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Abstract

How well do language models deal with quan-
tification? In this study, we focus on few-type
quantifiers, as in few children like toys, which
might pose a particular challenge for language
models because the sentence components with-
out the quantifier are likely to co-occur, and
few-type quantifiers are rare. We present 960
English sentence stimuli from two human neu-
rolinguistic experiments to 22 autoregressive
transformer models of differing sizes. Not only
do all the models perform poorly on few-type
quantifiers, but overall the larger the model, the
worse its performance. This inverse scaling is
consistent with previous work suggesting that
larger models increasingly reflect online rather
than offline human processing, and we argue
that the decreasing performance of larger mod-
els may challenge uses of language models as
the basis for natural language systems.

1 Introduction

Quantifiers can dramatically alter the meaning of
an utterance. Consider the sentences in (1).

(1) (a) Most sharks are harmless.
(b) Most sharks are dangerous.
(c) Few sharks are harmless.
(d) Few sharks are dangerous.

Despite the fact that (a) and (c) have the same
content words in the same syntactic arrangement,
the statements have starkly different meanings. The
same is true of (b) and (d). Being able to success-
fully comprehend these differences is useful, and
in an example such as this one, vitally important1.

Yet current work suggests that language mod-
els deal poorly with quantifiers—they struggle to
predict which quantifier is used in a given context
(Pezzelle et al., 2018; Talmor et al., 2020), and also

1Note that most sharks are in fact harmless to hu-
mans; see, e.g., https://www.floridamuseum.ufl.edu/
discover-fish/sharks/shark-attack-faq/.

perform poorly at generating appropriate continu-
ations following logical quantifiers (Kalouli et al.,
2022). This is especially concerning given the re-
cent trend of using large language models (some-
times referred to as ‘foundation models’; Bom-
masani et al., 2021) as general systems that can per-
form multiple tasks, including question answering,
without specific training (Brown et al., 2020; Raffel
et al., 2020; Lin et al., 2021; Srivastava et al., 2022;
Hoffmann et al., 2022; Rae et al., 2022; Zhang
et al., 2022; Chowdhery et al., 2022). It is thus cru-
cial that such systems be able to distinguish among
sentences like those in (1) in human-like ways both
during training and when generating responses.

The aim of the present study is to evaluate how
well language models take into account the mean-
ing of a quantifier when generating the text that
follows it, and to investigate whether this scales
with model size. We are particularly interested in
the question of whether language models exhibit
inverse scaling—that is, whether as model size
increases, performance decreases rather than in-
creases (Perez et al., 2022; McKenzie et al., 2022a).
Inverse scaling is an issue of serious concern for de-
veloping and training new language models, since
inverse scaling could indicate ‘outer misalignment’
(Perez et al., 2022)—that the training approach is
leading to models that produce undesirable outputs,
which may get worse as performance at training ob-
jectives increases. Inverse scaling is also a concern
for models’ ultimate use. As models increase in
size and perform better at a wider range of bench-
marks (for recent examples, see, e.g., Srivastava
et al., 2022; Chowdhery et al., 2022), they may be
increasingly assumed to be trustworthy and general-
purpose, and thus able to perform well tasks on
which they have not been tested (Raji et al., 2021).
This could lead to a range of possible harms, from
misidentifying whether something is dangerous or
not (as in the opening example), to amplifying bi-
ases (Bender et al., 2021).
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To test how well language models deal with
quantifiers, we follow the approach of Ettinger
(2020) in using sentences from a study on human
language comprehension to inform our evaluation.
Ettinger (2020) found that following a negation,
the predictions of BERTBASE and BERTLARGE in
simple sentences expressing a proposition with
or without negation (from Fischler et al., 1984)
do not appear sensitive to negation—for example,
BERTLARGE predicts the final word of a robin is a
bird to be more likely than a robin is a tree, but
also predicts that a robin is not a bird is more likely
than a robin is not a tree. In this way, the mod-
els’ predictions more closely match those made
by humans ‘online’—that is, incrementally during
the process of language comprehension—than our
fully-formed ‘offline’ judgements: in their original
study, Fischler et al. (1984) found that the word
bird elicited an N400 response of smaller ampli-
tude than tree in both contexts, indicating that it
was more strongly predicted.

