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Abstract

Sparsely gated Mixture of Experts (MoE) mod-
els have been shown to be a compute-efficient
method to scale model capacity for multilin-
gual machine translation. However, for low-
resource tasks, MoE models severely over-fit.
We introduce in this work effective regular-
ization strategies, namely (1) dropout tech-
niques for MoE layers in Expert Output Mask-
ing (EOM) and Final Output Masking (FOM),
(2) Conditional MoE Routing (CMR) that
learns what tokens require the extra capacity
of MoE layers and (3) Curriculum Learning
methods that introduce low-resource pairs at
later stages of training. All these methods pre-
vent over-fitting and improve the performance
of MoE models on low-resource tasks without
adversely affecting high-resource tasks. On
a massively multilingual machine translation
benchmark, our strategies result in about +1
chrF++ improvement in very low resource lan-
guage pairs.

1 Introduction

Training massively multitask models such as mul-
tilingual machine translation models benefit from
transfer learning across different tasks. But they
also suffer from reduced model capacity per task
and potential interference between conflicting tasks.
Scaling up models has been shown to be a very ef-
fective strategy in many natural language process-
ing tasks such as language modeling, massively
multilingual translation and natural language under-
standing (Brown et al., 2020; Kaplan et al., 2020).
Most of these advancements have focused on train-
ing increasingly larger dense models. However,
dense model scaling is computationally expensive,
as a result, various sparse model architectures have
been proposed to increase model capacity with-
out incurring additional compute costs; the most
commonly used one is the Sparsely-Gated Mixture-
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Figure 1: Validation perplexity of dense and MoE (64
experts) models. We show a high-resource direction
that does not suffer from over-fitting, when a low
resource direction sees extreme over-fitting.

of-Experts (MoE) layer (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Du et al., 2021; Hwang et al.,
2022; Zoph et al., 2022).

MoE models are a type of conditional compute
models (Bengio et al., 2013; Almahairi et al., 2016)
that activate a subset of model parameters per input,
as opposed to dense models that activate all model
parameters. MoE models unlock significant repre-
sentational capacity while maintaining the same in-
ference and training efficiencies in terms of FLOPs
as compared to the core dense architecture. As a
result, past work has demonstrated improved per-
formance on multitask models such as multilingual
machine translation when using MoE models (Lep-
ikhin et al., 2020; Kim et al., 2021; Fedus et al.,
2022; Zoph et al., 2022).

But we notice that, on imbalanced datasets, MoE
models suffer from over-fitting on low resource
tasks i.e., tasks with relatively less training data.
Figure 1 illustrates this phenomenon on a multilin-
gual translation benchmark. We see that eng-fra,
a high-resource translation direction, does not over-
fit with either dense or MoE models. On the other
hand, eng-kon, a low-resource translation direc-
tion, extremely over-fits with the MoE model com-
pared to the dense model.

In this work, we introduce four effective strate-
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gies to reduce the over-fitting of MoE models on
low-resource tasks in a massively multilingual MT
benchmark:

1. Dropout techniques for MoE layers: we in-
troduce Expert Output Masking (EOM) and
Final Output Masking (FOM), two dropout
methods specific to MoE layers that we apply
on top of overall dropout.

2. Conditional MoE Routing (CMR): We train
an additional gate to decide when to route a
token to an MoE layer vs. a shared dense
layer.

3. Curriculum Learning (CL): We introduce low-
resource pairs that are prone to over-fitting in
the later stages of model training.

On a massively multilingual MT benchmark,1 we
experimentally demonstrate the effectiveness of
each of these strategies. Particularly, we observe
close to +1 chrF++ improvements with EOM, FOM,
CMR and CL strategies on very low resource lan-
guage directions out of English.

2 Background

We first describe the multilingual machine transla-
tion (MMT) task setup, the dense backbone archi-
tecture, and how we augment it with MoE layers.

Multilingual Machine Translation. We model
multilingual neural machine translation as a
sequence-to-sequence task, where we condition on
an input sequence in the source language with an
encoder and generate the output sequence in the
expected target language with a decoder (Sutskever
et al., 2014). We train to maximize the probability
of the translation sequence in the target language
given the source sequence, in addition to the source
language ℓs and the target language ℓt.

Model Architecture. Our sequence-to-sequence
multilingual machine translation model is based
on the Transformer encoder-decoder architec-
ture (Vaswani et al., 2017).

To prime the model for multilingual translation,
we prefix the source sequence with the source lan-
guage ℓs and the target sequence with the target
language ℓt.

153 languages and 110 translation directions and approxi-
mately 1.7B training examples

Sparsely Gated Mixture of Experts. In both
Transformer encoder and decoder, we replace
every other dense FFN sublayer with an MoE
sublayer. The MoE sublayer consists of E
feed-forward networks (FFN), denoted with
(FFN1,FFN2, . . . ,FFNE). A gating network,
consisting of a softmax-normalized linear layer
with weights Wg, is attached to each MoE sublayer
to decide how to route tokens to experts. Given an
input token xt the output of the MoE sublayer is
evaluated as:

Gt = Top-k-Gating(softmax(Wg · xt)), (1)

MoE(xt) =
E∑

e=1

Gte · FFNe(xt), (2)

with Gt ∈ RE the routing vector computed by the
gating network, i.e., for each expert, Gt,e is the con-
tribution of the eth expert (FFNe) in the MoE out-
put. We follow the Top-k-Gating algorithm of Lep-
ikhin et al. (2020) and dispatch each token to at
most k=2 experts.

