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Abstract

Most intent discovery methods leverage repre-
sentation learning and clustering to transfer the
prior knowledge of known intents to unknown
ones. The learned representations are limited to
the syntactic forms of sentences, therefore, fall
short of recognizing adequate variations under
the same meaning of unknown intents. This
paper proposes an approach utilizing frame
knowledge as conceptual semantic guidance to
bridge the gap between known intents represen-
tation learning and unknown intents clustering.
Specifically, we employ semantic regulariza-
tion to minimize the bidirectional KL diver-
gence between model predictions for frame-
based and sentence-based samples. Moreover,
we construct a frame-guided data augmenter
to capture intent-friendly semantic information
and implement contrastive clustering learning
for unsupervised sentence embedding. Exten-
sive experiments on two benchmark datasets
show that our method achieves substantial im-
provements in accuracy (5%+) compared to
solid baselines.

1 Introduction

Dialogue systems such as chatbots and virtual assis-
tants increasingly rely on their ability to understand
and identify user intents, which directly impacts
the system’s performance. (Tseng et al., 2019; Guo
et al., 2021). Real-world dialogue systems have to
deal with evolving user needs, resulting in contin-
uously increasing intents. To address these chal-
lenges, intent discovery methods that aim to detect
unknown user intents from a large number of un-
labeled utterances have been developed in recent
years (Perkins and Yang, 2019; Min et al., 2020).

Previous intent discovery work focuses on the
unsupervised setting with clustering algorithms
(Shi et al., 2018; Min et al., 2020). Min et al.
(2020) proposed alternating-view k-means for joint
multi-view representation learning and clustering
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Utterances Intention label

U1: I am not seeing recent cash 

withdrawal on my account.

Pending cash

withdrawal

U2: I have a cash withdrawal that I 

don't recognize.
Cash withdrawal 

not recognized 
U3: Why cash withdrawal on my 

account that I don't remember?

Similarities calculated by different models

Figure 1: Similarities between different sentences cal-
culated by BERT (red) and DeepAligned (green). The
black dash line represents the similarity threshold to
cluster a same class. U2 and U3 have the same intent,
but U1 and U3 have different intentions even with a
phrase overlap of “cash withdrawal on my account”.

analysis. However, the unsupervised approaches of-
ten produce unsatisfactory performance because of
their low degree of utilization of prior knowledge of
known intents. Therefore, recent works (Hsu et al.,
2019; Lin et al., 2020; Zhang et al., 2021) invari-
antly pretrain an intention detection model using
limited known intents data, followed by leveraging
clustering techniques to infer unknown intention.
Zhang et al. (2021) propose an iterative representa-
tion learning and clustering method, DeepAligned,
for intention detection and discovery.

Learning intention-friendly semantic represen-
tation is vital for semi-supervised methods to im-
prove the performance of intent detection and dis-
covery. However, it’s insufficient to merely rely
on the labeled data. Methods pretrained on known
intents are limited to the syntactic forms of sen-
tences, therefore, fall short of recognizing adequate
variations under the same meaning of unknown
intents. Figure 1 displays the semantic similari-
ties between the sentences with the overlapping
phrase “cash withdrawal on my account” but a dif-
ferent intention. Red and green polylines repre-
sent the sentence similarity produced by the BERT
(Devlin et al., 2019) and DeepAligned. It can be
observed that both BERT and DeepAligned mod-
els ill-group U1 and U3 into the same class be-
cause the similarity between U1 and U3 is higher
than the decision threshold (i.e., 86% illustrated
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Figure 2: Intention Encoder Module. Given a labeled intent sample xi, the frame annotation xf
i and the augmented

sample xa
i , the module fine-tunes Sentence-BERT and Frame-BERT with four objectives. In representation learning,

we use the labeled utterance set Dlabeled, and unlabeled utterance set Dunlabeled is used in the clustering stage.

