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Abstract

Question and answer generation (QAG) con-
sists of generating a set of question-answer
pairs given a context (e.g. a paragraph). This
task has a variety of applications, such as
data augmentation for question answering (QA)
models, information retrieval and education. In
this paper, we establish baselines with three
different QAG methodologies that leverage
sequence-to-sequence language model (LM)
fine-tuning. Experiments show that an end-
to-end QAG model, which is computationally
light at both training and inference times, is
generally robust and outperforms other more
convoluted approaches. However, there are dif-
ferences depending on the underlying genera-
tive LM. Finally, our analysis shows that QA
models fine-tuned solely on generated question-
answer pairs can be competitive when com-
pared to supervised QA models trained on
human-labeled data.

1 Introduction

Question and answer generation (QAG) is the task
of generating a set of question-answer pairs given
an input context such as a document, a paragraph
or a sentence. QAG can be applied to develop
question answering (QA) models without human
supervision (Lewis et al., 2019; Zhang and Bansal,
2019; Puri et al., 2020) and as a data augmenta-
tion mean for QA model understanding (Shakeri
et al., 2020; Bartolo et al., 2021). Moreover, QAG
is used as an aid of educational systems (Heilman
and Smith, 2010; Lindberg et al., 2013), to improve
information retrieval models (Pyatkin et al., 2021;
Lewis et al., 2021), and as a tool for model inter-
pretation (Perez et al., 2020; Lee et al., 2020).

QAG stems from question generation (QG)
(Mitkov and Ha, 2003; Du et al., 2017; Zhou et al.,
2017; Du and Cardie, 2018), which consists of gen-
erating a question given an answer on the input
context. Despite QG being widely studied in the
language model era (Murakhovs’ka et al., 2022;

Figure 1: Overview of the considered QAG approaches.

Ushio et al., 2022), QAG is a more complex task,
since the answer needs to be generated and not
assumed to be part of the input. Therefore, it is
unclear what types of QAG models work in prac-
tice as no comprehensive comparisons have been
established so far.

In this paper, we formalize QAG as a task that
generates question-answer pairs given a context,
and compare three simple QAG strategies based
on fine-tuning encoder-decoder language models
(LMs) such as T5 (Raffel et al., 2020) and BART
(Lewis et al., 2020). Our three proposed ap-
proaches (illustrated in Figure 1) consist of: (1)
pipeline QAG, which decomposes the task into an-
swer extraction and question generation, learning
a separate model for each subtask; (2) multitask
QAG, which uses a shared single model to train
both subtasks instead of independent ones; and (3)
end2end QAG, which uses end-to-end sequence-
to-sequence learning to generate question-answer
pairs directly. Finally, we compare these three ap-
proaches on a multi-domain QA-based evaluation,
where QA models are trained with the question-
answer pairs that each QAG model generates. All
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the QAG models are publicly released via Hug-
gingFace (Wolf et al., 2020)1, and available on the
online demo2.

2 Related Work

There are a few works that leverage pre-trained
LMs for QAG. For example, Alberti et al. (2019)
first fine-tuned BERT (Devlin et al., 2019) on an-
swer extraction and QG, and generate question-
answer pairs by extracting an answer, on which
the associated question is generated. Puri et al.
(2020) followed a similar idea by fine-tuning an au-
toregressive LM for QG. In contrast, Shakeri et al.
(2020) fine-tuned a single LM on answer extrac-
tion and QG jointly. Lee et al. (2020) trained an
LSTM sequence-to-sequence model from scratch
to generate question and answer sequentially. More
recently, Bartolo et al. (2021) used a QAG model
to generate adversarial examples for QA. Similarly,
Lewis et al. (2021) improved on extractive QA by
generating millions of question-answer pairs via
QAG. In these two last cases, the model to fine-tune
was BART (Lewis et al., 2020).

While all these studies use the three methods
that we analyse in this paper (i.e. pipeline, multi-
task and end2end), these are not easily comparable,
as there are important differences among them in
terms of settings, dataset, input to the LMs, and
evaluation metrics. Moreover, except for Lewis
et al. (2021), none of the proposed QAG models
have been made publicly available. Finally, the
two most recent studies using BART (Bartolo et al.,
2021; Lewis et al., 2021) have not performed any
evaluation on the QAG model, as it is included as
a part of a larger pipeline. We summarize the com-
parison of these prior works and our evaluation at
Table 1.