The sparse MoE model learns to route input to-
kens to the corresponding top-2 experts by opti-
mizing a linearly weighted combination of label-
smoothed cross entropy, LMT, (ϵ=0.1, Szegedy
et al. (2015)) and an auxiliary load balancing loss,
LMoE (Shazeer et al., 2017),

L = LMT + λMoELMoE. (3)

This additional loss term (LMoE) pushes the tokens
to be uniformly distributed across experts. We set
λMoE to 0.01 in all our experiments. We refer the
reader to Lepikhin et al. (2020) for more on the
optimization of MoE models.

3 Fixing over-fitting on low-resource tasks

The motivation behind MoE models is to allow
different parameters to model different aspects of
the input space. The added expert capacity should
help higher resource language pairs that might oth-
erwise be constrained to share the same capacity
with many other language pairs. Besides, increas-
ing model capacity should reduce interference, thus
benefiting tasks of all resource levels.

Although overall dropout is sufficient to regular-
ize dense models, it is not enough for MoE models
(see Figure 4). To address the issue of over-fitting
of MoE models on low-resource tasks, we propose
a series of architectural changes that improve the
performance on low-resource language pairs with
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Figure 2: Illustration of Expert/Final Output Masking (EOM/FOM) in contrast to overall dropout for MoE layers: a
color represents a token, and each token is dispatched to two experts. Faded colors correspond to dropped units or
masked outputs. Note that EOM and FOM are always combined with overall dropout.

MoE models in Sections 3.1 to 3.3. In Section 3.4,
we devise and study a simple but effective curricu-
lum learning strategy as another approach to reduce
the over-fitting on low-resource directions.

3.1 MoE Expert Output Masking (EOM).

In this proposed regularization strategy, we mask
the expert output for a random fraction (peom) of
the input tokens. For input tokens with dropped
expert outputs, the first and/or second expert is ef-
fectively skipped, as illustrated in Figure 2c. Note
that although this masking will zero out some com-
bination weights Gt,e in Equation (2), it will not
affect the weights used in the load balancing loss.

3.2 Final Output Masking (FOM).

A simpler alternative to EOM would be to mask
the combined expert output for a random fraction
of tokens, i.e., the last stage in Figure 2d. We
denote with pfom the fraction of tokens masked
with this regularization method. Note that this type
of masking is more generic as it can be applied to
dense models as well.

3.3 Conditional MoE Routing (CMR).

Instead of randomly dropping a proportion of acti-
vations or masking expert outputs, we consider the
option of letting the model learn which tokens need
the extra capacity or specialization of MoE layers,
and which tokens are better routed to a limited-
capacity shared layer. Inspired by Zhang et al.
(2021)’s CLSR-Gate, we design Conditional MoE
Routing layers (CMR for short). As depicted in
Figure 3, we augment MoE layers with a binary
gate that determines the weights associated with
two branches of the computational graph: (1) a
shared dense FFN sublayer (FFNshared) and (2) an
MoE layer with its own E expert FFN sublayers.
For an input token xt, the output of CMR is evalu-

ated as follows:

g(xt) = sigmoid(WCMR · xt), (4)

CMR(xt) = (1− g(xt)) · FFNshared(xt) (5)

+ g(xt) ·MoE(xt), (6)

where WCMR are the weights of the CMR’s binary
gate. WCMR is trained by optimizing translation
accuracy under a budget constraint b. For a mini-
batch with T tokens, this amounts to adding the
following auxiliary loss term (LCMR) to the loss
function in equation (3):

LCMR =
1

T
·

T∑

t=1

|g(xt)− b| , (7)

L = LMT + λMoELMoE + λCMRLCMR. (8)

We use the budget parameter b to limit the effective
capacity of MoE layers, thus providing a regulariz-
ing effect; at b=0, the model is dense, practically
pushing all tokens through FFNshared, and at b=1,
the model is free to always route tokens through
the high-capacity MoE layer.

To reduce over-fitting, we experiment with zero-
ing out a fraction of the CMR gates g(xt) in the
mini-batch; we denote this fraction with pcmr. This
means that we force pcmr% tokens in the mini-batch
to only take the route of FFNshared.

3.4 Curriculum Learning
We next explore alternative methods of regulariza-
tion by means of Curriculum Learning (CL). We
propose to start training with high-resource pairs
first, then introduce low-resource pairs, prone to
over-fit, later in phases. To derive the phases of
the curriculum, we first train a vanilla MoE model
(without CL), then we partition the tasks (transla-
tion directions) into n bins {b1, . . . , bn}. If U is
the total number of training updates, we introduce
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Figure 3: Illustration of Conditional MoE Routing (CMR) showing a residual block in a Transformer layer with
regular MoE (left) vs. CMR (right).

Algorithm 1 Partitioning for step-based CL

1: Input: number of bins n, a set of tasks T ,
the maximum number of updates U , the step
corresponding to the best validation perplexity
sbest : T → [0, U ].
▷ For sbest, we take the max if multiple

2: Output: Partitioning of T into n bins
b=(b1, . . . , bn), characteristic step for each
bin k=(k1, . . . , kn).
▷ The bin bi will be introduced at U − ki.

3: smax = maxt∈T sbest(t), smin =
mint∈T sbest(t)

4: ∆ =
smax − smin

n− 1
.