as a black dash line in Figure 1). But ideally, the
model should group U2 and U3 into the same in-
tent class (depicted as the blue line in Figure 1).
It is important to enhance the semantic represen-
tation learning ability of intent discovery methods.
In this paper, we propose an approach utilizing
frame knowledge as conceptual semantic guidance
to bridge the gap between known intents repre-
sentation learning and unknown intents clustering.
Frame knowledge is defined as the conceptual struc-
ture based on FrameNet (Baker et al., 1998; Das
et al., 2014), capturing the background knowledge
necessary to understand a situation. Specifically,
we introduce a novel frame-guided semantic reg-
ulation and augmentation method to enhance in-
tention discovery. Semantic regularization min-
imizes the bidirectional KL divergence between
model predictions made on the frame and sentence-
based samples to learn conceptual semantic infor-
mation. In the meantime, we construct a frame-
guided data augmenter to capture intent-friendly
semantic information and implement contrastive
learning for semi-supervised sentence embedding
learning. Finally, we perform an iterative represen-
tation learning and clustering method for intention
detection and discovery. Extensive experiments
on two benchmark datasets show that our method
achieves substantial improvements, over 5% in ac-
curacy compared to solid baselines.

2 Model

2.1 Task Formulation
Let Iknown = {I1known, I

2
known, . . . , I

n
known} de-

note the set of n known intents and Iunknown =
{I1unknown, I

2
unknown, . . . , I

m
unknown} denote the set

of m unknown intents. Given a labeled utterance
set Dlabeled = {(x1, y1), (x2, y2), . . . , (xl, yl) |
yi ∈ Iknown} which contains n known intents
and an unlabeled utterance set Dunlabeled =
{(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃r, ỹr) | ỹi ∈ Iknown ∪
Iunknown} containing n known intents and m un-
known intents, intent discovery aims to group utter-
ances into different clusters using the PLMs trained
by labeled utterance. In our work, we exploit KAF-
SPA (Zhang et al., 2023) to extract the frame an-
notation xfi , as shown in the Figure 2 and produce
augmented sentence xai for the utterance xi.

2.2 Model Architecture

We adopt an iterative representation learning and
clustering for intention discovery. In the represen-
tation learning stage, the parameters of the inten-
tion encoder module, as shown in Figure 2, are
updated based on labeled data from known intents.
The module proposes frame-guided semantic reg-
ularization and augmentation with four objectives
to capture the conceptual semantic information
of utterances. In the clustering stage, inspired
by DeepAligned, we calculate pseudo-labels for
unlabeled data and fine-tune Sentence-BERT for
self-supervised learning. Specifically, we freeze
the Frame-BERT parameters and minimize the KL
divergence of Sentence-BERT and Frame-BERT
models to retain the conceptual semantic represen-
tation of known intents.

2.3 Intention Encoder Module

The module is responsible for learning intention-
friendly semantic representation of utterance and
performing intention detection. Specifically, given
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an labeled intent samples xi, the corresponding
frame annotation xfi and the augmented sample
xai , we first obtain their intent representation zi
and zai using Sentence-BERT with a pooling layer,
and frame-based intention representation zfi with
Frame-BERT encoder with a pooling layer. Then
we employ four objectives in intention pretrain-
ing process: instance/frame-wise intent detec-
tion LCE(θ) and LfCE(θ), semantic regularization
LKL(θ) and unsupervised semantic augmentation
LSCL(θ) via clustering contrastive learning.

Instance/frame-wise Intent Detection The ob-
jective aims to achieve intention detection based
on the labeled utterances. We fine-tune sentence-
BERT and frame-BERT with transformation heads
respectively by minimizing the cross-entropy loss
LCE and LfCE respectively, where

p(Iknown | xi) = softmax(zi ∗W + b))

LCE = − 1

N

∑

j

y · log
(
p(Ijknown | xi)

)
(1)

and LfCE is similarly defined by replacing xi, zi
with xfi , z

f
i in Equation (1).

