Find the hardness category with the largest

difference between the current distribu-
tion and the original distribution: h ←
find_hard_cat(Dx, Dy)

21: Sample an Xi from R which contain at least
one variant with hardness h

22: if Can not sample an Xi then
23: break the loop
24: end if
25: end while
26: return y1, y2, ..., yn

1356



Figure 6: An example of failure prediction.

Figure 7: An example of failure prediction.

Figure 8: Another example of failure prediction.
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Category Syntax Role Example

SQL Keyword

WHERE Clause SELECT count(*) FROM head WHERE age > 56
GROUP BY

Clause
SELECT visitor.ID FROM visiter GROUP BY visitor.ID HAVING

count(*) > 1.0
ORDER BY

Clause
SELECT Theme FROM farm_competition ORDER BY YEAR ASC

LIMIT Clause
SELECT Official_Name , Status FROM city ORDER BY

Population DESC LIMIT 1

Aggregation
Select

Aggregation
SELECT count(DISTINCT bike_id) FROM trip

Condition
Aggregation

SELECT city , COUNT(*) FROM station GROUP BY city
HAVING COUNT(*) >= 15

Nested SQL

UNION
SELECT course_id FROM SECTION WHERE semester = ’Fall’ AND
YEAR = 2009 UNION SELECT course_id FROM SECTION WHERE

semester = ’Spring’ AND YEAR = 2010

INTERSECT
SELECT country FROM people WHERE age < 25 INTERSECT SELECT

country FROM people WHERE age > 30

EXCEPT
SELECT donator_name FROM endowment EXCEPT SELECT
donator_name FROM endowment WHERE amount < 9

Nested SQL in
Condition

SELECT count(*) FROM Dogs WHERE Dogs.dog_id
NOT IN (SELECT Treatments.dog_id FROM Treatment)

Nested SQL in
FROM Clause

SELECT count(*) FROM (SELECT * FROM endowment WHERE amount
> 8.5 GROUP BY school_id HAVING count(*) > 1)

Table 11: All syntax roles.
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�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix A

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
3, Appendix A

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix A

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Appendix A

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
9

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Appendix A

1360