5: for i ∈ {1 . . . n} do
6: bi = ∅, ki = smax − (i− 1)∆.
7: end for
8: for t ∈ T do
9: ct = argmin1≤i≤n |sbest(t)− ki|

10: bct = bct ∪ {t}
▷ assign to the closest bin wrt. its charac-

teristic step.
11: end for

each bin bi after U − ki updates. We compare two
partitioning strategies for when and what directions
to add at every phase.

1. Count-based: we empirically partition based
on training example counts.

2. Step-based: partition based on the step where
we observed a task to start over-fitting. See
Algorithm 1.

4 Experimental Setup

4.1 MMT dataset

We construct a multilingual machine translation
benchmark consisting of 53 languages and a total of
110 translation directions. Our MMT dataset con-
sists of 45 directions out of English (aggregated
as eng-xx), 45 directions into English (aggregated
as xx-eng) and 20 non-English directions (aggre-
gated as xx-yy). In terms of resource level, there
are 40 high-resource and 70 low-resource direc-
tions, out of which 22 are very low-resource.2 The
training data is composed of publicly available bi-
text in all 110 language directions (primary data in
NLLB Team et al. (2022)) and large-scale mined
data (Heffernan et al., 2022; NLLB Team et al.,
2022) in English-centric directions. There are a
total of 2×847M examples in this benchmark. For
a detailed listing of the directions, see Appendix A.

Segmentation with SentencePiece. To tokenize
our text sequences, we train a single SentencePiece
(SPM) (Kudo and Richardson, 2018) model for all
languages.3 The vocabulary size of our trained
SPM model is 256,000. For more on this SPM
model, see NLLB Team et al. (2022).

5 Results

All MoE sub-layers have E=64 experts4. All mod-
els are trained for 100k updates with an effective
batch size of 1M tokens per update. We evaluate

2We follow the categorization in NLLB Team et al. (2022);
a language is low-resource if there are fewer than 1M pub-
licly available, de-duplicated bitext samples with any other
language, very low-resource if fewer than 100K.

3202 languages in total, including the ones not part of our
MMT dataset.

4E = 64 is close to the number of languages in the bench-
mark, i.e., 53
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Figure 4: Validation perplexities with Various dropout strategies for a low-resource direction (eng-kon in the top
row) and a high-resource direction (eng-fra in the bottom row).

eng-xx xx-eng xx-yy

all v.low all v.low all

DENSE 615M
Dense 41.7 30.4 51.1 44.0 39.4
MoE-64 43.0 30.3 52.6 44.2 39.8

Dense (pdrop=0.1) 41.9 31.1 51.8 45.3 39.6
MoE-64 (pdrop=0.1) 43.6 32.0 53.4 45.9 41.1

DENSE 1.3B
Dense 43.3 31.6 53.5 46.5 41.3
MoE-64 43.3 29.7 52.9 43.7 39.3

Dense (pdrop=0.1)† 43.7 33.1 54.4 47.9 41.9
MoE-64 (pdrop=0.3)† 44.3 32.5 54.4 47.7 41.9

Table 1: Validation set chrF++ of vanilla MoE with and
without overall dropout. † indicates best of sweep.

using See Appendix B for additional details. We
use the chrF++ metric (Popović, 2017) to compare
the model performance5. We report averages in
each set of directions: eng-xx, xx-eng and xx-yy
as all. For eng-xx and xx-eng, and when relevant,
we breakdown the pairs by resource level: high-
resource (high), low-resource (low) and very low
resource (v.low).

5.1 Vanilla (un-regularized) MoE
When looking at un-regularized models (without
overall dropout), we see in Table 1, that when
the backbone dense model has 615M parameters,
the MoE model, while computationally similar,
shows +1.3, +1.5 and +0.4 chrF++ improvements
on eng-xx, xx-eng and xx-yy respectively. When

5We use sacreBLEU to compute chrF++, signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.1.0

focusing on the very low resource pairs (v.low), the
performance actually drops on eng-xx (-0.1 chrF++)
signaling an over-fitting issue. When scaling the
backbone to 1.3B, we see even more over-fitting
on v.low directions (-1.9chrF++ in eng-xx and -2.8
chrF++ in xx-eng).

Adding overall dropout6 significantly improves
the performance of MoE models in both the 615M
and 1.3B variants. Importantly, when increasing
the dropout to 0.1 for the small MoE (615M), we
see that the relative decline of -0.1 chrF++, turns into
an improvement of +0.9 chrF++ for eng-xx v.low
pairs. Once we scale the computational cost per
update (1.3B), tuned overall dropout does not fix
the over-fitting of very low-resource pairs.

In Figure 4, we observe in the case of eng-kon, a
very low-resource pair, that the model continues to
face significant over-fitting when trained for 100k
updates. This is unsurprising, as iterating over a
small training set with large capacity causes over-
fitting. Training for more steps is important for
high-resource pairs, but we want to avoid nega-
tively affecting low-resource pairs in the process.

5.2 Regularizing MoEs

For the rest of this paper, we use the 1.3B variant
as our backbone, to which we add MoE layers with
E=64 experts.