In Equation (1), p(Iknown | xi) denotes the prob-
ability of assigning to xi or xfi to the known intents.
After fine-tuning two BERT models based on la-
beled utterances, the transformation heads are dis-
carded. In the second clustering stage, BERT with
a pooling layer is continuously fine-tuned while
Frame-BERT with a pooling layer is frozen, which
is regarded as conceptual semantic guidance.

Unsupervised Semantic Regularization To
guide the Sentence-BERT concentrating on the con-
ceptual semantic representation, we apply semantic
regularization to minimize the bi-directional KL-
divergence between model predictions made by
sentence-BERT and frame-BERT modules. Given
the intent representation zi and zfi , we assume
Pϕ(z|zi) and Pψ(z|zfi ) take the following forms:

Pϕ(z|zi) ∼ N (µ, σ2I), Pψ(z|zfi ) ∼ N (µ, σ2I)
(2)

The µ and σ are calculated based on the zi,

µ = zi ·Wµ + bµ

log σ2 = zi ·Wσ + bσ

z = µ+ σ ⊙ ϵ

(3)

and µ, σ are calculated in a similar way by replac-
ing µ, σ, z, zi with µ, σ, z, zfi with learnable param-

eters Wµ,W σ, bµ and bσ in Equation (3). Then we
formulate the negative KL divergence:

LKL(θ) =
∑

i

Pϕ(z|zi) log
(
Pϕ (z|zi)
Pψ(z|zfi )

)
(4)

Semi-supervised Semantic Augmentation As
shown in the Figure 2, the positive samples xai
are generated by replacing the target words in the
original samples xi with another word that belongs
to the same frame as the target words. Then we
employ contrastive learning to model instance-wise
semantic similarities by pulling together intents
belonging to the same class while pushing apart
samples from different classes in one batch B. The
equation is as follows:

LSCL(θ) = − log
exp(sim(zi, z

a
i ))∑B

j=1 1[j ̸=i] exp(sim(zi, zj))

(5)

where B denotes the batch size. Finally, The in-
tention encoder module is trained with the loss L.

L = LCE + LfCE + LKL + LSCL (6)

3 Experiments

3.1 Set up

The experiments are conducted on CLINC (Lar-
son et al., 2019), and Banking77 (Casanueva et al.,
2020) datasets. CLINC contains 22, 500 utterances
with 150 intents, and Banking77 consists of 13, 083
utterances with 77 intents. Followed DeepAligned
(Zhang et al., 2021) model, we randomly select
10% of training data as labeled and 75% of all in-
tents as known intents. The model is compared
with strong baselines: BERT-MCL (Hsu et al.,
2019), CDAC+ (Lin et al., 2020) and DeepAligned
(Zhang et al., 2021). Three widely used metrics are
adopted to evaluate the clustering results: Accuracy
(ACC), Normalized Mutual Information (NMI),
and Adjusted Rand Index (ARI).

3.2 Training details

For a fair comparison with previous work, hyper-
parameters are adopted as suggested in Zhang et al.
(2021). The parameters of Frame-BERT and µ, σ
are frozen during clustering. The unlabeled data
are aligned per 10 epochs in the clustering stage.
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Method
CLINC

25% 50% 75%
ACC ARI NMI ACC ARI NMI ACC ARI NMI

BERT-MCL(Hsu et al., 2019) 24.35 16.82 65.06 47.21 36.72 78.39 69.66 59.92 87.72
CDAC+ (Lin et al., 2020) 64.64 50.35 84.25 69.02 54.15 86.18 69.89 54.33 86.65

DeepAligned* (Zhang et al., 2021) - - - 66.31 60.68 88.22 70.76 67.28 91.28
Our model 65.47 57.64 87.47 72.84 65.24 90.44 77.07 72.61 92.3

Banking77
25% 50% 75%

BERT-MCL(Hsu et al., 2019) 24.53 15.51 49.46 42.28 29.80 62.50 61.14 47.43 75.68
CDAC+ (Lin et al., 2020) 48.79 34.88 67.65 51.97 38.61 70.62 53.83 40.97 72.25

DeepAligned (Zhang et al., 2021) 48.88 36.81 70.45 59.23 47.82 76.52 64.90 53.64 79.56
Our model 59.25 49.32 68.33 62.37 52.10 79.49 70.78 61.75 84.82

Table 1: The results on CLINC150 and Banking77 datasets in the semi-scenario for 25%, 50%, and 75% known
intent ratios (KIR). * represents the results implemented by us.