Similar effects have been reported (Kassner and
Schütze, 2020; Kalouli et al., 2022) for other trans-
formers such as Transformer-XL (Dai et al., 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan
et al., 2020), as well as ELMo (Peters et al., 2018).
Worse, recent work suggests that as language mod-
els increase in size, their ability to deal with nega-
tion may degrade: an inverse scaling relationship
has been reported for performance at a wide range
of tasks when prompts include negation (McKen-
zie et al., 2022b; Jang et al., 2023), though it is
possible that this may reverse at extremely large
scales (Wei et al., 2022).

Negation may be particularly challenging for
statistical language models because its presence
radically alters the meaning of a sentence, but
negation occurs in only about 10% of sentences
(Jiménez-Zafra et al., 2020). Quantifiers similarly
impose radical modulations to meaning while also
being relatively infrequent (see Appendix B). In
the present study, we focus on quantifiers indicat-
ing typicality such as most and few. To the best of
our knowledge, only one study has evaluated model
predictions following any quantifiers (Kalouli et al.,
2022), and it focused on words corresponding to
logical quantifiers such as all, every, and some.
The few studies involving the quantifiers we ad-
dress either focus on predicting the quantifier it-
self (Pezzelle et al., 2018; Talmor et al., 2020), or
use RNNs to investigate modeling significant ef-

fects on the N400 without any form of evaluation
(Michaelov and Bergen, 2020). This study, there-
fore, represents the first attempt to explicitly evalu-
ate the predictions of language models following
most and few-type quantifiers.

In the present study, we carry out two experi-
ments. In the first, following Ettinger (2020), we
use the stimuli from a previously published N400
study (Urbach and Kutas, 2010). In it, Urbach
and Kutas (2010) found that while most and few-
type quantifiers do impact N400 amplitude, it is
not enough to reverse predictions—few farmers
grow crops elicits a smaller N400 response than
few farmers grow worms, indicating that crops was
more strongly predicted than worms, even though
experimental participants judged it to be less plau-
sible off-line. We test whether language models
show the same pattern of insensitivity towards the
quantifiers that humans do in online measures. In
this way, we test how closely the predictions of
language models correlate with those underlying
the human N400 response.

In our second experiment, we extend our study
further. Experiment 1 aims to replicate the original
N400 results of Urbach and Kutas (2010); how-
ever, one thing that it does not account for is that
while a given complete sentence (e.g., few farmers
grow crops.) can be highly unlikely and implau-
sible, sentences beginning with the same words
may not be (for example, in the plausible sentence
few farmers grow crops in the winter). Experiment
1 does not distinguish between these possibilities,
and while it is important to test the sensitivity of
language models to few-type quantifiers, if they
fail to show a difference for complete sentences
including the final period (e.g., few farmers grow
crops.), this is more concerning. Thus, in Exper-
iment 2, we run the same stimuli as Experiment
1, but including a period following the final word
(e.g., crops./worms.).

2 Experiment 1: Replication of Urbach
and Kutas (2010)

2.1 Materials
In this experiment, we use all the stimuli from
two experiments carried out by Urbach and Kutas
(2010). These are made up of 120 sentence frames
with 8 different sentence types falling into 4 experi-
mental conditions, for a total of 960 sentences. The
4 conditions had a 2x2 design—each stimulus was
either typical (T) or atypical (A), and had either
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Figure 1: Accuracy and sensitivity of all models.

a most-type or few-type quantifier. An example
of the 8 sentence types comprising one sentence
frame is shown in (2).

(2) (a) Most squirrels gather nuts... (T, most)
(b) Most squirrels gather nails... (A, most)
(c) Few squirrels gather nuts... (T, few)
(d) Few squirrels gather nails... (A, few)
(e) Squirrels often gather nuts... (T, most)
(f) Squirrels often gather nails... (A, most)
(g) Squirrels rarely gather nuts... (T, few)
(h) Squirrels rarely gather nails... (A, few)

The quantifiers used in sentences (a)-(d) differed
by sentence frame; see Appendix B for a full list.