Experimental Setup. We consider the MoE
model with an overall dropout rate of 0.3

6sweeping over pdrop∈{0.1, 0.2, 0.3}
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eng-xx xx-eng xx-yy

all high low v.low all high low v.low all

Baseline pdrop=0.3 † 44.3 56.0 39.5 32.5 54.4 63.9 50.6 47.7 41.9

EOM (pdrop=0.3, peom=0.1)† 44.7 55.9 40.1 33.4 54.8 64.3 51.0 48.3 42.5
FOM (pdrop=0.2, pfom=0.3) † 44.4 55.7 39.8 33.1 55.0 64.3 51.3 48.8 42.5

Gating Dropout (pdrop=0.3, pgd=0.2) (Liu et al., 2022) † 44.4 55.7 39.8 33.0 54.8 64.1 51.0 48.5 42.3

CMR top-1 (pdrop=0.3, pcmr=0.1, b=0.6) † 44.2 55.8 39.5 33.2 54.9 64.3 51.1 48.7 42.3

CMR top-2 (pdrop=0.3, pcmr=0.2) † 46.2 56.2 41.8 35.7 55.1 64.7 51.5 49.2 42.8

Table 2: Comparison of Various Regularization Strategies applied to an MoE-64 baseline. In each column, we bold
the best results out of the first six rows (computationally comparable), and we bold results from the last row (CMR
top-2) if they outperform the other models. † signals that this model is best of sweep.

(pdrop=0.3), best performing after a sweep of
pdrop ∈ {0.1, 0.2, 0.3} to be our baseline.7

In each of the sweeps below, we choose the best
variant based on the average chrF++ score on the
validation set.
For EOM and FOM, we sweep over the values of
(pdrop, peom/fom) ∈ {0.1, 0.2, 0.3}2.
For CMR, and in order to keep the compute equiv-
alent to the baseline MoE, we use top-1 instead
of the top-2 gating used in previous experiments.
We fix pdrop=0.3 and sweep over the CMR pa-
rameters (pcmr, b). We also train a CMR top-2
model, although not compute-equivalent to the
baseline MoE, it provides insight into performance
under a large compute budget. For CMR top-2,
we fix pdrop=0.3 and sweep over the values of
pcmr ∈ {0.1, 0.2, 0.3}. We set λCMR to 0.1 in all
our CMR experiments.
We additionally compare our methods to Gating
Dropout (Liu et al., 2022), a method in which
we route tokens with probability pgd to the local
experts, thus skipping the All-to-All communi-
cation between GPUs. We sweep over the val-
ues of (pdrop, pgd) ∈ {0.1, 0.2, 0.3}2. To generate
translation hypotheses, we use beam search with
a width of 4 and a length penalty of 1.0. For each
model, we report chrF++ averages on the validation
set (FLORES-200 dev - NLLB Team et al. (2022))
in 3 groups of directions: eng-xx, xx-eng and
xx-yy, broken down w.r.t. to resource levels: high,
low and very low (v.low) for eng-xx and xx-eng.

Results. In terms of alleviating the over-fitting
issue, the last column of Figure 4 shows that EOM
leads to better regularization and less over-fitting on
low-resource tasks compared to overall dropout. In

7Initial experiments separating the dropout rates of shared
and MoE blocks showed that the best values align.

eng-xx xx-eng xx-yy

all v.low all v.low all

top-1 b=0.4 44.2 32.8 54.4 48.0 42.1
+ pcmr=0.1 43.9 33.0 54.9 48.6 42.3

top-1, b=0.8 44.5 32.9 54.3 47.4 42.2
+ pcmr=0.1 44.6 33.5 54.3 47.7 42.2

top-1 pcmr=0.1
+ b=0.2 43.8 32.7 54.5 48.5 42.2
+ b=0.4 43.9 33.0 54.9 48.6 42.3
+ b=0.6 44.2 33.2 54.9 48.7 42.3
+ b=0.8 44.6 33.5 54.3 47.7 42.2

top-2 b=0.8 44.6 33.1 54.3 47.2 41.9
+ pcmr=0.2 46.2 35.7 55.1 49.2 42.8

Table 3: Sweep over hyperparameters for MoE-64
CMR: The budget b, the CMR gate dropout pcmr. We
bold the best results in each column.

terms of translation quality, we observe in Table 2
gains of +0.4 chrF++ across all pairs into English
and +0.6 chrF++ across non-English pairs for MoE
EOM compared to the MoE baseline. For out of
English, the largest gains are observed on low and
very low-resource languages; +0.6 and 0.9 chrF++

respectively.
With FOM, we see in Table 2 gains over the

baseline MoE of +0.1 chrF++ across eng-xx pairs,
+0.6 chrF++ across xx-eng pairs and +0.6 chrF++

across xx-yy pairs. For into English, the largest
gains are observed on low and very low-resource
languages; +0.7 and 1.1 chrF++. Compared to the
best EOM model, FOM under-performs slightly
on eng-xx (-0.3 chrF++) but outperforms on xx-eng
(+0.2 chrF++); when averaging over all pairs, the
two models achieve the same chrF++ score of 48.4.

We look in Table 3 at the impact of the budget
b and the dropout pcmr. We observe that pcmr is a
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eng-xx xx-eng xx-yy

all v.low all v.low all

MoE-64 44.3 32.5 54.4 47.7 41.9
+ CL (count-based) 43.7 32.5 54.0 47.1 41.1
+ CL (step-based) 44.7 33.3 54.6 47.9 42.2

MoE-64 EOM 44.7 33.4 54.8 48.3 42.5
+CL (step-based) 44.3 33.1 54.7 48.4 42.2

Table 4: Results of Curriculum Learning applied to a
vanilla MoE model and an MoE model with EOM.

necessary ingredient in CMR top-2; in the last two
rows of Table 3, adding pcmr improves the perfor-
mance across the board, particularly in en-xx and
xx-en very low directions (+2.6 and +2.0 chrF++,
respectively). With top-1, pcmr is less critical as
it barely affects the overall performance, but does
help on eng-xx and xx-eng very low pairs. In the
middle section of Table 3, we note that CMR top-1
is not sensitive to the exact value of b, but, at low
budget b (less capacity), model performance sig-
nificantly drops on eng-xx across all pairs. Pairs
in xx-eng, on the other hand, favor a mid-range
budget value.