3 Question & Answer Pair Generation

Given an input context c (e.g. a paragraph),
QAG aims to generate natural question-answer
pairs Qc related to the information in c: Qc =
{(q1, a1), (q2, a2), . . . }. In what follows we de-
scribe three different approaches for QAG based
on fine-tuning language models.

1https://github.com/asahi417/
lm-question-generation

2https://autoqg.net/

Pipe. Multi. E2E Open Eval.

Alberti et al. (2019) ✓ ✗ ✗ ✗ ✓

Puri et al. (2020) ✓ ✗ ✗ ✗ ✓

Lee et al. (2020) ✗ ✓ ✗ ✗ ✓

Shakeri et al. (2020) ✓ ✗ ✓ ✗ ✓

Bartolo et al. (2021) ✓ ✗ ✗ ✗ ✗

Lewis et al. (2021) ✓ ✗ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of our paper and previous stud-
ies involving LM-based QAG. The first three columns
include the QAG methods used in the corresponding
paper: pipeline (Pipe.), multitask (Multi.), and end-to-
end (E2E). The fourth column indicates whether QAG
models were released open-source (Open). Finally, the
last column refers to whether the paper includes QAG
evaluation (Eval.).

3.1 Pipeline QAG
The QAG task can be decomposed into two simpler
subtasks, answer extraction (AE) and QG, where
the AE model Pae first generates an answer candi-
date ã on a sentence s in context c, and then the
QG model Pqg generates a question q̃ that is an-
swerable by answer ã given context c. The AE and
QG models can be trained independently on any
paragraph-level QG datasets that consist of quadru-
ples (c, s, a, q) by maximizing the conditional log-
likelihood of:

ã = argmax
a

Pae(a|c, s) (1)

q̃ = argmax
q

Pqg(q|c, s, a) (2)

where the log-likelihood is factorized into token-
level predictions, similar to other sequence-to-
sequence learning settings (Sutskever et al., 2014).
In practice, the input to the AE model takes the
form of:

[c1, . . . , <hl>, s1, . . . , s|s|, <hl>, . . . , c|c|]

where si and ci are the i−th token of s and c re-
spectively, | · | represents the number of tokens in
a text, and <hl> is the highlighted token to mark
the sentence in the context, following the QG for-
mulation of Chan and Fan (2019) and Ushio et al.
(2022). Likewise, the input to the QG model takes
the answer into account by:

[c1, . . . , <hl>, a1, . . . , a|a|, <hl>, . . . , c|c|]

where ai is the i−th token of a. At inference time,
we simply replace the gold answer a of the QG
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model (2) by the prediction from the AE model
(1), and run the inference over all the sentences
in context c to obtain question-answer pairs. Con-
sequently, the pipeline approach can generate, at
most, as many pairs as sentences in c.

3.2 Multitask QAG
Instead of training independent models for each
subtask, a shared model can be fine-tuned on both
AE and QG jointly in a multitask learning manner.
To be precise, we mix the training instances for AE
and QG altogether, and randomly sample a batch
at each iteration of fine-tuning. Each subtask is
distinguished by a task prefix added at the begin-
ning of the input text: “extract answer” (AE)
and “generate question” (QG).

3.3 End2end QAG
Instead of breaking down QAG into two separate
components, we can directly model it by converting
the question-answer pairs into a flattened sentence
y, and fine-tuning a sequence-to-sequence model
to generate y from c. Let us define a function that
maps Qc to a sentence as:

T (Qc) = “{t(q1, a1)} | {t(q2, a2)} | . . . ’’ (3)

t(q, a) = “question:{q}, answer:{a}’’ (4)

where each pair is textualized with the template (4)
and joined by a separator |. The end2end QAG
model Pqag is then optimized by maximizing the
following conditional log-likelihood:

ỹ = argmax
y

Pqag(y|c) (5)

4 Evaluation

4.1 Experimental Setting
Data. QAG models are trained on SQuAD (Ra-
jpurkar et al., 2016). As their outputs consist of
arbitrary questions and answers, reference-based
NLG evaluation metrics traditionally used in QG
research (Papineni et al., 2002; Denkowski and
Lavie, 2014; Lin, 2004; Mohammadshahi et al.,
2022) are unsuitable. As such, we conduct an ex-
trinsic evaluation by training QA models on the
data generated by the QAG models. For this,
we rely on SQuADShifts (Miller et al., 2020),
an English reading comprehension dataset in four
domains (Amazon/Wikipedia/News/Reddit). For
both SQuAD and SQuADShifts, we rely on the
train/validation/test splits provided in QG-Bench
(Ushio et al., 2022).