3.3 Result and Discussion

3.3.1 Main results
We report the results across all models on the
CLINC and Banking77 with different known in-
tents ratios in Table 1. Our model achieves the best
results on all metrics and datasets compared to the
baselines, demonstrating the effectiveness of the
proposed approach. Another observation is that
the smaller ratios of known intents are included in
the fine-tuning, the more significant improvements
are achieved compared to baselines. The contribu-
tion can be explained in two aspects. Firstly, frame
regularization and augmentation alleviate the over-
fitting problem when fine-tuning. Secondly, freez-
ing Frame-BERT in the clustering stage guides the
Sentence-BERT to avoid noisy pseudo-labeled data
distribution.

3.3.2 Ablation study
To understand the effect of the proposed method,
we perform an ablation study (in Table 2) by remov-
ing frame regularization and augmentation, respec-
tively. There is a significant drop in performance on
all datasets with all metrics, especially for the Bank-
ing77 datasets when frame regularization and aug-
mentation are absent. The dropped performance
verifies the effectiveness of frame-based semantic
guidance in bridging the gap between known in-
tents representation learning and unknown intent
clustering. The degradation is more obvious in
Banking77 datasets because the intentions is fine-
grained and closed compared to CLINC datasets.

3.3.3 Case study
To further verify the model’s effectiveness, we vi-
sualize the representation in the clustering stage
of DeepAligned and our model (in Figure 3). We

CLINC Banking77
ACC ARI NMI ACC ARI NMI

our model 77.07 72.61 92.3 70.78 61.75 84.82
w/o regularization 72.36 67.87 91.54 63.05 56.13 82.51
w/o augmentation 71.16 67.73 91.35 66.53 57.95 82.77

Table 2: Ablation study with KIR(75%) on CLINC and
Banking77 datasets. “w/o” stands for “without”.

can find the distribution obtained by DeepAligned
are sparse, with more utterance clusters indicating
higher errors in the output. In comparison, the rep-
resentation learned from our model appears aggre-
gated to fewer groups, potentially ascribed to the
effect of the conceptual semantic learning ability
of the proposed method. The results are consistent
with the case study shown in Figure 1. Our model
performs closer to an ideal model in alleviating the
ill influence the syntactic forms bring.

(a) DeepAligned. (b) Our model.

Figure 3: TSNE plots for Banking77 with 75% KIR.

4 Conclusion and Future Work

This paper introduces frame knowledge as con-
ceptual semantic guidance and proposes a frame-
guided semantic regularization and augmentation
method. Experimental results on two benchmarks
demonstrate that our method outperforms strong
baselines by a wide margin. In future work, we will
explore practical ways to reason latent intentions
based on the frame ontology knowledge.
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Limitations

There are two limitations to this work. (1) the
total number of known and unknown intents are
predefined, requiring an extension in real-world
scenarios; (2) The frame knowledge is predefined
and, therefore, inflexible to address complex in-
tents. In addition, some user queries have no frame
in FrameNet matching.

There are additional computation costs for frame
knowledge learning. The model fine-tunes two
BERT(bert-base-uncased, 340M) models in the
training stage and runs sentence-BERT in the eval-
uation stage. The pre-training stage of our model
lasts about 10 minutes, and clustering runs for 90
minutes on CLINC with a 75% known intents ratio,
both using a single NVIDIA Tesla V100 GPU(32
GB of memory).
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