In Table 2 for CMR top-1, we see +0.4 chrF++

across all pairs into English, and +0.4 chrF++ across
non-English pairs. Improvements are larger for out
of English low and very low-resource languages,
with +0.5 and +1.0 chrF++ respectively. For CMR
top-2, we see +1.9 chrF++ across all pairs out of
English and +0.9 chrF++ across non-English pairs.
The improvements are largest for low and very low-
resource languages, with +2.3 and +3.2 chrF++ out
of English, and +0.9 and +1.5 into English. CMR
top-2 is computationally more expensive by 23%
because of the additional shared FFN layer at the
level of each MoE layer in the model.

We find that Gating Dropout performs better
than the baseline MoE, but is outperformed by all
of our proposed methods. Overall, these results
demonstrate that EOM, FOM, and CMR strategies
help improve on top of vanilla MoE.

5.3 CL
Experimental Setup. To derive the phases of
the curriculum, we train a vanilla MoE model
with pdrop=0.3 (our baseline), then, based on ob-
served over-fitting patterns, we partition the tasks
in our MMT dataset. For both count and step-based
curricula, we introduce pairs in n=3 phases over
U=100k. For count-based curriculum, we parti-
tion language pairs into bins w.r.t. the training ex-

amples available for the task (Dt): b1 if |Dt| ≥ 5e6,
b2 if 8e5 ≤ |Dt| < 5e6, and b3 if |Dt| < 8e5. With
that we use (k1, k2, k3) = (100k, 40k, 20k).8 For
step-based curriculum, we follow Algorithm 1 with
n = 5 and merge the first 3 buckets resulting in 3
bins introduced at (k1, k2, k3) = (100k, 40k, 20k).
See Appendix C for the exact partitioning.

To combine a stronger dropout regularization
with Curriculum Learning methods, we next apply
our best CL strategy (step-based) to an MoE model
with EOM (peom=0.1).

Results. We show the results of our CL exper-
iments in Table 4. For the baseline MoE-64, by
using step-based CL, we improve the accuracy
on very low-resource directions by 0.8 chrF++ in
eng-xx and 0.2 chrF++ in xx-eng . Across all re-
source levels, we improve the accuracy in eng-xx
and xx-eng by 0.4 and 0.2 chrF++. On non-English
directions step-based CL improves the quality by
0.3 chrF++. The count-based CL hurts the model per-
formance in all tasks except from very low-resource
eng-xx directions.

For MoE EOM, training with step-based CL
actually hurts performance across all tasks except
for xx-eng very low-resource. We hypothesize
that over-fitting on our MMT dataset is already
reduced by EOM, thus, adding a curriculum on top
of that is not needed and has a negligible impact on
translation quality.

6 Related work

Improved routing in MoE models. Recent
works have proposed alternatives to the commonly
used top-2 gating of Lepikhin et al. (2020): Hash
layers (Roller et al., 2021) use random fixed rout-
ing and Lewis et al. (2021) view routing as a linear
assignment problem and drop the load balancing
loss. Zuo et al. (2022) suggest to randomly select
experts. Fedus et al. (2022) opt for top-1 routing,
and Yang et al. (2021) split experts into different
groups and applies k top-1 routing in each. In this
work, we only use Top-2 gating9 but our techniques
are orthogonal to the routing method.

Regularizing MoE models. Zoph et al. (2022)
tried increasing the dropout within the expert
(dubbed expert dropout) but saw marginal improve-
ment in quality. They also proposed an additional

8That means b1 is introduced at step 0, b2 at step U − 40k,
and b3 at step U − 20k

9We did use top-1 gating for CMR to maintain a compara-
ble computational cost with the baseline
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regularization loss for MoE layers to resolve train-
ing instabilities. Kim et al. (2021) randomize the
priority of tokens within a mini-batch as a regular-
ization method. Liu et al. (2022) propose gating
dropout to reduce cross-machine communication
in MoE layers. Xie et al. (2022) propose routing
tokens to expert clusters and a cluster-level expert
dropout.

Conditional compute. Another line of research
in the space of MoE models focuses on designing
alternative strategies to learn balanced routing e.g.,
Lewis et al. (2021) formulated token-to-expert al-
location as a linear assignment problem and Roller
et al. (2021) assign tokens to experts using hash
functions.

language-specific parameters. A common solu-
tion to relax parameter sharing in MMT models is
to use light-weight language-specific adapters (Re-
buffi et al., 2017; Bapna and Firat, 2019). Their
size, however, scales linearly in the number
of languages. Baziotis et al. (2022) introduce
hyper-adapters to generate the adapters themselves.
To make these language-specific parameters op-
tional, Zhang et al. (2021) propose CLSR to dy-
namically select language-specific or shared paths.
These paths are simple linear projections and do
not incorporate routing. Similar to our own CMR’s
budget loss, CLSR optimizes the MMT cross-
entropy while constraining the use of the language-
specific capacity. Another approach similar to
CMR is Residual-MoE (Rajbhandari et al., 2022).
It is a hybrid dense and MoE model but it does not
learn weights for each component. (Rajbhandari
et al., 2022) also introduces Pr-MoE for pyramidal
MoE where they increase the number of experts
in the later layers to make the MoE models more
parameter-efficient.