Multi-domain QA Evaluation. Given a QAG
model to be assessed, we first generate question-
answer pairs on each domain of SQuADShifts, and
fine-tune DistilBERT (Sanh et al., 2019) on the gen-
erated pseudo QA pairs, where F1 and exact match
on the test set are considered as the target metric.
This SQuADShifts QA-based evaluation can be
used to probe the robustness of the model across
domains, as well as for the overall performance
by averaging metrics over the domains. Our QA
evaluation relies on Tune,3 an efficient grid search
engine for parameter optimization, to find optimal
hyperparameters during QA model fine-tuning.
Base Models. For all comparison systems
(i.e. pipeline, multitask and end2end), we ex-
periment with T5 (Raffel et al., 2020) and
BART (Lewis et al., 2020) as base LMs, with
the model weights t5-{small,base,large} and
facebook/bart-{base,large} shared on Hug-
gingFace.4 Moreover, we report the results of a
QG model that takes the gold answers from the
provided QA training set as input (QG-only). This
is similar to the pipeline method but excluding the
AE component.

4.2 Results
Table 2 shows the SQuADShifts QA evaluation
results for the three approaches considered. Inter-
estingly, the top-2 best models, BARTLARGE (mul-
titask) and T5LARGE (end2end), outperform Gold
QA (i.e., the model using the human-labeled gold
annotations) in two out of four domains, as well
as the average in both F1 and exact match. Even
smaller models such as T5SMALL are competitive
with respect to using the gold standard question-
answer pairs.

Given the results, it is unclear which approach
provides the best performance, as BARTLARGE
(multitask) achieves the best average F1 score (in-
cluding the best results on Amazon and Reddit do-
mains in both metrics), while T5LARGE (end2end)
obtains the best average exact match (as well as the
best results on Wiki and NYT domains in both met-
rics). Among the QAG approaches, T5 consistently
works better with the end2end QAG, while BART
is not well-suited when used end2end. A possi-
ble explanation is that T5 has observed sentences
with structured information due to its multitask
pre-training objective, while BART did not have

3https://docs.ray.io/en/latest/tune/index.html
4See Appendix A for details on the procedure to find opti-

mal hyperparameters during model fine-tuning.
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Figure 2: Downsampled (equal-sized) SQuADShifts QA evaluation results (F1 score with 95% confidence interval)
for T5LARGE multitask/pipeline/end2end and BARTLARGE pipeline, compared with the original result of each model
and the gold QA dataset.

such training instances as it was trained only on a
denoising sequence-to-sequence objective.

4.3 Generation Size Analysis

In the SQuADShifts QA evaluation, the number
of question-answer pairs generated by QAG mod-
els is often larger than the human-labelled gold
dataset in each domain, as shown in Table 3.5

Therefore, to fairly compare the quality of gener-
ated question-answer pairs, we randomly downsam-
pled the number of the generated question-answer
pairs to match the size of the gold dataset. For this
analysis we focus on the best-performing T5LARGE
and BART LARGE QAG models6, and run the same
SQuADShifts QA evaluation with the downsam-
pled pairs. Figure 2 shows the average of F1 scores
over 10 independent trials with different random
seeds at downsampling.7 In this experiment, no
model outperforms the gold QA baseline. This
indicates that the human-annotated gold dataset
is still more informative and data efficient than
the generated question-answer pairs. Also, since
the pipeline/multitask QAG models generate more
pairs than the end2end model, downsampling has
a larger effect on the pipeline and multitask mod-
els than the end2end model. This means that the
T5LARGE (end2end) model can generate question-
answer pairs of higher quality than those gener-
ated by BARTLARGE (multitask), although they are
equally competitive in the main experiment (§ 4.2).

5The size of generated question-answer pairs in each do-
main can be found in Appendix B.

6The end2end BART LARGE results match those from Ta-
ble 2, since it had less data than the gold dataset.

7See Appendix C for the comparison of exact match.