2.2 Language Models
To cover a range of language models with different
training data and numbers of parameters, we run
our analyses on the GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), GPT-Neo (Black et al.,
2021; including GPT-J, Wang and Komatsuzaki,
2021), and OPT (Zhang et al., 2022) language mod-
els. We also include an analysis of the first series
of InstructGPT models (text-davinci-001 etc.),
which were finetuned on human-written and highly-
rated model-generated responses (OpenAI, 2023).

2.3 Evaluation
For each stimulus sentence, we calculate the sur-
prisal of the critical word, that is, the word for
which the N400 response was measured in the orig-
inal study. Because humans only encounter the
context preceding the critical word when process-
ing the word, and because the language models we
analyze are all autoregressive, we only consider the
surprisal of the critical word given its preceding
context. To do this we truncated the sentence be-
fore the critical word, and then used the relevant

language model to calculate the probability p of the
target word given the preceding context, which was
then converted to surprisal S following Equation 1.

S = − log p(wi|w1...wi−1) (1)

In previous work of this type (e.g., Ettinger,
2020), only words that were single tokens in the
models’ vocabularies were used. In this study,
all models are autoregressive, so for multi-token
words, consecutive sub-word tokens can be pre-
dicted, the product of which is a well-defined prob-
ability for the whole word. The surprisal of such
words, then, is the sum of the surprisals of the sub-
word tokens. Calculating surprisal this way allows
us to compare the predictions of all the models for
all the stimuli in the original experiment.

In order to evaluate how well each model takes
into account the quantifier in its predictions, we
compared which of the two possible critical words
(typical or atypical) had a lower surprisal, i.e., was
more strongly predicted by the model. To align
with human plausibility judgements, following a
most-type quantifier, the typical continuation was
judged to be correct, and following a few-type quan-
tifier, the atypical continuation was judged to be
correct. Accuracy was calculated as the fraction of
the stimulus pairs for which the model predicted
the appropriate critical word—that is, predicted the
correct continuation more strongly than the incor-
rect one. For example, the set of stimuli presented
in (2) is made up of 4 pairs of stimuli, and for a
model to achieve 100% accuracy (4/4), it would
need to predict (a) over (b), (d) over (c), (e) over (f),
and (h) over (g). This design intrinsically controls
for any differences in unconditioned probability
among the final words themselves.

Following Ettinger (2020), we also analyzed
model sensitivity to the quantifiers. In the present
study, this corresponds to the question of whether,
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for a given sentence frame, the model makes a
different prediction following a few-type quanti-
fier than it does following a most-type quantifier.
We defined sensitivity as the proportion of stimuli
for which the model correctly predicts the critical
word following both the most-type and the few-type
quantifier. Thus, the stimuli in each sentence frame
provide 2 data points for sensitivity: in (2), sensi-
tivity is calculated for (a)-(d) and for (e)-(h). For
the (a)-(d) stimuli, a model would be considered
sensitive to the quantifier if it correctly predicted
(a) over (b) and (d) over (c). Code and data are
available at https://osf.io/vjyw9.

2.4 Results
Each model’s accuracy at predicting the critical
words following most- and few-type quantifiers is
shown in Figure 1. All model series show the same
general tendencies in accuracy: (1) they perform
quite poorly for few-type quantifiers but relatively
well for most-type quantifiers; and (2) as model
size increases, word prediction following most-type
quantifiers improves, but it degrades following few-
type quantifiers. Figure 1 does show small excep-
tions to this pattern. From GPT-2 762M to 1542M
and from InstructGPT 13B to 175B, while most-
performance increases, few-performance does not
decrease. Furthermore, from OPT 125M to 350M,
and from OPT 2.7B to 6.7B, there is actually a
slight improvement. Nonetheless, these differences
are small compared to the overall decreases in per-
formance, and the general trends are still clear—
for example, no model performs better on few-type
quantifiers than a model two or more sizes smaller.