Curriculum Learning Curriculum learning
(Bengio et al., 2009; Lu et al., 2020) is motivated
by the learning behavior of humans in which train-
ing samples are introduced by increasing levels of
difficulty. The most common curriculum in MT
models consist of pre-training on the more abun-
dant monolingual data before finetuning on MT
aligned bitexts (Liu et al., 2020; Tang et al., 2020;
Xue et al., 2021). In bilingual MT, recent works
explored fixed curricula that shard training sam-
ples based on some difficulty criteria like sentence-
length (Kocmi and Bojar, 2017) or the confidence
of a baseline model (Zhang et al., 2018). Platan-

ios et al. (2019) proposed a heuristic that decides
which samples are shown to the model based on
the estimated sample’s difficulty and current model
competence. Kumar et al. (2019) use reinforcement
learning to learn the curriculum automatically and
Zhou et al. (2020) propose uncertainty-aware cur-
riculum learning. In data sampling, which can be
viewed as a sort of curriculum learning, Wang et al.
(2018) propose dynamic sentence sampling to as-
sign lower weights to well-learned sentences.

7 Conclusion

In massively multilingual settings with imbalanced
datasets, MoE models over-fit significantly more
than dense models on low-resource directions. This
work introduce multiple effective strategies for reg-
ularizing MoE models and achieving better perfor-
mance across all language pairs, especially low-
resource pairs. With EOM and FOM, we propose
dropout methods to further regularize MoE models.
We introduce in CMR a novel architecture to bal-
ance the capacity between MoEs and shared dense
paths. Finally, we design curricula for introducing
low-resource languages later during training. These
strategies lead to less over-fitting on low-resource
tasks, leading to improvements in translation qual-
ity.

8 Limitations

The first limitation of this work is that it lacks a
study on how the proposed regularization methods
work at other scales; although we looked in Sec-
tion 5.1 at two variants based on the compute bud-
get (615M and 1.3B), we only tested our methods
on the 1.3B variant with a fixed number of experts
E=64. These methods can potentially show larger
improvements on larger models (larger backbone
or more experts) and marginal impacts on smaller
models that do not suffer from severe over-fitting.
The second limitation of this work is that our meth-
ods are only validated on a single multilingual MT
benchmark. Some of these techniques proved to be
generalizable to a much larger benchmarks (NLLB
Team et al., 2022), and we leave testing these tech-
niques on other tasks like language modeling to
future work. Another limitation of this work, and
most other works on multilingual machine transla-
tion, is the evaluation metrics and how to aggregate
them. We report in this paper chrF++ scores and
we average across three subsets of directions and
three resource levels. This makes it difficult to
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highlight the impact in some challenging directions
on which our methods can lead to ±3chrF++ differ-
ential in quality. We did not report other metrics for
the sake of brevity, and since we are not comparing
to previously published results, chrF++ is a reliable
metric for comparing and contrasting our methods.
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A Training data

We list in Table 5 the amount of data (bitexts) used
to train our models. Figure 5 shows the data dis-
tribution over language pairs sorted by the exam-
ple count per pair. The highest resource language
pair has 180M examples (English-French), and the
lowest resource language pair has 40K examples
(Hindi-Tamil).
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Figure 5: Training data across all language pairs in our
MMT dataset.

B Training details

We use Fairseq (Ott et al., 2019) to train Trans-
former encoder-decoder models with dimension
1024, FFN dimension 8192, 16 attention heads,
24 encoder layers and 24 decoder layers. Dense
615M models have 614,918,144 parameters, and
MoE models corresponding with the dense 615M
backbone have 6,961,431,552 parameters. Dense
1.3B models have 1,372,055,552 parameters, and
MoE models corresponding to the dense 1.3B back-
bone have have 26,753,140,736 parameters. The
total compute across all the experiments reported,
including sweeps, is 461,631 GPU hours. We train
with seed=2 for all experiments. We apply Layer-
normalization (Ba et al., 2016) at the beginning
of each Transformer sub-layer (Pre-LN), as op-
posed to after the residual connection (Post-LN).
This is because Pre-LN is more stable in practice
compared to Post-LN (Xiong et al., 2020). All
models are trained for 100k updates with an ef-
fective batch size of 1M tokens per update. We
optimize with Adam (Kingma and Ba, 2015) us-
ing (β1, β2, ϵ) = (0.9, 0.98, 10−6). We linearly
increase the learning rate up to 0.004 through 8000
warmup updates, then follow the inverse square
root learning rate schedule. For Top-2-Gating, we
set the expert capacity to 2×T/E, i.e., we enforce
that each expert processes, at most, 2×T/E tokens,
where T is the number of tokens in the mini-batch
and E is the number of experts. During generation,
we set the capacity to T so that all tokens can be
routed to whichever expert they choose.
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Code Language