4.4 QAG Model Comparison

So far, we have compared the three QAG ap-
proaches in terms of performance. However, per-
formance is not the only criterion to consider when
choosing a QAG model, since each approach has its
own advantages and limitations in terms of compu-
tational cost and usability. From the perspective of
computational complexity, end2end QAG is faster
than the others at both of training and inference, be-
cause it can generate a number of question-answer
pairs at once in a single paragraph pass. In contrast,
both multitask and pipeline need to parse every
sentence separately, and a single prediction con-
sists of two generations (i.e. answer extraction and
question generation). Essentially, the relative in-
crease of computational cost from end2end QAG
to pipeline/multitask QAG can be approximated
by the average number of sentences in each para-
graph. In terms of memory requirements, both mul-
titask and end2end QAG rely on a single model,
but pipeline QAG consists of two models, requir-
ing twice as much memory storage. Finally, while
computational-wise end2end is the lightest model,
both pipeline and multitask approaches can gen-
erate a larger number of question-answer pairs on
average, with the added benefit of being able to run
the models on individual sentences. Table 4 shows
a practical comparison of the three approaches.

5 Conclusion

In this paper, we formalized QAG as a task to gen-
erate pairs of questions and answers given an input
context, and established baselines with three dif-
ferent QAG approaches. To compare them, we
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Approach Average Amazon Wiki NYT Reddit

Gold QA 53.3/37.3 45.9/30.4 55.6/38.7 61.4/46.9 50.1/33.4

B
A

R
T

B
A

SE QG only 49.4/33.9 42.3/26.7 54.3/37.2 59.3/44.8 41.9/27.0

Pipeline 50.0/32.4 48.4/29.8 49.4/31.1 53.0/36.0 49.5/32.7
Multitask 50.8/33.2 49.4/30.5 50.6/32.1 55.0/39.2 48.4/31.1
End2end 34.0/21.4 29.3/16.5 35.4/23.2 44.6/31.1 26.6/15.0

B
A

R
T

L
A

R
G

E QG only 49.4/33.8 43.3/27.4 54.0/36.7 59.4/44.6 41.1/26.4

Pipeline 51.7/34.0 49.0/30.2 52.5/33.7 55.3/40.0 49.7/32.3
Multitask 54.3/36.7 53.6/34.3 54.1/36.4 57.7/41.8 51.6/34.4
End2end 17.5/10.2 17.1/9.1 18.9/11.3 22.3/14.7 11.6/5.7

T
5 S

M
A

L
L QG only 48.5/33.1 43.8/27.7 50.5/34.5 55.2/41.0 44.4/29.1

Pipeline 45.4/27.4 41.6/23.8 46.9/27.2 48.9/32.1 44.1/26.6
Multitask 44.0/25.2 42.1/22.9 44.3/24.1 45.6/27.9 44.0/25.7
End2end 48.3/31.7 42.3/24.8 54.7/37.2 55.2/40.1 41.1/24.8

T
5 B

A
SE

QG only 50.7/34.7 43.3/27.4 54.4/37.1 57.7/43.2 47.3/31.1

Pipeline 51.7/33.6 50.6/31.1 52.8/34.0 53.8/37.1 49.6/32.4
Multitask 49.6/30.9 48.8/28.9 48.1/28.5 52.5/35.1 49.1/31.2
End2end 51.8/35.4 44.9/26.9 56.9/40.1 59.9/45.3 45.3/29.2

T
5 L

A
R

G
E QG only 48.9/33.4 42.7/26.8 53.2/36.2 58.5/43.9 41.5/26.7

Pipeline 52.0/33.9 50.9/31.1 51.7/32.9 55.9/39.5 49.7/32.0
Multitask 49.5/30.9 46.3/26.0 49.6/30.6 53.0/35.9 49.0/31.2
End2end 53.7/37.3 49.1/31.1 56.1/40.1 60.7/45.5 48.8/32.5

Table 2: SQuADShifts QA evaluation results (F1/exact
match) of different QAG models. As an upperbound,
we included the results of the same QA model trained
on the gold human-annotated SQuADShifts training set
(Gold QA). The best score among the QAG approaches
within each LM is boldfaced, and the best result in each
domain across all models is underlined.

conducted a multi-domain QA based evaluation
that measures the performance of a QAG model by
fine-tuning QA models on the QA training dataset
generated by the QAG model. Our evaluation
shows that end2end QAG models that generate
questions and answers simultaneously are gener-
ally the most reliable. Nonetheless, establishing
a multitask paradigm with separation between an-
swer extraction and question generation can have
added benefits, especially when using LMs such as
BART. In general, the results are promising, as they
show that these artificially-generated QA datasets
rival in quality with those annotated by humans,
which could save large amount of resources.
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Limitations