With sensitivity, as shown in Figure 1, some
models improve as they increase in size, and some
get worse; however, even the greatest distance be-
tween the sensitivity of two models in the same
series (InstructGPT 2.7B and 13B) is only 3.4%.
Thus, other than the general fact that sensitivity is
low across all models, there does not appear to be
any clear pattern, suggesting that sensitivity does
not drive the effects seen in accuracy. All accuracy
and sensitivity scores can be found in Appendix A.

2.5 Discussion
These results show that contemporary autoregres-
sive transformer models perform poorly on few-
type quantifiers, and that as these models increase
in size, they tend to improve at predicting words
following most-type quantifiers but get worse at
predicting words following few-type quantifiers. In

fact, we see that models that better predicted the
more typical word after a most-type quantifier were
also worse at predicting the less typical word fol-
lowing a least-type quantifier. The fact that models
were evaluated on which of the two options they
predicted to be more likely, combined with gener-
ally poor and largely invariant sensitivity (peaking
at 5%), suggests that the larger models generally
made predictions increasingly in accordance with
typicality, overwhelming any sensitivity to quanti-
fier type. This aligns with previous work on nega-
tion and logical quantifiers in language models (Et-
tinger, 2020; Kassner and Schütze, 2020; Kalouli
et al., 2022), as well as the N400 results of the
original study by Urbach and Kutas (2010).

3 Experiment 2: Sentence-final nouns

3.1 Method
The models and evaluation approach were identical
to Experiment 1. The materials were identical to
Experiment 1 with the single difference that all
nouns were followed by a period, and the surprisal
of this period was included when calculating the
total surprisal of the critical word (e.g., nuts. or
nails. for the example presented in (2)). Thus,
surprisal reflected both the surprisal of the critical
word in context and the surprisal of the word being
followed by a period, i.e., being the last word in
the sentence. For a discussion of modeling the
probability of sentence-final words in this way, see
Szewczyk and Federmeier (2022).

3.2 Results
Results are shown in Figure 2. As in Experiment
1, larger models perform worse overall. How-
ever, there is a small improvement in the very
largest GPT-3 and InstructGPT models relative to
the second-largest models of the same type, both
in few-type accuracy and sensitivity. Performance
also increases on these metrics between OPT 2.7B
and OPT 6.7B; however, this decreases with OPT
13B. All accuracy and sensitivity scores can be
found in Appendix A.

3.3 Discusion
Overall, the results are similar to those of Experi-
ment 1: Larger models of the same type perform
worse than smaller models. Whether the small im-
provement of the largest GPT-3 and InstructGPT
models relative to the second-largest models is a
fluctuation like that seen for OPT or the beginnings
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Figure 2: Accuracy and sensitivity of all models on stimuli with added periods (e.g., Few squirrels gather nuts.).

of a U-shaped curve (see Wei et al., 2022) is a
question for further research.

4 General Discussion

In this study, we investigated whether language
models show the same insensitivity towards few-
type and most-type quantifiers observed in the pre-
dictions made by humans during language com-
prehension, as indexed by the N400 response. We
find that when tested on the same stimuli, they do,
predicting the ostensibly implausible few squirrels
gather nuts to be more likely than few squirrels
gather nails. Moreover, we find that as language
models increase in size, they tend to show this
effect to a greater extent, an example of inverse
scaling. Based on our analysis of sensitivity and
accuracy with most-type quantifiers, we hypothe-
size that these results are due to a low degree of
sensitivity to quantifiers and an increase in sensitiv-
ity to typicality. In other words, language models
appear to be increasingly sensitive to the fact that
squirrels gather nuts is more plausible than squir-
rels gather nails, but not to the effect on meaning
that is caused by a preceding most or few.