ace_Latn Acehnese
afr Afrikaans
ara_Arab Arabic
ast Asturian
ayr Aymara
bel Belarussian
bul Bulgarian
cjk Chokwe
cym Welsh
eus Basque
ewe Ewe
fas Persian
fin Finnish
fon Fon
fra French
fuv Fula
hau Hausa
hin Hindi
isl Icelandic
ita Italian
jpn Japanese
kea Kabuverdianu
kik Kikuyu
kin Kinyarwanda
kon Kongo
kor Korean
lav Latvian
lin Lingala
luo Luo
mal Malayalam
mar Marathi
nso Northern Sotho
oci Occitan
por Portuguese
run Rundi
rus Russian
sin Sinhalese
snd Sindhi
swh Swahili
tam Tamil
tat_Cyrl Tatar
tel Telugu
tir Tigrinya
tsn Tswana
tso Tsonga
twi Twi
urd Urdu
vie Vietnamese
wol Wolof
yor Yoruba
yue Yue Chinese
zho_Hans Chinese

Direction #primary #mined

eng-ace_Latn 36,591 1,148,759
eng-afr 1,449,916 5,840,012
eng-ara_Arab 36,340,863 39,447,939
eng-ast 526 874,884
eng-ayr 69,185 610,749
eng-bel 47,166 892,477
eng-bul 26,706,641 35,742,011
eng-cjk 33,038 660,404
eng-cym 149,598 4,239,464
eng-ewe 534,793 739,132
eng-fas 4,402,104 19,527,935
eng-fin 34,784,117 27,243,736
eng-fon 36,752 299,065
eng-fra 37,993,938 141,929,009
eng-fuv 18,242 189,675
eng-hau 345,481 4,598,698
eng-hin 1,688,720 24,497,780
eng-isl 1,096,312 6,744,150
eng-ita 44,712,431 82,724,756
eng-kea 4,727 146,254
eng-kik 98,740 119,396
eng-kin 376,914 2,423,473
eng-kon 188,251 213,799
eng-lav 3,867,869 10,699,069
eng-lin 666,273 555,208
eng-luo 129,000 670,367
eng-mal 585,452 7,703,121
eng-mar 335,259 6,143,242
eng-nso 526,097 644,586
eng-oci 5,915 585,817
eng-run 454,678 1,138,461
eng-rus 30,271,773 71,205,569
eng-sin 461,857 3,288,143
eng-snd 95,718 2,434,012
eng-tam 680,297 7,223,944
eng-tel 253,718 7,880,705
eng-tir 83,980 1,128,918
eng-tso 711,883 881,110
eng-twi 508,746 1,220,279
eng-urd 875,172 2,873,007
eng-vie 3,689,843 39,782,690
eng-wol 9,233 147,746
eng-yor 397,793 2,099,168
eng-yue 54,534 0
eng-zho_Hans 228,658 33,684,682

ara_Arab-sin 402,450 0
eus-por 432,823 0
fra-hau 168,631 0
fra-kon 147,886 0
fra-lin 397,535 0
fra-swh 664,013 0
hin-tam 39,992 0
jpn-kor 1,009,697 0
rus-tat_Cyrl 263,496 0
swh-tsn 697,681 0

Corpus Reference

AAU Ethiopian Languages Abate et al. (2018)
DGT Tiedemann (2012)
ECB Tiedemann (2012)
EMEA Tiedemann (2012)
English-Twi Azunre et al. (2021b,a)
EU Bookshop Skadin, š et al. (2014)
GlobalVoices Tiedemann (2012)
HornMT Hadgu et al. (2021)
InfoPankki v1 Tiedemann (2012)
QCRI Educational Domain Abdelali et al. (2014)
JHU Bible McCarthy et al. (2020)
Mburisano Marais et al. (2021)
MENYO-20k Adelani et al. (2021)
MultiIndicMT Nakazawa et al. (2021)
NLLB-SEED NLLB Team et al. (2022)
OpenSubtitles v2018 Lison and Tiedemann (2016)
Tanzil Tiedemann (2012)
Tatoeba Tiedemann (2012)
Tico19 v20201028 Anastasopoulos et al. (2020)
United Nations Resolutions Rafalovitch and Dale (2014)
Turkic Interlingua (TIL) Mirzakhalov et al. (2021)
Wikimedia v20210402 Tiedemann (2012)

Table 5: List of languages and Data counts between primary (pre-existing publicly available parallel data) and
mined (Heffernan et al., 2022) for the 110 directions of our MMT dataset. 45 languages are paired with English for
a total of 90 English-centric directions. The remaining 20 directions are non-English centric. We also list on the
rightmost table the sources of the training data in our MMT dataset following NLLB Team et al. (2022).
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C Curriculum Learning

Count-based CL. We empirically partition based
on training example counts. We first train our base-
line model (MoE-64 (pdrop=0.3) without CL, then
we look at possible correlations between the num-
ber of steps before over-fitting and the count of
training examples. In Figure 6 we plot these data
points with the counts on the y-axis and the start-of-
over-fitting step on the x-axis. The horizontal red
lines indicate where the count-based curriculum
thresholds were set in order to partition language
pairs into bins.
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Figure 6: For the baseline MoE model, we plot the
steps corresponding to the best validation perplexity
(sbest on the x-axis) against the number of training
examples (|Dt| on the y-axis).

We list in Table 6 the tasks in each bin for the
baseline MoE model.