In this paper, we studied paragraph-level QAG
models, which limits their input up to around 500

Approach Size (training / validation)

Gold QA 3,141 / 1,571

BARTLARGE (pipeline) 11,900 / 8,192
BARTLARGE (multitask) 11,752 / 8,103
BARTLARGE (end2end) 2,012 / 1,399
T5LARGE (pipeline) 12,239 / 8,417
T5LARGE (multitask) 12,148 / 8,357
T5LARGE (end2end) 6,555 / 4,550

Table 3: Average number of question-answer pairs gen-
erated for SQuADShifts QA evaluation by each model
over all the domains.

Cost Memory Generated QA

Pipeline 9.2x 2x 2.7x
Multitask 9.2x x 2.7x
End2end x x x

Table 4: Comparison among the three proposed QAG
approaches in terms of training cost, memory require-
ments, and generated question-answer pairs, using
end2end as a reference. The comparison is performed
for T5LARGE with the data used for the main experi-
ments (§ 4.1). Generated QA are averaged across the
four SQuADShifts domains.

tokens, and the same approach cannot be easily ap-
plied to longer documents. Also, the answer is an
entity or a phrase consisting of a few tokens and the
question requires one-hop reasoning, so our models
are not able for use in generating longer answers
or multi-hop questions. As far as the languages
are concerned, the models studies here are English
only and to adapt SQuADShifts QA evaluation in
other languages, we need QA datasets to train and
evaluate the QAG model in those languages.

The focus on this paper was on evaluating the
quality of generated question-answer pairs. As
such, we do not attempt to achieve the best QA
model possible, but rather use question answering
as an extrinsic evaluation. This extrinsic evaluation
could be further enhanced with an intrinsic manual
evaluation that we did not perform in this paper.
Finally, given computational constraints, our QA
evaluation is based on a single model only. Again,
the goal here was not to achieve the best QA per-
formance, but we acknowledge than using different
models could lead to different results.

Ethics Statement

Since pre-trained LMs are known to inherit unde-
sirable biases and tend to generate toxic contents
in some edge cases (Schick et al., 2021), the QAG
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models we developed in the paper could potentially
generate a question or an answer including such
texts. Nevertheless, we have done internal valida-
tion on the generated question-answer pairs and we
have not found such examples in the data analysed
in this paper.
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Approach Model Epoch LR LS Batch

Pipeline (AE) BARTBASE 4 0.00005 0.15 64
Pipeline (QG) BARTBASE 7 0.0001 0.15 256
Multitask BARTBASE 3 0.00005 0.15 128
End2end BARTBASE 2 0.00001 0.15 128
Pipeline (AE) BARTLARGE 5 0.00005 0.15 64
Pipeline (QG) BARTLARGE 4 0.00005 0.15 128
Multitask BARTLARGE 6 0.00001 0.15 64
End2end BARTLARGE 14 0.00001 0.15 64
Pipeline (AE) T5SMALL 7 0.0001 0.15 64
Pipeline (QG) T5SMALL 9 0.0001 0.15 64
Multitask T5SMALL 7 0.0001 0.15 64
End2end T5SMALL 18 0.0001 0 64
Pipeline (AE) T5BASE 8 0.0001 0 64
Pipeline (QG) T5BASE 5 0.0001 0.15 64
Multitask T5BASE 6 0.0001 0.15 128
End2end T5BASE 17 0.0001 0.15 64
Pipeline (AE) T5LARGE 9 0.0001 0 128
Pipeline (QG) T5LARGE 6 0.00005 0.15 64
Multitask T5LARGE 3 0.0001 0.15 64
End2end T5LARGE 12 0.0001 0.15 64

Table 5: Optimal hyperparameters for each QAG model.

A Hyper Parameters

At each QAG model fine-tuning, we search the
optimal hyperparameters such as learning rate via
lmqg8, a hyperparameter search tool for sequence-
to-sequence LM fine-tuning, and Table 5 shows the
best hyperparameters. The maximum input length
is fixed as 512, and the maximum output length is
256 for the end2end QAG and 32 for the others.