It is often assumed that as models increase in size
and are trained on more data, their performance on
natural language tasks generally improves—indeed,
evidence supports this (Brown et al., 2020; Raffel
et al., 2020; Lin et al., 2021; Srivastava et al., 2022;
Hoffmann et al., 2022; Rae et al., 2022; Zhang
et al., 2022; Chowdhery et al., 2022). However, the
predictions of larger models and those trained on
more data also increasingly correlate with human
incremental online predictions, in particular those
indexed by N400 amplitude (Frank et al., 2015;
Aurnhammer and Frank, 2019a,b; Michaelov and
Bergen, 2020; Merkx and Frank, 2021; Michaelov
et al., 2021, 2022). The two are often aligned—it is
easier for humans to process well-formed sentences

with plausible semantics (Frisch and Schlesewsky,
2005; Nieuwland et al., 2020). But in cases such
as the present study, the two are not aligned, and
we see instead that the predictions of larger mod-
els correlate better with human online predictions,
even when these are contrary to offline judgements.
Thus, the increased performance we see at tasks
corresponding to offline human judgements—and
note that virtually all manually-annotated tasks are
based on offline human judgements—may in fact
be a by-product of the models’ predictions resem-
bling the online predictions.

Fortunately, the literature boasts a wealth of psy-
cholinguistic studies where metrics of online pre-
diction such as the N400 appear to conflict with
offline judgements. Future work could use these to
identify phenomena where language models may
struggle to make predictions in line with human
judgements. Such cases are important to detect
as use of LMs becomes more widespread. But by
the same token, the present study shows that as
language models increase in size, even when aug-
mented by finetuning on desirable responses, they
can make predictions that align less and less with
explicit human judgements.

This may be a clear indication of an inherent
‘outer misalignment’ present in language models:
while humans might like language models to gen-
erate plausible sentences, by their nature they can
only generate the most statistically probable ones.
Just as there is no guarantee of accuracy or coher-
ence (Bender et al., 2021), there is no guarantee
of plausibility. While it may be possible to tai-
lor training to avoid specific known issues, this
misalignment between probability and plausibility
may pose a fundamental challenge with current
approaches that aim to use language models as
general-purpose natural language systems.
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Limitations

There are two main limitations to our study. The
first is that the stimuli used were limited to those
provided by Urbach and Kutas’s (2010) study. This
is because, as stated, we wanted to be able to com-
pare the patterns in the language models’ predic-
tions to the patterns in the human N400 response.
Thus, we do not look at logical quantifiers like
Kalouli et al. (2022), or any others that have previ-
ously been studied (in, e.g., Pezzelle et al., 2018;
Talmor et al., 2020).

The other (and perhaps more important) limita-
tion is in the models we were able to use. Crucially,
we were not able to access models larger than GPT-
3 175B such as PaLM 540B (Chowdhery et al.,
2022). This is important because recent work has
shown that some inverse scaling patterns become
U-shaped (i.e., as language model size increases,
performance degrades and then improves again)
with such larger models (Wei et al., 2022).

Ethics Statement

Our work complies with the ACL Ethics Policy.
Beyond this, we are not aware of any way in which
the results of this study may be harmful—in fact,
if anything, identifying the limitations of large lan-
guage models is something that is likely to reduce
possible harms by demonstrating cases where their
use is not suitable.

From an environmental perspective, we did not
train any models; we only used pretrained models
for analysis, limiting energy consumption. With the
exception of the GPT-3 and InstructGPT models
and OPT 13B, all analyses were run on an NVIDIA
RTX A6000 GPU, taking a total of 43 minutes.
OPT 13B was too large to run on this GPU, and
thus was run on an Intel Dual Xeon E7-4870 CPU
for a total of 22 hours and 39 minutes. Finally, the
GPT-3 and the InstructGPT models were run using
the OpenAI API, and thus we do not have access
to information about the GPUs used.
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coń, Jana Thompson, Jared Kaplan, Jarema Radom,
Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Ja-
son Yosinski, Jekaterina Novikova, Jelle Bosscher,
Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse En-

gel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jil-
lian Tang, Joan Waweru, John Burden, John Miller,
John U. Balis, Jonathan Berant, Jörg Frohberg, Jos
Rozen, Jose Hernandez-Orallo, Joseph Boudeman,
Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl
Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva,
Katja Markert, Kaustubh D. Dhole, Kevin Gim-
pel, Kevin Omondi, Kory Mathewson, Kristen Chi-
afullo, Ksenia Shkaruta, Kumar Shridhar, Kyle Mc-
Donell, Kyle Richardson, Laria Reynolds, Leo Gao,
Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-
Ochando, Louis-Philippe Morency, Luca Moschella,
Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng
He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem
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A Scores

The performance of each model is presented in
Table 1.