Step-based CL. We partition based on the step
where we observed a task to start over-fitting. Fol-
lowing Algorithm 1, we partition the tasks into n
bins. In our experiments, we started with n=5
resulting in a ∆ of 20k steps. However, we
merged the first three bins with characteristic steps
k1 = 100k, k2 = 80k and k3 = 60k to remain
comparable with count-based CL.

bin bi #tasks ki Language pairs

b1 17×2 100k eng-afr, eng-ara_Arab, eng-bul, eng-fas, eng-fin,
eng-fra, eng-hin, eng-isl, eng-ita, eng-lav, eng-
mal, eng-mar, eng-rus, eng-tam, eng-tel, eng-vie,
eng-zho_Hans

b2 24×2 40k eng-ace_Latn, eng-ast, eng-ayr, eng-bel, eng-cjk,
eng-cym, eng-ewe, eng-hau, eng-kin, eng-lin,
eng-luo, eng-nso, eng-oci, eng-run, eng-sin, eng-
snd, eng-tir, eng-tso, eng-twi, eng-urd, eng-yor,
fra-swh, jpn-kor, swh-tsn

b3 14×2 20k eng-fon, eng-fuv, eng-kea, eng-kik, eng-kon,
eng-wol, eng-yue, ara_Arab-sin, eus-por, fra-
hau, fra-kon, fra-lin, hin-tam, rus-tat_Cyrl

Table 6: Count-based CL bins for the baseline MoE
model (pdrop=0.3). Step represents the number of steps
the language pairs in this bin are trained

bin bi #tasks ki Language pairs

b1 86 100k ace_Latn-eng, afr-eng, ara_Arab-eng, ara_Arab-
sin, ast-eng, bel-eng, bul-eng, cym-eng, eng-afr,
eng-ara_Arab, eng-ast, eng-bel, eng-bul, eng-
cym, eng-ewe, eng-fas, eng-fin, eng-fra, eng-hau,
eng-hin, eng-isl, eng-ita, eng-kea, eng-kin, eng-
lav, eng-luo, eng-mal, eng-mar, eng-nso, eng-
oci, eng-run, eng-rus, eng-sin, eng-snd, eng-tam,
eng-tel, eng-tir, eng-tso, eng-twi, eng-urd, eng-
vie, eng-yor, eng-zho_Hans, eus-por, ewe-eng,
fas-eng, fin-eng, fra-eng, fra-hau, fra-swh, hau-
eng, hin-eng, hin-tam, isl-eng, ita-eng, jpn-kor,
kin-eng, kor-jpn, lav-eng, lin-eng, lin-fra, luo-
eng, mal-eng, mar-eng, nso-eng, por-eus, rus-
eng, sin-ara_Arab, sin-eng, snd-eng, swh-fra,
swh-tsn, tam-eng, tam-hin, tat_Cyrl-rus, tel-eng,
tir-eng, tsn-swh, tso-eng, twi-eng, urd-eng, vie-
eng, wol-eng, yor-eng, yue-eng, zho_Hans-eng

b2 12 40k ayr-eng, cjk-eng, eng-ace_Latn, eng-ayr, eng-
kik, eng-lin, fra-lin, fuv-eng, kik-eng, oci-eng,
run-eng, rus-tat_Cyrl

b3 12 20k eng-cjk, eng-fon, eng-fuv, eng-kon, eng-wol,
eng-yue, fon-eng, fra-kon, hau-fra, kea-eng, kon-
eng, kon-fra

Table 7: Step-based CL bins for the baseline MoE-64
(peom=0.1)

bin bi #tasks ki Language pairs

b1 95 100k ace_Latn-eng, afr-eng, ara_Arab-eng, ara_Arab-
sin, ast-eng, ayr-eng, bel-eng, bul-eng, cym-eng,
eng-ace_Latn, eng-afr, eng-ara_Arab, eng-ast,
eng-bel, eng-bul, eng-cym, eng-ewe, eng-fas,
eng-fin, eng-fra, eng-hau, eng-hin, eng-isl, eng-
ita, eng-kea, eng-kik, eng-kin, eng-lav, eng-luo,
eng-mal, eng-mar, eng-nso, eng-oci, eng-run,
eng-rus, eng-sin, eng-snd, eng-tam, eng-tel, eng-
tir, eng-tso, eng-twi, eng-urd, eng-vie, eng-yor,
eng-zho_Hans, eus-por, ewe-eng, fas-eng, fin-
eng, fra-eng, fra-hau, fra-lin, fra-swh, fuv-eng,
hau-eng, hau-fra, hin-eng, hin-tam, isl-eng, ita-
eng, jpn-kor, kin-eng, kor-jpn, lav-eng, lin-eng,
lin-fra, luo-eng, mal-eng, mar-eng, nso-eng, oci-
eng, por-eus, run-eng, rus-eng, rus-tat_Cyrl, sin-
ara_Arab, sin-eng, snd-eng, swh-fra, swh-tsn,
tam-eng, tam-hin, tat_Cyrl-rus, tel-eng, tir-eng,
tsn-swh, tso-eng, twi-eng, urd-eng, vie-eng, wol-
eng, yor-eng, yue-eng, zho_Hans-eng

b2 5 40k eng-ayr, eng-cjk, eng-lin, eng-wol, eng-yue

b3 10 20k cjk-eng, eng-fon, eng-fuv, eng-kon, fon-eng, fra-
kon, kea-eng, kik-eng, kon-eng, kon-fra

Table 8: Step-based CL bins for the baseline MoE-64
EOM (pdrop=0.3„ peom=0.1)
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etc. or just a single run?
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�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
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