B Size of QA Pairs at SQuADShifts QA
evaluation

Table 6 shows the number of question-answer pairs
generated from different QAG models in each do-
main at SQuADShifts QA evaluation. The size
of the test sets are 4,942 (Amazon), 3,696 (Wiki),
5,032 (NYT), and 4,901 (Reddit).

C Additional Results of Downsampled
SQuADShifts QA evaluation

Figure 3 shows the exact match of the downsam-
pled SQuADShifts QA evaluation experiment.

8https://pypi.org/project/lmqg

Approach Size (training / validation)

A
m

az
on

Gold QA 3,295 / 1,648
BARTBASE (pipeline) 14,824 / 10,273
BARTLARGE (pipeline) 15,204 / 10,569
T5SMALL (pipeline) 15,343 / 10,643
T5BASE (pipeline) 15,631 / 10,862
T5LARGE (pipeline) 15,645 / 10,844
BARTBASE (multitask) 14,517 / 10,065
BARTLARGE (multitask) 15,057 / 10,452
T5SMALL (multitask) 15,417 / 10,688
T5BASE (multitask) 15,454 / 10,724
T5LARGE (multitask) 15,479 / 10,734
BARTBASE (end2end) 990 / 706
BARTLARGE (end2end) 2,045 / 1,408
T5SMALL (end2end) 6,419 / 4,470
T5BASE (end2end) 7,053 / 4,889
T5LARGE (end2end) 7,034 / 4,880

W
ik

i

Gold QA 2,646 / 1,323
BARTBASE (pipeline) 6,340 / 4,455
BARTLARGE (pipeline) 6,485 / 4,582
T5SMALL (pipeline) 6,433 / 4,537
T5BASE (pipeline) 6,518 / 4,597
T5LARGE (pipeline) 6,518 / 4,596
BARTBASE (multitask) 6,267 / 4,415
BARTLARGE (multitask) 6,450 / 4,547
T5SMALL (multitask) 6,377 / 4,504
T5BASE (multitask) 6,466 / 4,564
T5LARGE (multitask) 6,485 / 4,580
BARTBASE (end2end) 1,137 / 784
BARTLARGE (end2end) 1,718 / 1,214
T5SMALL (end2end) 5,050 / 3,513
T5BASE (end2end) 5,639 / 3,930
T5LARGE (end2end) 5,515 / 3,882

N
Y

T

Gold QA 3,355 / 1,678
BARTBASE (pipeline) 10,033 / 6,913
BARTLARGE (pipeline) 10,339 / 7,141
T5SMALL (pipeline) 10,440 / 7,241
T5BASE (pipeline) 10,583 / 7,312
T5LARGE (pipeline) 10,595 / 7,330
BARTBASE (multitask) 9,857 / 6,781
BARTLARGE (multitask) 10,288 / 7,142
T5SMALL (multitask) 10,404 / 7,191
T5BASE (multitask) 10,537 / 7,293
T5LARGE (multitask) 10,566 / 7,302
BARTBASE (end2end) 1,033 / 756
BARTLARGE (end2end) 2,230 / 1,567
T5SMALL (end2end) 6,555 / 4,520
T5BASE (end2end) 7,090 / 4,913
T5LARGE (end2end) 7,037 / 4,876

R
ed

di
t

Gold QA 3,268 / 1,634
BARTBASE (pipeline) 15,206 / 10,236
BARTLARGE (pipeline) 15,572 / 10,474
T5SMALL (pipeline) 15,853 / 10,688
T5BASE (pipeline) 16,112 / 10,844
T5LARGE (pipeline) 16,199 / 10,898
BARTBASE (multitask) 14,928 / 10,037
BARTLARGE (multitask) 15,214 / 10,271
T5SMALL (multitask) 15,756 / 10,585
T5BASE (multitask) 15,866 / 10,704
T5LARGE (multitask) 16,063 / 10,813
BARTBASE (end2end) 691 / 477
BARTLARGE (end2end) 2,055 / 1,407
T5SMALL (end2end) 5,853 / 4,015
T5BASE (end2end) 6,902 / 4,708
T5LARGE (end2end) 6,632 / 4,560

Table 6: The number of question-answer pairs generated
for SQuADShifts QA evaluation in each model.
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Figure 3: Downsampled (equal-sized) SQuADShifts QA evaluation results (exact match with 95% confidence
interval) for T5LARGE multitask/pipeline/end2end and BARTLARGE pipeline, compared with the original result of
each model and the gold QA dataset.
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