Critical word Critical word + period
Accuracy Sens. Accuracy Sens.

Model most few most few
GPT-2 117M (gpt2) 0.850 0.142 0.013 0.846 0.158 0.021
GPT-2 345M (gpt2-medium) 0.908 0.108 0.025 0.887 0.121 0.025
GPT-2 762M (gpt2-large) 0.921 0.088 0.021 0.917 0.108 0.029
GPT-2 1542M (gpt2-xl) 0.942 0.088 0.038 0.917 0.092 0.033
GPT-3 2.7B (ada) 0.917 0.092 0.017 0.917 0.1 0.021
GPT-3 6.7B (babbage) 0.942 0.083 0.029 0.917 0.104 0.038
GPT-3 13B (curie) 0.954 0.042 0.008 0.954 0.058 0.021
GPT-3 175B (davinci) 0.975 0.038 0.025 0.958 0.067 0.038
InstructGPT 2.7B (text-ada-001) 0.829 0.179 0.050 0.775 0.242 0.075
InstructGPT 6.7B (text-babbage-001) 0.950 0.088 0.042 0.908 0.121 0.042
InstructGPT 13B (text-curie-001) 0.967 0.042 0.017 0.958 0.083 0.054
InstructGPT 175B (text-davinci-001) 0.975 0.042 0.021 0.963 0.112 0.075
GPT-Neo 125M (EleutherAI/gpt-neo-125m) 0.829 0.179 0.029 0.821 0.183 0.033
GPT-Neo 1.3B (EleutherAI/gpt-neo-1.3B) 0.933 0.079 0.033 0.921 0.088 0.029
GPT-Neo 2.7B (EleutherAI/gpt-neo-2.7B) 0.950 0.067 0.025 0.942 0.088 0.042
GPT-J 6B (EleutherAI/gpt-j-6b) 0.963 0.062 0.029 0.954 0.079 0.038
OPT 125M (facebook/opt-125m) 0.867 0.129 0.021 0.854 0.133 0.013
OPT 350M (facebook/opt-350m) 0.883 0.133 0.025 0.875 0.142 0.033
OPT 1.3B (facebook/opt-1.3b) 0.925 0.075 0.021 0.921 0.092 0.025
OPT 2.7B (facebook/opt-2.7b) 0.950 0.046 0.004 0.933 0.058 0.013
OPT 6.7B (facebook/opt-6.7b) 0.963 0.050 0.017 0.946 0.075 0.029
OPT 13B (facebook/opt-13b) 0.967 0.033 0 0.954 0.058 0.017

Table 1: Accuracy and sensitivity scores for all models.

B Quantifiers

Table 2 lists all quantifiers used and the proportion
of sentences in WikiText-103 that contain them.

Most-type Few-type
Quantifier Frequency (sentences) Quantifier Frequency (sentences)
most 0.025177 few 0.005870
almost all 0.000305 almost no 0.000098
practically all 0.000009 practically no 0.000008
a large number of 0.000300 a small number of 0.000131
nearly all 0.000170 rather few 0.000001
lots of 0.000153 hardly any 0.000017
a lot of 0.000745 a very few 0.000010
many 0.015874 few 0.005870
often 0.005766 rarely 0.000610

Total 0.046809 0.006717

Table 2: In each sentence frame, most and few-type quantifiers were matched based on their meanings as length
in number of words (Urbach and Kutas, 2010). Matched quantifiers are shown beside each other. As can be seen,
few is matched to both most and many. The frequency of each quantifier is given in terms of the proportion of
sentences in WikiText-103 (Merity et al., 2017) that contain it. The total frequencies are the number of sentences in
WikiText-103 that contain at least one of either the few-type or most-type quantifiers; not the sum of the individual
quantifier frequencies.
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